Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Systematic Review Article

A Systematic Review of COVID-19 Impact on Cardiovascular Diseases

Author(s): Mohd Zafar Khan, Badruddeen*, Mohammad Khushtar, Juber Akhtar, Mohammad Irfan Khan, Mohammad Ahmad and Ishana Chand

Volume 4, Issue 2, 2023

Published on: 24 July, 2023

Article ID: e080623217806 Pages: 13

DOI: 10.2174/2666796704666230608121558

Price: $65

conference banner
Abstract

Background: The world is confronted with the threat of a pandemic driven by a novel coronavirus, namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The disease was spread in December 2019 in Wuhan (China). The virus has spread to 216 nations, regions, and territories around the world. There were around 510306 confirmed cases and 333401 deaths by May 2020. Patients with cardiovascular diseases and other co-morbidities were at a high risk of SARS-CoV-2 infection that ultimately resulted in the death of the patient.

Objective: This review highlights the impact of COVID-19 on cardiovascular diseases and other comorbidities.

Methods: This review was completed using different sources of search sites like Google Scholar, Pub- Med, ScienceDirect, Scopus, etc.

Result: The diseases associated with the cardiovascular system include myocarditis, heart failure, cardiac injury, and microangiopathy. The mechanisms that cause cardiovascular problems in COVID-19 are myocardial injury pathways, systemic inflammation, altered myocardial demand and supply ratios, plaque rupture, coronary thrombosis, adverse effects of various therapies, and electrolyte imbalances. Several studies provide an important clinical and molecular clue to cardiac involvement during COVID-19. The high cytokine concentrations may contribute to myocardial lesions and a poor disease prognosis. In an earlier study, autopsy reports of COVID-19 found the SARS-CoV-2 genome in myocardial tissues. This also demonstrates that cytokine-induced organ dysfunction contributes to the disease process.

Conclusion: This review concludes that the impact of coronavirus on the cardiac system has shown a harmful effect, and patients with co-morbidities are likely to be more affected by COVID-19 infection.

Graphical Abstract

[1]
Pan F, Yang L, Li Y, et al. Factors associated with death outcome in patients with severe coronavirus disease-19 (COVID-19): A case-control study. Int J Med Sci 2020; 17(9): 1281-92.
[http://dx.doi.org/10.7150/ijms.46614] [PMID: 32547323]
[2]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[3]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[4]
Nguyen JL, Yang W, Ito K, Matte TD, Shaman J, Kinney PL. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol 2016; 1(3): 274-81.
[http://dx.doi.org/10.1001/jamacardio.2016.0433] [PMID: 27438105]
[5]
Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur Heart J 2020; 41(19): 1798-800.
[http://dx.doi.org/10.1093/eurheartj/ehaa231] [PMID: 32186331]
[6]
Long B, Long DA, Tannenbaum L, Koyfman A. An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. Am J Emerg Med 2020; 38(5): 998-1006.
[http://dx.doi.org/10.1016/j.ajem.2019.12.007] [PMID: 31864875]
[7]
Menéndez R, Méndez R, Aldás I, et al. Community- acquired pneumonia patients at risk for early and long-term cardiovascular events are identified by cardiac biomarkers. Chest 2019; 156(6): 1080-91.
[http://dx.doi.org/10.1016/j.chest.2019.06.040] [PMID: 31381883]
[8]
World Health Organization. COVID 19 Public Health Emergency of International Concern (PHEIC). Global research and innovation forum: towards a research roadmap Available from: World Health Organization. (2021). Looking back at a year that changed the world: WHO’s response to COVID-19, 22 January 2021 (No. WHO/WHE/2021.01). World Health Organization.
[9]
Ghebreyesus TA. World Health Organization.. WHO Director-General’s opening remarks at the media briefing on COVID-19-25. 2020. Avaialble from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-COVID-19---25-may-2020
[10]
Team E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly 2020; 2(8): 113-22.
[http://dx.doi.org/10.46234/ccdcw2020.032] [PMID: 34594836]
[11]
Ng TMH, Toews ML. Impaired norepinephrine regulation of monocyte inflammatory cytokine balance in heart failure. World J Cardiol 2016; 8(10): 584-9.
[http://dx.doi.org/10.4330/wjc.v8.i10.584] [PMID: 27847559]
[12]
Nakamura M, Tanaka F, Nakajima S, et al. Comparison of the incidence of acute decompensated heart failure before and after the major tsunami in Northeast Japan. Am J Cardiol 2012; 110(12): 1856-60.
[http://dx.doi.org/10.1016/j.amjcard.2012.08.020] [PMID: 22999072]
[13]
Cox ZL, Lai P, Lindenfeld J. Decreases in acute heart failure hospitalizations during COVID‐19. Eur J Heart Fail 2020; 22(6): 1045-6.
[http://dx.doi.org/10.1002/ejhf.1921] [PMID: 32469132]
[14]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[15]
Caforio ALP, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013; 34(33): 2636-48.
[http://dx.doi.org/10.1093/eurheartj/eht210] [PMID: 23824828]
[16]
Maekawa Y, Ouzounian M, Opavsky MA, Liu PP. Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity. Circulation 2007; 115(1): 5-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.670554] [PMID: 17200452]
[17]
Lawson CM. Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis. Cell Mol Life Sci 2000; 57(4): 552-60.
[http://dx.doi.org/10.1007/PL00000717] [PMID: 11130455]
[18]
Badorff C, Knowlton KU. Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: From bench to bedside. Med Microbiol Immunol 2004; 193(2-3): 121-6.
[http://dx.doi.org/10.1007/s00430-003-0189-7] [PMID: 12920582]
[19]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[20]
Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116(6): 1097-100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[21]
Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020; 17(9): 1463-71.
[http://dx.doi.org/10.1016/j.hrthm.2020.05.001] [PMID: 32387246]
[22]
Barlow A, Landolf KM, Barlow B, et al. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy 2020; 40(5): 416-37.
[http://dx.doi.org/10.1002/phar.2398] [PMID: 32259313]
[23]
Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated troponin in patients with coronavirus disease 2019: Possible mechanisms. J Card Fail 2020; 26(6): 470-5.
[http://dx.doi.org/10.1016/j.cardfail.2020.04.009] [PMID: 32315733]
[24]
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[25]
Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction. Arterioscler Thromb Vasc Biol 2003; 23(2): 168-75.
[http://dx.doi.org/10.1161/01.ATV.0000051384.43104.FC] [PMID: 12588755]
[26]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[27]
Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995; 332(8): 488-93.
[http://dx.doi.org/10.1056/NEJM199502233320802] [PMID: 7830729]
[28]
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID‐19. Am J Hematol 2020; 95(7): 834-47.
[http://dx.doi.org/10.1002/ajh.25829] [PMID: 32282949]
[29]
Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL. Special Article-acute myocardial injury in patients hospitalized with COVID-19 infection: A review. Prog Cardiovasc Dis 2020; 63(5): 682-9.
[http://dx.doi.org/10.1016/j.pcad.2020.05.013] [PMID: 32512122]
[30]
Toraih EA, Elshazli RM, Hussein MH, et al. Association of cardiac biomarkers and comorbidities with increased mortality, severity, and cardiac injury in COVID‐19 patients: A meta‐regression and decision tree analysis. J Med Virol 2020; 92(11): 2473-88.
[http://dx.doi.org/10.1002/jmv.26166] [PMID: 32530509]
[31]
Huang L, Zhao P, Tang D, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging 2020; 13(11): 2330-9.
[http://dx.doi.org/10.1016/j.jcmg.2020.05.004] [PMID: 32763118]
[32]
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol 2020; 5(7): 831-40.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[33]
Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003; 361(9371): 1767-72.
[http://dx.doi.org/10.1016/S0140-6736(03)13412-5] [PMID: 12781535]
[34]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[35]
Knockaert DC. Cardiac involvement in systemic inflammatory diseases. Eur Heart J 2007; 28(15): 1797-804.
[http://dx.doi.org/10.1093/eurheartj/ehm193] [PMID: 17562669]
[36]
Vitiello A, Ferrara F. Pharmacological agents to therapeutic treatment of cardiac injury caused by COVID-19. Life Sci 2020; 262: 118510.
[http://dx.doi.org/10.1016/j.lfs.2020.118510] [PMID: 32991879]
[37]
Duerr GD, Heine A, Hamiko M, et al. Parameters predicting COVID-19-induced myocardial injury and mortality. Life Sci 2020; 260: 118400.
[http://dx.doi.org/10.1016/j.lfs.2020.118400] [PMID: 32918975]
[38]
Ferrara F, Granata G, Pelliccia C, La Porta R, Vitiello A. The added value of pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV-2. Eur J Clin Pharmacol 2020; 76(11): 1615-8.
[http://dx.doi.org/10.1007/s00228-020-02947-4] [PMID: 32594204]
[39]
Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir Med 2020; 8(8): 750-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30222-8] [PMID: 32422177]
[40]
Argulian E, Sud K, Vogel B, et al. Right ventricular dilation in hospitalized patients with COVID-19 infection. JACC Cardiovasc Imaging 2020; 13(11): 2459-61.
[http://dx.doi.org/10.1016/j.jcmg.2020.05.010] [PMID: 32426088]
[41]
Jiang F, Yang J, Zhang Y, et al. Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nat Rev Cardiol 2014; 11(7): 413-26.
[http://dx.doi.org/10.1038/nrcardio.2014.59] [PMID: 24776703]
[42]
Jellis C, Martin J, Narula J, Marwick TH. Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol 2010; 56(2): 89-97.
[http://dx.doi.org/10.1016/j.jacc.2010.02.047] [PMID: 20620723]
[43]
Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol 2020; 5(11): 1281-5.
[http://dx.doi.org/10.1001/jamacardio.2020.3551] [PMID: 32730555]
[44]
Luetkens JA, Isaak A, Zimmer S, et al. Diffuse myocardial inflammation in COVID-19 associated myocarditis detected by multiparametric cardiac magnetic resonance imaging. Circ Cardiovasc Imaging 2020; 13(5): e010897.
[http://dx.doi.org/10.1161/CIRCIMAGING.120.010897] [PMID: 32397816]
[45]
Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clinical chemistry and laboratory medicine (CCLM) 2020; 58(7): 1131-4.
[46]
Wu Q, Zhou L, Sun X, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep 2017; 7(1): 9110.
[http://dx.doi.org/10.1038/s41598-017-09536-z] [PMID: 28831119]
[47]
Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417(6891): 822-8.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[48]
Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39(7): 618-25.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02153.x] [PMID: 19453650]
[49]
Oudit G, Kassiri Z, Patel M, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res 2007; 75(1): 29-39.
[http://dx.doi.org/10.1016/j.cardiores.2007.04.007] [PMID: 17499227]
[50]
Khan SS, Ning H, Wilkins JT, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol 2018; 3(4): 280-7.
[http://dx.doi.org/10.1001/jamacardio.2018.0022] [PMID: 29490333]
[51]
Zhao X, Nicholls JM, Chen YG. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-β signaling. J Biol Chem 2008; 283(6): 3272-80.
[http://dx.doi.org/10.1074/jbc.M708033200] [PMID: 18055455]
[52]
Cameron MJ, Ran L, Xu L, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 2007; 81(16): 8692-706.
[http://dx.doi.org/10.1128/JVI.00527-07] [PMID: 17537853]
[53]
Cameron CM, Cameron MJ, Bermejo-Martin JF, et al. Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. J Virol 2008; 82(22): 11308-17.
[http://dx.doi.org/10.1128/JVI.00691-08] [PMID: 18684821]
[54]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[55]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[56]
Chen D, Li X, Song Q, et al. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). MedRxiv 2020; 2020-02.
[http://dx.doi.org/10.1101/2020.02.27.20028530]
[57]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[58]
De Menezes Zanatta JM, Menezes Falcão L. COVID-19 and Cardiovascular Disease: The Impact of the Pandemic. Med Interna 2021; 28(1): 50-8.
[http://dx.doi.org/10.24950/R/163/20/1/2021]
[59]
Chopra HK, Kasliwal RR, Muruganathan A, Wali M, Ram CV. COVID-19, hypertension, and cardiovascular disease. Journal of Diabetology 2020; 11(2): 57.
[60]
Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111(20): 2605-10.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.510461] [PMID: 15897343]
[61]
Ip A, Parikh K, Parrillo JE, et al. Hypertension and rennin-angiotensin-aldosterone system inhibitors in patients with COVID-19. MedRxiv 2020; 2020-04.
[http://dx.doi.org/10.1101/2020.04.24.20077388]
[62]
de Simone G. Position statement of the ESC council on hypertension on ACE-inhibitors and angiotensin receptor blockers. EurSoc-Cardiol 2020; 13.
[63]
Huang D, Wang T, Chen Z, Yang H, Yao R, Liang Z. A novel risk score to predict diagnosis with coronavirus disease 2019 (COVID‐19) in suspected patients: A retrospective, multicenter, and observational study. J Med Virol 2020; 92(11): 2709-17.
[http://dx.doi.org/10.1002/jmv.26143] [PMID: 32510164]
[64]
Li Y, Meng Q, Rao X, et al. Corticosteroid therapy in critically ill patients with COVID-19: A multicenter, retrospective study. Crit Care 2020; 24(1): 698.
[http://dx.doi.org/10.1186/s13054-020-03429-w] [PMID: 33339536]
[65]
Yang IJ, Wu MY, Chao KH, et al. Usage and cost-effectiveness of elective oocyte freezing: A retrospective observational study. Reprod Biol Endocrinol 2022; 20(1): 123.
[http://dx.doi.org/10.1186/s12958-022-00996-1] [PMID: 35974356]
[66]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[67]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[68]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[69]
Chen Q, Zheng Z, Zhang C, et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection 2020; 48(4): 543-51.
[http://dx.doi.org/10.1007/s15010-020-01432-5] [PMID: 32342479]
[70]
Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020; 2020: 369.
[71]
Ding X, Chang Q. Probable vogt–koyanagi–harada disease after COVID-19 vaccination: Case report and literature review. Vaccines 2022; 10(5): 783.
[http://dx.doi.org/10.3390/vaccines10050783] [PMID: 35632539]
[72]
Lv D, Chen X, Mao L, et al. Pulmonary function of patients with 2019 novel coronavirus induced-pneumonia: A retrospective cohort study. Ann Palliat Med 2020; 9(5): 3447-52.
[73]
Xie Y, Bowe B, Maddukuri G, Al-Aly Z. Comparative evaluation of clinical manifestations and risk of death in patients admitted to hospital with COVID-19 and seasonal influenza: cohort study. BMJ 2020; 371: m4677.
[http://dx.doi.org/10.1136/bmj.m4677] [PMID: 33323357]
[74]
Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. Eur Rev Med Pharmacol Sci 2020; 24(6): 3404-10.
[PMID: 32271459]
[75]
Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021; 8(5): 416-27.
[http://dx.doi.org/10.1016/S2215-0366(21)00084-5] [PMID: 33836148]
[76]
Kremer S, Lersy F, Anheim M, et al. Neurologic and neuroimaging findings in patients with COVID-19. Neurology 2020; 95(13): e1868-82.
[http://dx.doi.org/10.1212/WNL.0000000000010112] [PMID: 32680942]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy