Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Designing and In silico Studies of Novel Hybrid of 1,3,4-oxadiazolechalcone Derivatives as EGFR Inhibitors

Author(s): Shital M Patil* and Bhandari Shashikant

Volume 20, Issue 6, 2023

Published on: 20 July, 2023

Article ID: e080623217804 Pages: 13

DOI: 10.2174/1570163820666230608120944

Price: $65

Abstract

Background: The tyrosine kinase epidermal growth factor receptor (TK-EGFR) has recently been identified as a useful target for anticancer treatments. The major concern for current EGFR inhibitors is resistance due to mutation, which can be overcome by combining more than one pharmacophore into a single molecule.

Aim and Objective: In the present study, various hybrids of 1,3,4-oxadiazole-chalcone derivatives were gauged for their EGFR inhibitory potential.

Method: The design of 1,3,4-oxadiazole-chalcone hybrid derivatives was carried out and in silico studies, viz., molecular docking, ADME, toxicity, and molecular simulation, were performed as EGFR inhibitors. Twenty-six 1,3,4-oxadiazole-chalcone hybrid derivatives were designed using the combilib tool of the V life software. AutoDock Vina software was used to perform in silico docking studies, while SwissADME and pkCSM tools were used to analyse molecules for ADME and toxicity. Desmond software was used to run the molecular simulation.

Result: Around 50% of molecules have shown better binding affinity as compared to standard and cocrystallized ligands.

Conclusion: Molecule 11 was found to be a lead molecule that has the highest binding affinity, good pharmacokinetics, good toxicity estimates and better protein-ligand stability.

Graphical Abstract

[1]
Cancer. Available From:https://www.who.int/news-room/fact-sheets/detail/cancer(accessed on 12/05/2022).
[2]
Kumar B, Singh S, Skvortsova I, Kumar V. Promising targets in anti-cancer drug development: Recent updates. Curr Med Chem 2017; 24(42): 4729-52.
[PMID: 28393696]
[3]
Paul MK, Mukhopadhyay AK. Tyrosine kinase - Role and significance in cancer. Int J Med Sci 2004; 1(2): 101-15.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[4]
Singh D, Kumar Attri B, Kaur Gill R, Bariwal J. Review on EGFR Inhibitors: Critical Updates. Mini Rev Med Chem 2016; 16(14): 1134-66.
[http://dx.doi.org/10.2174/1389557516666160321114917] [PMID: 26996617]
[5]
Yarden Y, Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 1987; 26(5): 1443-51.
[http://dx.doi.org/10.1021/bi00379a035] [PMID: 3494473]
[6]
Downward J, Parker P, Waterfield MD. Autophosphorylation sites on the epidermal growth factor receptor. Nature 1984; 311(5985): 483-5.
[http://dx.doi.org/10.1038/311483a0] [PMID: 6090945]
[7]
Ayati A, Moghimi S, Salarinejad S, Safavi M, Pouramiri B, Foroumadi A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg Chem 2020; 99: 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[8]
Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005; 1(1): 2005-0010.
[http://dx.doi.org/10.1038/msb4100014] [PMID: 16729045]
[9]
Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 2015; 5(5): 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[10]
Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid drugs-A strategy for overcoming anticancer drug resistance? Molecules 2021; 26(9): 2601.
[http://dx.doi.org/10.3390/molecules26092601]
[11]
Singh AK, Kumar A, Singh H, et al. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals 2022; 15(9): 1071.
[http://dx.doi.org/10.3390/ph15091071]
[12]
Ho VWT, Tan HY, Wang N, Feng Y. Cancer management by tyrosine kinase inhibitors: Efficacy, limitation, and future strategies. In: Ren H, Ed. Tyrosine Kinases as Druggable Targets in Cancer. London: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.82513]
[13]
Dhonnar SL, More RA, Adole VA, Jagdale BS, Sadgir NV, Chobe SS. Synthesis, spectral analysis, antibacterial, antifungal, antioxidant and hemolytic activity studies of some new 2,5-disubstituted-1,3,4-oxadiazoles. J Mol Struct 2022; 1253: 132216.
[http://dx.doi.org/10.1016/j.molstruc.2021.132216]
[14]
Ahsan MJ. 1,3,4-oxadiazole containing compounds as therapeutic targets for cancer therapy. Mini Rev Med Chem 2022; 22(1): 164-97.
[http://dx.doi.org/10.2174/1389557521666210226145837] [PMID: 33634756]
[15]
Nayak S, Gaonkar SL, Musad EA, Dawsar ALAM. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. J Saudi Chem Soc 2021; 25(8): 101284.
[http://dx.doi.org/10.1016/j.jscs.2021.101284]
[16]
Alam MM. 1,3,4-oxadiazole as a potential anti-cancer scaffold: A review. Biointerface Res Appl Chem 2022; 12(4): 5727-44.
[17]
Osman MS, Awad TA, Shantier SW, et al. Identification of some chalcone analogues as potential antileishmanial agents: An integrated in vitro and in silico evaluation. Arab J Chem 2022; 15(4): 103717.
[http://dx.doi.org/10.1016/j.arabjc.2022.103717]
[18]
Gomes M, Muratov E, Pereira M, et al. Chalcone derivatives: Promising starting points for drug design. Molecules 2017; 22(8): 1210.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[19]
Abdelbaset MS, Abdel-Aziz M, Ramadan M, et al. Discovery of novel thienoquinoline-2-carboxamide chalcone derivatives as antiproliferative EGFR tyrosine kinase inhibitors. Bioorg Med Chem 2019; 27(6): 1076-86.
[http://dx.doi.org/10.1016/j.bmc.2019.02.012] [PMID: 30744932]
[20]
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem Rev 2017; 117(12): 7767-810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020]
[21]
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225: 113768.
[http://dx.doi.org/10.1016/j.ejmech.2021.113768] [PMID: 34450497]
[22]
Singh S, Baker QB, Singh DB. Molecular docking and molecular dynamics simulationBioinformatics: Methods and Applications. 2022; pp. 291-301. Academic Press
[23]
Tao L, Zhang P, Qin C, et al. Recent progresses in the exploration of machine learning methods as in silico ADME prediction tools. Adv Drug Deliv Rev 2015; 86: 83-100.
[http://dx.doi.org/10.1016/j.addr.2015.03.014] [PMID: 26037068]
[24]
Agoni C, Olotu FA, Ramharack P, Soliman ME. Druggability and drug-likeness concepts in drug design: Are biomodelling and predictive tools having their say? J Mol Model 2020; 26(6): 120.
[http://dx.doi.org/10.1007/s00894-020-04385-6] [PMID: 32382800]
[25]
De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of molecular dynamics and related methods in drug discovery. J Med Chem 2016; 59(9): 4035-61.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[26]
Di Nola A, Roccatano D, Berendsen HJC. Molecular dynamics simulation of the docking of substrates to proteins. Proteins 1994; 19(3): 174-82.
[http://dx.doi.org/10.1002/prot.340190303] [PMID: 7937732]
[27]
Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol 2011; 9(1): 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[28]
1M17. Epidermal Growth Factor Receptor Tyrosine Kinase Domain With 4-Anilinoquinazoline Inhibitor Erlotinib. Available From:https://www.rcsb.org/structure/1M17(Accessed on 27/04/2022)
[29]
Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 2002; 277(48): 46265-72.
[http://dx.doi.org/10.1074/jbc.M207135200] [PMID: 12196540]
[30]
Azam SS, Abbasi SW. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model 2013; 10(1): 63.
[http://dx.doi.org/10.1186/1742-4682-10-63] [PMID: 24156411]
[31]
2013.V-Life Molecular Design Suite version 4.4 Manual
[32]
Patil SM, Bhandari SV. Optimization of pharmacophore of novel hybrid nucleus of 1,3,4-oxadiazole-chalcone using literature findings and in silico approach as EGFR inhibitor. Lett Drug Des Discov 2023; 20(6): 779-91.
[http://dx.doi.org/10.2174/1570180819666220414102310]
[33]
Patil S, Bhandari S. A review: Discovering 1,3,4-oxadiazole and chalcone nucleus for cytotoxicity/EGFR inhibitory anticancer activity. Mini Rev Med Chem 2022; 22(5): 805-20.
[http://dx.doi.org/10.2174/1389557521666210902160644] [PMID: 34477516]
[34]
Lokwani D, Bhandari S, Pujari R, Shastri P. shelke G, Pawar V. Use of Quantitative Structure–Activity Relationship (QSAR) and ADMET prediction studies as screening methods for design of benzyl urea derivatives for anti-cancer activity. J Enzyme Inhib Med Chem 2011; 26(3): 319-31.
[http://dx.doi.org/10.3109/14756366.2010.506437] [PMID: 20846089]
[35]
The Open Babel Package, version 3.1.1. Available From:http://openbabel.org(accessed July 2022).
[36]
Biovia DS, Berman HM, Westbrook J. Feng Z, Gilliland G, Bhat TN, Richmond TJ Dassault Systèmes BIOVIA, discovery studio visualizer, v. 17.2, San Diego: Dassault Systèmes, 2016. J Chem Phys 2000; 10: 21-9991.
[37]
Hevener KE, Zhao W, Ball DM, et al. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 2009; 49(2): 444-60.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[38]
Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol 2011; 857: 231-57.
[http://dx.doi.org/10.1007/978-1-61779-588-6_10] [PMID: 22323224]
[39]
Thangavel N, Albratty M. Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for identification of marine natural products as SARS-CoV-2 papain-like protease inhibitors. Arab J Chem 2022; 15(12): 104334.
[http://dx.doi.org/10.1016/j.arabjc.2022.104334] [PMID: 36246784]
[40]
Academic licensing. Available From: https://www.schrodinger. com/academic-licensing(accessed on 20/08/2022).
[41]
[42]
Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[43]
Yadav R, Imran M, Dhamija P, Chaurasia DK, Handu S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J Biomol Struct Dyn 2021; 39(17): 6617-32.
[http://dx.doi.org/10.1080/07391102.2020.1796812] [PMID: 32715956]
[44]
Pharmacokinetic properties. Available From: http://biosig. unimelb.edu.au/pkcsm/prediction(accessed on 1/09/2022).
[45]
Bowers KJ, Chow DE, Xu H, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. InSC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 43-3.
[http://dx.doi.org/10.1109/SC.2006.54]
[46]
Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 2010; 6(5): 1509-19.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[47]
Chow E, Rendleman CA, Bowers KJ, et al. Desmond performance on a cluster of multicore processors. DE Shaw Research Technical Report DESRES/TR--2008-01 2008. Jul 28
[48]
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79(2): 926-35.
[http://dx.doi.org/10.1063/1.445869]
[49]
Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys 1994; 101(5): 4177-89.
[http://dx.doi.org/10.1063/1.467468]
[50]
Martyna GJ, Klein ML, Tuckerman M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J Chem Phys 1992; 97(4): 2635-43.
[http://dx.doi.org/10.1063/1.463940]
[51]
Toukmaji AY, Board JA. Jr. Ewald summation techniques in perspective: A survey. Comput Phys Commun 1996; 95(2-3): 73-92.
[http://dx.doi.org/10.1016/0010-4655(96)00016-1]
[52]
Fathi MAA, Abd El-Hafeez AA, Abdelhamid D, Abbas SH, Montano MM, Abdel-Aziz M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg Chem 2019; 84: 150-63.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.032] [PMID: 30502626]
[53]
Dash S, Kumar BA, Singh J, Maiti BC, Maity TK. Synthesis of some novel 3,5-disubstituted 1,3,4-oxadiazole derivatives and anticancer activity on EAC animal model. Med Chem Res 2011; 20(8): 1206-13.
[http://dx.doi.org/10.1007/s00044-010-9455-6]
[54]
Ahsan MJ, Rathod VPS, Singh M, Sharma R, Jadav SS, Yasmin S. Salahuddin, Kumar P. Synthesis, Anticancer and molecular docking studies of 2-(4-chlorophenyl)-5-aryl-1,3,4- oxadiazole analogues. Med Chem 2013; 3(4): 294-7.
[55]
Pratim Roy P, Paul S, Mitra I, Roy K. On two novel parameters for validation of predictive QSAR models. Molecules 2009; 14(5): 1660-701.
[http://dx.doi.org/10.3390/molecules14051660] [PMID: 19471190]
[56]
R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C. P.; Agrawal, R. K. Validation of QSAR models - strategies and importance. Internat J of Drug Desig Discov 2011; 2(3): 511-9.
[57]
Mphahlele M, Maluleka M, Parbhoo N, Malindisa S. Synthesis, evaluation for cytotoxicity and molecular docking studies of benzo[c]furan-chalcones for potential to inhibit tubulin polymerization and/or EGFR-tyrosine kinase phosphorylation. Int J Mol Sci 2018; 19(9): 2552-69.
[http://dx.doi.org/10.3390/ijms19092552] [PMID: 30154363]
[58]
Djemoui A, Naouri A, Ouahrani MR, et al. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J Mol Struct 2020; 1204: 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[59]
Xue Q, Liu X, Russell P, et al. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol Environ Saf 2022; 233: 113323.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113323] [PMID: 35183811]
[60]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[61]
Kumar V, Kumar R, Parate S, et al. Identification of ACK1 inhibitors as anticancer agents by using computer-aided drug designing. J Mol Struct 2021; 1235: 130200.
[http://dx.doi.org/10.1016/j.molstruc.2021.130200]
[62]
Martin YC. A bioavailability score. J Med Chem 2005; 48(9): 3164-70.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[63]
Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015; 58(9): 4066-72.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[64]
Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg Chem 2021; 106: 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[65]
Silva Faria WC, Oliveira MG, Cardoso da Conceição E, et al. Antioxidant efficacy and in silico toxicity prediction of free and spray-dried extracts of green Arabica and Robusta coffee fruits and their application in edible oil. Food Hydrocoll 2020; 108: 106004.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106004]
[66]
Hu B, Joseph J, Geng X, et al. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists. Comput Biol Chem 2020; 86: 107249.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107249] [PMID: 32199335]
[67]
Castrosanto MA, Abrera AT, Manalo MN, Ghosh A. In silico evaluation of binding of phytochemicals from bayati (Anamirta cocculus Linn) to the glutathione-s-transferase of Asian Corn Borer (Ostrinia furnacalis Guenée). J Biomol Struct Dyn 2022; 41(7): 2660-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy