Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Investigational Agents Targeting SGLT1 and SGLT2 in the Treatment of Type 2 Diabetes Mellitus

Author(s): Haigang Cui, Xin Luo, Mingwei Chen, Jun Lu and Johnson J. Liu*

Volume 24, Issue 8, 2023

Published on: 12 June, 2023

Page: [648 - 661] Pages: 14

DOI: 10.2174/1389450124666230503120930

Price: $65

Abstract

Targeting sodium-dependent glucose transporters (SGLT1 and SGLT2) represents a new class of pharmacotherapy for type 2 diabetes mellitus, a major global health issue with an increasing social and economic burden. Following recent successes in market approvals of SGLT2 inhibitors, the ongoing effort has paved the way for the discovery of novel agents via structure-activity relationship studies, preclinical and clinical testing, including SGLT2 inhibitors, SGLT1/2 dual inhibitors, and selective SGLT1 inhibitors. A growing understanding of the physiology of SGLTs allows drug developers to explore additional cardiovascular and renal protective benefits of these agents in T2DM patients at risk. This review provides an overview of the recent investigational compounds and discusses future perspectives of drug discovery in this area.

Graphical Abstract

[1]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[2]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[3]
Scheen AJ. Pharmacotherapy of ‘treatment resistant’ type 2 diabetes. Expert Opin Pharmacother 2017; 18(5): 503-15.
[http://dx.doi.org/10.1080/14656566.2017.1297424] [PMID: 28276972]
[4]
Scheen AJ. Sodium–glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2020; 16(10): 556-77.
[http://dx.doi.org/10.1038/s41574-020-0392-2] [PMID: 32855502]
[5]
Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91(2): 733-94.
[http://dx.doi.org/10.1152/physrev.00055.2009] [PMID: 21527736]
[6]
Sano R, Shinozaki Y, Ohta T. Sodium–glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 2020; 11(4): 770-82.
[http://dx.doi.org/10.1111/jdi.13255] [PMID: 32196987]
[7]
Poulsen SB, Fenton RA, Rieg T. Sodium-glucose cotransport. Curr Opin Nephrol Hypertens 2015; 24(5): 463-9.
[http://dx.doi.org/10.1097/MNH.0000000000000152] [PMID: 26125647]
[8]
Santer RCAA, Kinner M, Lassen CL, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 2003; 14(11): 2873-82.
[http://dx.doi.org/10.1097/01.ASN.0000092790.89332.D2] [PMID: 14569097]
[9]
Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005; 54(12): 3427-34.
[http://dx.doi.org/10.2337/diabetes.54.12.3427] [PMID: 16306358]
[10]
Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 inhibitors: A review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health 2019; 16(16): 2965.
[http://dx.doi.org/10.3390/ijerph16162965] [PMID: 31426529]
[11]
Adeghate E, Mohsin S, Adi F, et al. An update of SGLT1 and SGLT2 inhibitors in early phase diabetes-type 2 clinical trials. Expert Opin Investig Drugs 2019; 28(9): 811-20.
[http://dx.doi.org/10.1080/13543784.2019.1655539] [PMID: 31402716]
[12]
Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: The latest developments. Expert Opin Drug Metab Toxicol 2018; 14(12): 1287-302.
[http://dx.doi.org/10.1080/17425255.2018.1551877] [PMID: 30463454]
[13]
Zilli RW, Rached CDA, Silva FPD, Baena RC. Long-term efficacy of gliflozins versus gliptins for Type 2 Diabetes after metformin failure: A systematic review and network meta-analysis. Rev Assoc Med Bras 2020; 66(4): 458-65.
[http://dx.doi.org/10.1590/1806-9282.66.4.458] [PMID: 32578779]
[14]
Tuttle KR, Brosius FC III, Cavender MA, et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: Report of a scientific workshop sponsored by the national kidney foundation. Diabetes 2021; 70(1): 1-16.
[http://dx.doi.org/10.2337/dbi20-0040] [PMID: 33106255]
[15]
Cai W, Jiang L, Xie Y, Liu Y, Liu W, Zhao G. Design of SGLT2 inhibitors for the treatment of type 2 diabetes: A history driven by biology to chemistry. Med Chem 2015; 11(4): 317-28.
[http://dx.doi.org/10.2174/1573406411666150105105529] [PMID: 25557661]
[16]
Zhang W, Welihinda A, Mechanic J, et al. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacol Res 2011; 63(4): 284-93.
[http://dx.doi.org/10.1016/j.phrs.2011.01.001] [PMID: 21215314]
[17]
Halvorsen YD, Lock JP, Zhou W, Zhu F, Freeman MW. A 24-week, randomized, double-blind, active-controlled clinical trial comparing bexagliflozin with sitagliptin as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes Obes Metab 2019; 21(10): 2248-56.
[http://dx.doi.org/10.1111/dom.13801] [PMID: 31161692]
[18]
Halvorsen YDC, Walford GA, Massaro J, Aftring RP, Freeman MW. A 96-week, multinational, randomized, double-blind, parallel-group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes Metab 2019; 21(11): 2496-504.
[http://dx.doi.org/10.1111/dom.13833] [PMID: 31297965]
[19]
Halvorsen YD, Walford G, Thurber T, Russell H, Massaro M, Freeman MW. A 12-week, randomized, double-blind, placebo-controlled, four-arm dose-finding phase 2 study evaluating bexagliflozin as monotherapy for adults with type 2 diabetes. Diabetes Obes Metab 2020; 22(4): 566-73.
[http://dx.doi.org/10.1111/dom.13928] [PMID: 31749238]
[20]
Allegretti AS, Zhang W, Zhou W, et al. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD. Am J Kidney Dis 2019; 74(3): 328-37.
[http://dx.doi.org/10.1053/j.ajkd.2019.03.417] [PMID: 31101403]
[21]
McMurray JJV, Freeman MW, Massaro J, et al. 32-OR: The bexagliflozin efficacy and safety trial (BEST): a randomized, double-blind, placebo-controlled, phase IIII, clinical trial. Diabetes 2020; 69(S1): 32.
[http://dx.doi.org/10.2337/db20-32-OR]
[22]
Wang L, Wu C, Shen L, et al. Evaluation of drug–drug interaction between henagliflozin, a novel sodium-glucose co-transporter 2 inhibitor, and metformin in healthy Chinese males. Xenobiotica 2016; 46(8): 703-8.
[http://dx.doi.org/10.3109/00498254.2015.1113576] [PMID: 26608671]
[23]
Yong X, Wen A, Liu X, et al. Pharmacokinetics and pharmacodynamics of henagliflozin, a sodium glucose co-transporter 2 inhibitor, in Chinese patients with type 2 diabetes mellitus. Clin Drug Investig 2016; 36(3): 195-202.
[http://dx.doi.org/10.1007/s40261-015-0366-7] [PMID: 26692004]
[24]
Zhang Y, Liu Y, Yu C, et al. Tolerability, pharmacokinetic, and pharmacodynamic profiles of henagliflozin, a novel selective inhibitor of sodium-glucose cotransporter 2, in healthy subjects following single- and multiple-dose administration. Clin Ther 2021; 43(2): 396-409.
[http://dx.doi.org/10.1016/j.clinthera.2020.12.012] [PMID: 33454124]
[25]
Lu J, Fu L, Li Y, et al. Henagliflozin monotherapy in patients with type 2 diabetes inadequately controlled on diet and exercise: A randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Obes Metab 2021; 23(5): 1111-20.
[http://dx.doi.org/10.1111/dom.14314] [PMID: 33417292]
[26]
Weng J, Zeng L, Zhang Y, et al. Henagliflozin as add-on therapy to metformin in patients with type 2 diabetes inadequately controlled with metformin: A multicentre, randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Obes Metab 2021; 23(8): 1754-64.
[http://dx.doi.org/10.1111/dom.14389] [PMID: 33769656]
[27]
Yan P, Zhang L, Feng Y, et al. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models. Acta Pharmacol Sin 2014; 35(5): 613-24.
[http://dx.doi.org/10.1038/aps.2013.196] [PMID: 24786232]
[28]
Chen S, Sbuh N, Veedu RN. Antisense oligonucleotides as potential therapeutics for type 2 diabetes. Nucleic Acid Ther 2021; 31(1): 39-57.
[http://dx.doi.org/10.1089/nat.2020.0891] [PMID: 33026966]
[29]
Zanardi TA, Han SC, Jeong EJ, et al. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2. J Pharmacol Exp Ther 2012; 343(2): 489-96.
[http://dx.doi.org/10.1124/jpet.112.197426] [PMID: 22915769]
[30]
van Meer L, van Dongen M, Moerland M, de Kam M, Cohen A, Burggraaf J. Novel SGLT2 inhibitor: First-in-man studies of antisense compound is associated with unexpected renal effects. Pharmacol Res Perspect 2017; 5(1): e00292.
[http://dx.doi.org/10.1002/prp2.292] [PMID: 28596840]
[31]
van Meer L, Moerland M, van Dongen M, et al. Renal effects of antisense-mediated inhibition of SGLT2. J Pharmacol Exp Ther 2016; 359(2): 280-9.
[http://dx.doi.org/10.1124/jpet.116.233809] [PMID: 27605629]
[32]
Wang Y, Lou Y, Wang J, et al. Design, synthesis and biological evaluation of 6-deoxy O-spiroketal C-arylglucosides as novel renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Eur J Med Chem 2019; 180: 398-416.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.032] [PMID: 31325786]
[33]
Goodwin NC, Mabon R, Harrison BA, et al. Novel L-xylose derivatives as selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. J Med Chem 2009; 52(20): 6201-4.
[http://dx.doi.org/10.1021/jm900951n] [PMID: 19785435]
[34]
Ding Y, Mao L, Xu D, et al. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents. Bioorg Med Chem Lett 2015; 25(14): 2744-8.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.040] [PMID: 26026363]
[35]
Chu KF, Song JS, Chen CT, et al. Synthesis and biological evaluation of N-glucosyl indole derivatives as sodium-dependent glucose co-transporter 2 inhibitors. Bioorg Chem 2019; 83: 520-5.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.006] [PMID: 30469144]
[36]
Nomura S, Yamamoto Y, Matsumura Y, et al. Novel indole-N-glucoside, TA-1887 as a sodium glucose cotransporter 2 inhibitor for treatment of type 2 diabetes. ACS Med Chem Lett 2014; 5(1): 51-5.
[http://dx.doi.org/10.1021/ml400339b] [PMID: 24900773]
[37]
Yao CH, Song JS, Chen CT, et al. Discovery of novel N-β-D-xylosylindole derivatives as sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the management of hyperglycemia in diabetes. J Med Chem 2011; 54(1): 166-78.
[http://dx.doi.org/10.1021/jm101072y] [PMID: 21128592]
[38]
Zhang L, Wang Y, Xu H, et al. Discovery of 6-deoxydapagliflozin as a highly potent sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Med Chem 2014; 10(3): 304-17.
[http://dx.doi.org/10.2174/15734064113096660051] [PMID: 24059684]
[39]
Lee J, Lee SH, Seo HJ, et al. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents: 1,3,4-Thiadiazolylmethylphenyl glucoside congeners. Bioorg Med Chem 2010; 18(6): 2178-94.
[http://dx.doi.org/10.1016/j.bmc.2010.01.073] [PMID: 20181486]
[40]
Lee SH, Song KS, Kim JY, et al. Novel thiophenyl C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents. Bioorg Med Chem 2011; 19(19): 5813-32.
[http://dx.doi.org/10.1016/j.bmc.2011.08.014] [PMID: 21906953]
[41]
Lee J, Kim JY, Choi J, Lee SH, Kim J, Lee J. Pyrimidinylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. Bioorg Med Chem Lett 2010; 20(23): 7046-9.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.103] [PMID: 20952196]
[42]
Kang SY, Kim MJ, Lee JS, Lee J. Glucosides with cyclic diarylpolynoid as novel C-aryl glucoside SGLT2 inhibitors. Bioorg Med Chem Lett 2011; 21(12): 3759-63.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.063] [PMID: 21592794]
[43]
Song KS, Lee SH, Kim MJ, et al. Synthesis and SAR of thiazolylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. ACS Med Chem Lett 2011; 2(2): 182-7.
[http://dx.doi.org/10.1021/ml100256c] [PMID: 24900297]
[44]
Lee SH, Kim MJ, Lee SH, Kim J, Park HJ, Lee J. Thiazolylmethyl ortho-substituted phenyl glucoside library as novel C-aryl glucoside SGLT2 inhibitors. Eur J Med Chem 2011; 46(7): 2662-75.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.052] [PMID: 21514014]
[45]
Zhang Y, Liu ZP. Recent developments of C-aryl glucoside SGLT2 inhibitors. Curr Med Chem 2016; 23(8): 832-49.
[http://dx.doi.org/10.2174/0929867323666160210125747] [PMID: 26861002]
[46]
Chu KF, Yao CH, Song JS, et al. N-Indolylglycosides bearing modifications at the glucose C6-position as sodium-dependent glucose co-transporter 2 inhibitors. Bioorg Med Chem 2016; 24(10): 2242-50.
[http://dx.doi.org/10.1016/j.bmc.2016.03.058] [PMID: 27075813]
[47]
Sugizaki T, Zhu S, Guo G, et al. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech Dis 2017; 3(1): 12.
[http://dx.doi.org/10.1038/s41514-017-0012-0] [PMID: 28900540]
[48]
Nomura S, Sakamaki S, Hongu M, et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem 2010; 53(17): 6355-60.
[http://dx.doi.org/10.1021/jm100332n] [PMID: 20690635]
[49]
Liu JJ, Lee T, DeFronzo RA. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans? Diabetes 2012; 61(9): 2199-204.
[http://dx.doi.org/10.2337/db12-0052] [PMID: 22923645]
[50]
Abdul-Ghani MA, Norton L, DeFronzo RA. Efficacy and safety of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Curr Diab Rep 2012; 12(3): 230-8.
[http://dx.doi.org/10.1007/s11892-012-0275-6] [PMID: 22528597]
[51]
Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: A review of their basic and clinical pharmacology. Diabetes Ther 2014; 5(2): 355-66.
[http://dx.doi.org/10.1007/s13300-014-0089-4] [PMID: 25424969]
[52]
Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co- transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes Metab 2017; 19(9): 1322-6.
[http://dx.doi.org/10.1111/dom.13003] [PMID: 28477418]
[53]
Du F, Hinke SA, Cavanaugh C, et al. Potent sodium/glucose cotransporter SGLT1/2 dual inhibition improves glycemic control without marked gastrointestinal adaptation or colonic microbiota changes in rodents. J Pharmacol Exp Ther 2018; 365(3): 676-87.
[http://dx.doi.org/10.1124/jpet.118.248575] [PMID: 29674332]
[54]
Dominguez Rieg JA, Rieg T. What does sodium-glucose co-transporter 1 inhibition add: Prospects for dual inhibition. Diabetes Obes Metab 2019; 21(S2): 43-52.
[http://dx.doi.org/10.1111/dom.13630] [PMID: 31081587]
[55]
Lapuerta P, Zambrowicz B, Strumph P, Sands A. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diab Vasc Dis Res 2015; 12(2): 101-10.
[http://dx.doi.org/10.1177/1479164114563304] [PMID: 25690134]
[56]
Cefalo CMA, Cinti F, Moffa S, et al. Sotagliflozin, the first dual SGLT inhibitor: Current outlook and perspectives. Cardiovasc Diabetol 2019; 18(1): 20.
[http://dx.doi.org/10.1186/s12933-019-0828-y] [PMID: 30819210]
[57]
de Boer RA, Núñez J, Kozlovski P, Wang Y, Proot P, Keefe D. Effects of the dual sodium–glucose linked transporter inhibitor, licogliflozin vs placebo or empagliflozin in patients with type 2 diabetes and heart failure. Br J Clin Pharmacol 2020; 86(7): 1346-56.
[http://dx.doi.org/10.1111/bcp.14248] [PMID: 32068914]
[58]
Lee KH, Lee SD, Kim N, Suh KH, Kim YH, Sim SS. Pharmacological evaluation of HM41322, a novel SGLT1/2 dual inhibitor, in vitro and in vivo. Korean J Physiol Pharmacol 2019; 23(1): 55-62.
[http://dx.doi.org/10.4196/kjpp.2019.23.1.55] [PMID: 30627010]
[59]
Zambrowicz B, Freiman J, Brown PM, et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 2012; 92(2): 158-69.
[http://dx.doi.org/10.1038/clpt.2012.58] [PMID: 22739142]
[60]
Powell DR, DaCosta CM, Smith M, et al. Effect of LX4211 on glucose homeostasis and body composition in preclinical models. J Pharmacol Exp Ther 2014; 350(2): 232-42.
[http://dx.doi.org/10.1124/jpet.114.214304] [PMID: 24849925]
[61]
Rosenstock J, Cefalu WT, Lapuerta P, et al. Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care 2015; 38(3): 431-8.
[http://dx.doi.org/10.2337/dc14-0890] [PMID: 25216510]
[62]
Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 2021; 384(2): 117-28.
[http://dx.doi.org/10.1056/NEJMoa2030183] [PMID: 33200892]
[63]
Zambrowicz B, Ogbaa I, Frazier K, et al. Effects of LX4211, a dual sodium-dependent glucose cotransporters 1 and 2 inhibitor, on postprandial glucose, insulin, glucagon-like peptide 1, and peptide tyrosine tyrosine in a dose-timing study in healthy subjects. Clin Ther 2013; 35(8): 1162-1173.e8.
[http://dx.doi.org/10.1016/j.clinthera.2013.06.011] [PMID: 23911260]
[64]
Lapuerta P, Rosenstock J, Zambrowicz B, et al. Study design and rationale of a dose-ranging trial of LX4211, a dual inhibitor of SGLT1 and SGLT2, in type 2 diabetes inadequately controlled on metformin monotherapy. Clin Cardiol 2013; 36(7): 367-71.
[http://dx.doi.org/10.1002/clc.22125] [PMID: 23630033]
[65]
Zambrowicz B, Ding ZM, Ogbaa I, et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes. Clin Ther 2013; 35(3): 273-285.e7.
[http://dx.doi.org/10.1016/j.clinthera.2013.01.010] [PMID: 23433601]
[66]
Zambrowicz B, Lapuerta P, Strumph P, et al. LX4211 therapy reduces postprandial glucose levels in patients with type 2 diabetes mellitus and renal impairment despite low urinary glucose excretion. Clin Ther 2015; 37(1): 71-82.e12.
[http://dx.doi.org/10.1016/j.clinthera.2014.10.026] [PMID: 25529979]
[67]
Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 2021; 384(2): 129-39.
[http://dx.doi.org/10.1056/NEJMoa2030186] [PMID: 33200891]
[68]
Hahr AJ, Molitch ME. Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol 2015; 1(1): 2.
[http://dx.doi.org/10.1186/s40842-015-0001-9] [PMID: 28702221]
[69]
Singh M, Kumar A. Risks associated with SGLT2 Inhibitors: An overview. Curr Drug Saf 2018; 13(2): 84-91.
[http://dx.doi.org/10.2174/1574886313666180226103408] [PMID: 29485006]
[70]
Markham A, Keam SJ. Sotagliflozin: First global approval. Drugs 2019; 79(9): 1023-9.
[http://dx.doi.org/10.1007/s40265-019-01146-5] [PMID: 31172412]
[71]
He YL, Haynes W, Meyers CD, et al. The effects of licogliflozin, a dual SGLT1/2 inhibitor, on body weight in obese patients with or without diabetes. Diabetes Obes Metab 2019; 21(6): 1311-21.
[http://dx.doi.org/10.1111/dom.13654] [PMID: 30724002]
[72]
Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br J Nutr 2003; 89(1): 3-9.
[http://dx.doi.org/10.1079/BJN2002763] [PMID: 12568659]
[73]
Gorboulev V, Schürmann A, Vallon V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61(1): 187-96.
[http://dx.doi.org/10.2337/db11-1029] [PMID: 22124465]
[74]
Scheepers A, Joost HG, Schürmann A. The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 2004; 28(5): 364-71.
[http://dx.doi.org/10.1177/0148607104028005364] [PMID: 15449578]
[75]
Powell DR, Smith MG, Doree DD, et al. LX2761, a sodium/glucose cotransporter 1 inhibitor restricted to the intestine, improves glycemic control in mice. J Pharmacol Exp Ther 2017; 362(1): 85-97.
[http://dx.doi.org/10.1124/jpet.117.240820] [PMID: 28442582]
[76]
Goodwin NC, Ding ZM, Harrison BA, et al. Discovery of LX2761, a sodium-dependent gucose cotransporter 1 (SGLT1) inhibitor restricted to the intestinal lumen, for the treatment of diabetes. J Med Chem 2017; 60(2): 710-21.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01541] [PMID: 28045524]
[77]
Tsimihodimos V, Filippas-Ntekouan S, Elisaf M. SGLT1 inhibition: Pros and cons. Eur J Pharmacol 2018; 838: 153-6.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.019] [PMID: 30240793]
[78]
Kuroda S, Kobashi Y, Oi T, et al. Discovery of a potent, low-absorbable sodium-dependent glucose cotransporter 1 (SGLT1) inhibitor (TP0438836) for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2018; 28(22): 3534-9.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.035] [PMID: 30297284]
[79]
Kuroda S, Kobashi Y, Oi T, et al. Discovery of potent, low-absorbable sodium-dependent glucose cotransporter 1 (SGLT1) inhibitor SGL5213 for type 2 diabetes treatment. Bioorg Med Chem 2019; 27(2): 394-409.
[http://dx.doi.org/10.1016/j.bmc.2018.12.015] [PMID: 30579799]
[80]
Io F, Gunji E, Koretsune H, et al. SGL5213, a novel and potent intestinal SGLT1 inhibitor, suppresses intestinal glucose absorption and enhances plasma GLP-1 and GLP-2 secretion in rats. Eur J Pharmacol 2019; 853: 136-44.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.023] [PMID: 30878385]
[81]
Dobbins RL, Greenway FL, Chen L, et al. Selective sodium-dependent glucose transporter 1 inhibitors block glucose absorption and impair glucose-dependent insulinotropic peptide release. Am J Physiol Gastrointest Liver Physiol 2015; 308(11): G946-54.
[http://dx.doi.org/10.1152/ajpgi.00286.2014] [PMID: 25767259]
[82]
Fukudo S, Endo Y, Hongo M, et al. Safety and efficacy of the sodium-glucose cotransporter 1 inhibitor mizagliflozin for functional constipation: A randomised, placebo-controlled, double-blind phase 2 trial. Lancet Gastroenterol Hepatol 2018; 3(9): 603-13.
[http://dx.doi.org/10.1016/S2468-1253(18)30165-1] [PMID: 30056028]
[83]
Black CJ, Ford AC. Mizagliflozin for the treatment of functional constipation: Are new drugs better? Gastroenterology 2019; 156(3): 818-20.
[http://dx.doi.org/10.1053/j.gastro.2019.01.021] [PMID: 30659835]
[84]
Plosker GL. Dapagliflozin. Drugs 2012; 72(17): 2289-312.
[http://dx.doi.org/10.2165/11209910-000000000-00000] [PMID: 23170914]
[85]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[86]
Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013; 15(5): 463-73.
[http://dx.doi.org/10.1111/dom.12090] [PMID: 23464594]
[87]
Yamout H, Perkovic V, Davies M, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes and stage 3 nephropathy. Am J Nephrol 2014; 40(1): 64-74.
[http://dx.doi.org/10.1159/000364909] [PMID: 25059406]
[88]
Levine MJ. Empagliflozin for type 2 diabetes mellitus: An overview of phase 3 clinical trials. Curr Diabetes Rev 2017; 13(4): 405-23.
[http://dx.doi.org/10.2174/1573399812666160613113556] [PMID: 27296042]
[89]
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385(16): 1451-61.
[http://dx.doi.org/10.1056/NEJMoa2107038] [PMID: 34449189]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy