Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

A Critical Review of Gain Enhancement Methods for Microstrip Antenna

Author(s): Kamelia Quzwain*, Haifa Nabila, Radial Anwar and Alyani Ismail

Volume 17, Issue 3, 2024

Published on: 08 September, 2023

Page: [244 - 259] Pages: 16

DOI: 10.2174/2352096516666230607153524

Price: $65

Abstract

In the recent years, the development in communication system has grown rapidly, especially for the growth of broadband wireless technologies. This technology has some advantages, for instance, flexibility for the transmission of data with very high data rate communications. Antenna is one of the crucial components of broadband wireless systems because it has ability to emit and receive radio waves. There are various types of antennas and microstrip is one of the most popular designs nowadays. This antenna has some advantages and disadvantages. Low gain is known as one of the disadvantages of microstrip antenna. However, there are numerous methods which can be used to enhance gain. Some researches have been done by numerous researchers throughout the world in tackling this disadvantage. This paper presents a critical review of different methods employed to alleviate this problem. For ease of understanding, this paper is classified into five approaches: array configuration approaches, air substrate approaches, metamaterial approaches, yagiuda approaches, and other approaches.

Graphical Abstract

[1]
K.B. Baltzis, "Recent advances in the modeling, simulation and estimation of the wireless propagation channel", Recent Pat. Comput. Sci., vol. 5, no. 2, pp. 117-133, 2012.
[http://dx.doi.org/10.2174/2213275911205020117]
[2]
K. Quzwain, A. Ismail, Y. Yudiansyah, N.M. Rizka, A. Novfitri, and L. Hafiza, "Implementation of double-layer loaded on octagon microstrip yagi antenna", Bull. Electr. Eng. Inform., vol. 10, no. 6, pp. 3289-3296, 2021.
[http://dx.doi.org/10.11591/eei.v10i6.3193]
[3]
K. Shambavi, Gain and bandwidth enhancement technique in square microstrip antenna for WLAN applications.2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 2007, pp. 1-4.
[http://dx.doi.org/10.1109/APMC.2007.4554884]
[4]
T.A. Milligan, Modern antenna design., Wiley-IEEE Press, 2005.
[http://dx.doi.org/10.1002/0471720615]
[5]
A.K. Bhattacharjee, "S.R. Bhadra chaudhuri, D.R. Poddar, and S.K. Chowdhury, “Equivalence of impedance and radiation properties of square and circular microstrip patch antennas”", IEE Proc., H Microw. Antennas Propag., vol. 136, no. 4, pp. 338-342, 1989.
[http://dx.doi.org/10.1049/ip-h-2.1989.0061]
[6]
M-j. Song, and J-s. Li, A high gain array antenna for WLAN-WiMAX applications 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 2011, pp. 5-7.
[http://dx.doi.org/10.1109/MAPE.2011.6156234]
[7]
B.W. Ngobese, and P. Kumar, "A high gain microstrip patch array for 5 GHz WLAN applications", Adv. Electromagn., vol. 7, no. 3, pp. 93-98, 2018.
[http://dx.doi.org/10.7716/aem.v7i3.783]
[8]
M.K.A. Rahim, A. Asrokin, M.H. Jamaluddin, M.R. Ahmad, T. Masri, and M.Z.A.A. Aziz, Microstrip patch antenna array at 5.8 GHz for point to point communication. 2006 International RF and Microwave Conference, Putra Jaya, Malaysia, 2006, pp. 216-219.
[http://dx.doi.org/10.1109/RFM.2006.331072]
[9]
N. Ab Wahab, Z. Bin Maslan, W.N.W. Muhamad, and N. Hamzah, Microstrip rectangular 4x1 patch array antenna at 2.5GHz for WiMax application 2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks, Liverpool, UK, 2010, pp. 164-168.
[http://dx.doi.org/10.1109/CICSyN.2010.73]
[10]
E.T. Rahardjo, F.Y. Zulkifli, and D. Marlena, Multiband microstrip antenna array for WiMAX application2008 Asia-Pacific Microwave Conference, Hong Kong, China, 2008, pp. 1-4.
[http://dx.doi.org/10.1109/APMC.2008.4958161]
[11]
R. Abdullah, M.T. Ali, N. Ismail, S. Omar, and N.N.S.N. Dzulkefli, Multilayer parasitic microstrip antenna array for WiMAX application2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Melaka, Malaysia, 2012, pp. 128-131.
[http://dx.doi.org/10.1109/APACE.2012.6457646]
[12]
G.R. DeJean, T.T. Thai, S. Nikolaou, and M.M. Tentzeris, "Design and Analysis of Microstrip Bi-Yagi and Quad-Yagi Antenna Arrays for WLAN Applications", IEEE Antennas Wirel. Propag. Lett., vol. 6, pp. 244-248, 2007.
[http://dx.doi.org/10.1109/LAWP.2007.893104]
[13]
K. Quzwain, A. Ismail, and A. Sali, "A high gain double-octagon fractal microstrip yagi antenna", Prog. Electromagn. Res. Lett., vol. 72, pp. 83-89, 2018.
[http://dx.doi.org/10.2528/PIERL17092605]
[14]
F.N. Mohd lsa, and P.V. Brennan, Design of a high gain & ultra wideband microstrip array antenna for avalanche radar 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 2011, pp. 569-572 .
[15]
T. Reynalda, A. Munir, and E. Bharata, Characterization of 4×4 high gain microstrip array antenna for 3.3GHz WiMAX application 2011 6th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Denpasar, Indonesia., 2011, pp. 215-218.
[http://dx.doi.org/10.1109/TSSA.2011.6095437]
[16]
M.T. Ali, H. Jaafar, S. Subahir, and A.L. Yusof, Gain enhancement of air substrates at 5.8GHz for microstrip antenna array 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, Singapore, 2012, pp. 477-480.
[http://dx.doi.org/10.1109/APEMC.2012.6237872]
[17]
C. Chandan, A. Ghosh, S.K. Ghosh, and S. Chattopadhyay, Radiation characteristics of rectangular patch antenna using air substrates 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems, Varanasi, India, 2009, pp. 346-348.
[http://dx.doi.org/10.1109/ELECTRO.2009.5441099]
[18]
Y.T. Liu, C.W. Su, K.L. Wong, and H.T. Chen, "An air-substrate narrow-patch microstrip antenna with high radiation performance for 2.4 GHz WLAN access point", Microw. Opt. Technol. Lett., vol. 43, no. 3, pp. 189-192, 2004.
[http://dx.doi.org/10.1002/mop.20416]
[19]
A.F.A. Ayoub, "Analysis of rectangular microstrip antennas with air substrates", J. Electromagn. Waves Appl., vol. 17, no. 12, pp. 1755-1766, 2003.
[http://dx.doi.org/10.1163/156939303322760335]
[20]
H. Lee, J. Kim, S. Hong, and J. Yoon, Micromachined CPW-fed suspended patch antenna for 77 GHz automotive radar applications The European Conference on Wireless Technology, Paris, France, 2005, pp. 249-252.
[21]
S. Chiu, and S. Chen, High-gain circularly polarized resonant cavity antenna using FSS superstrate. 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 2011, pp. 2242-2245.
[http://dx.doi.org/10.1109/APS.2011.5996962]
[22]
D.H. Lee, Y.J. Lee, J. Yeo, R. Mittra, and W.S. Park, "Design of metamaterial superstrates and substrates for directivity and port isolation enhancement of a dual-frequency dual-polarization microstrip antenna", Microw. Opt. Technol. Lett., vol. 48, no. 9, pp. 1873-1876, 2006.
[http://dx.doi.org/10.1002/mop.21764]
[23]
A.M. Ali, and J. Venkataraman, Gain enhancement of patch antenna using double negative superstrate realized by a high dielectric with triangular lattice of holes. 2009 IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA, 2009, pp. 1-4.
[http://dx.doi.org/10.1109/APS.2009.5171948]
[24]
H. Attia, and O.M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas", In: 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 2008, pp. 1-4.
[http://dx.doi.org/10.1109/APS.2008.4619317]
[25]
H. Lin, C. Wu, and S. Yeh, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas", In: TENCON 2007 - 2007 IEEE Region 10 Conference, Taipei, Taiwan, 2007, pp. 1-4.
[26]
C. Lin, S. Zhong, J. Shi, and Y. Wang, Gain enhancement technique for microstrip antennasDigest on Antennas and Propagation Society International Symposium, San Jose, CA, USA, 1989, pp. 454-457.
[27]
H. Wu, S. Yeh, and T. Lu, "Planar high gain antenna for 5.8-GHz WiMAX operation", In: TENCON 2007 - 2007 IEEE Region 10 Conference, Taipei, Taiwan, 2007, pp. 1-3.
[28]
R.K.M. Lou, T. Aribi, and C. Ghobadi, Improvement of characteristics of microstrip antenna using of metamaterial superstrateInt. Conf. Electr. Eng. Inform., 2010, pp. 126-129.
[29]
B. Urul, "Gain enhancement of microstrip antenna with a novel DNG material", Microw. Opt. Technol. Lett., vol. 62, no. 4, pp. 1824-1829, 2020.
[http://dx.doi.org/10.1002/mop.32240]
[30]
J. Liu, and Q. Xue, "Microstrip magnetic dipole yagi array antenna with endfire radiation and vertical polarization", IEEE Trans. Antenn. Propag., vol. 61, no. 3, pp. 1140-1147, 2013.
[http://dx.doi.org/10.1109/TAP.2012.2230239]
[31]
C. Deng, W. Yu, and K. Sarabandi, "A compact vertically polarized fully metallic quasi-yagi antenna with high endfire gain", IEEE Trans. Antenn. Propag., vol. 70, no. 7, pp. 5959-5964, 2022.
[http://dx.doi.org/10.1109/TAP.2022.3161304]
[32]
K. Quzwain, A. Ismail, and A. Sali, "Compact high gain and wideband octagon microstrip yagi antenna", Electromagnetics, vol. 36, no. 8, pp. 524-533, 2016.
[http://dx.doi.org/10.1080/02726343.2016.1236060]
[33]
G.R. DeJean, and M.M. Tentzeris, "A new high-gain microstrip yagi array antenna with a high front-to-back (F/B) Ratio for WLAN and millimeter-wave applications", IEEE Trans. Antenn. Propag., vol. 55, no. 2, pp. 298-304, 2007.
[http://dx.doi.org/10.1109/TAP.2006.889818]
[34]
Hongjiang Zhang, Y. Abdallah, R. Chantalat, M. Thevenot, T. Monediere, and B. Jecko, "Low-profile and high-gain yagi wire-patch antenna for wimax applications", IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 659-662, 2012.
[http://dx.doi.org/10.1109/LAWP.2012.2204714]
[35]
C. Lee, C. Lin, C. Tsai, and C. Wang, "Broadband printed-circuit yagi array", In 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 2009, pp. 1-4
[36]
H. Xu, Z. Liang, Y. Li, K. Wang, Q. Cao, and Y. Long, "A high-gain microstrip magnetic dipole antenna utilizing slot-loaded high-order mode for WLAN applications", IEEE Trans. Antenn. Propag., vol. 70, no. 10, pp. 9130-9138, 2022.
[http://dx.doi.org/10.1109/TAP.2022.3191425]
[37]
K. Quzwain, A. Ismail, and A. Sali, "Octagon fractal microstrip Yagi antenna with a combined DNG and DPS layer structure", Microw. Opt. Technol. Lett., vol. 59, no. 8, pp. 1988-1993, 2017.
[http://dx.doi.org/10.1002/mop.30666]
[38]
O. Kramer, T. Djerafi, and K. Wu, "Vertically multilayer-stacked yagi antenna with single and dual polarizations", IEEE Trans. Antenn. Propag., vol. 58, no. 4, pp. 1022-1030, 2010.
[http://dx.doi.org/10.1109/TAP.2010.2041155]
[39]
K. Budayawan, M. Isa, and A. Ismail, Implementation model of rectangular microstrip antenna with multilayer air gap., 2011 IEEE International RF & Microwave Conference, 2011, pp. 274-277.
[http://dx.doi.org/10.1109/RFM.2011.6168747]
[40]
X. Chen, Y. Wei, Y. Li, Z. Liang, S.Y. Zheng, and Y. Long, "A gain-enhanced patch antenna with a periodic microstrip rampart line", IEEE Open J. Antennas Propag., vol. 3, pp. 83-88, 2022.
[http://dx.doi.org/10.1109/OJAP.2021.3135124]
[41]
A.R. Kharade, and V.P. Patil, "Enhancement of gain of rectangular micro strip antenna using multilayer multidielectric structure", IOSR J. Comput. Eng., vol. 2, no. 6, pp. 35-40, 2012.
[42]
R. Jothi Chitra, A. Suganya, and V. Nagarajan, "Enhanced gain of double U-slot micro strip patch antenna array for WiMAX application", In: 2012 International Conference on Communication and Signal Processing, Chennai, India., 2012, pp. 141-144.
[http://dx.doi.org/10.1109/ICCSP.2012.6208411]
[43]
V. Sharma, and M. Sharma, "Dual band circularly polarized modified rectangular patch antenna for wireless communication", Wuxiandian Gongcheng, vol. 23, pp. 195-202, 2014.
[44]
V. Sharma, and M.M. Sharma, "Wideband gap coupled assembly of rectangular microstrip patches for Wi-Max applications", Frequenz, vol. 68, no. 1-2, 2014.
[http://dx.doi.org/10.1515/freq-2013-0053]
[45]
V. Sharma, "A novel design of parasitically gap coupled patches forming an elliptical patch antenna for broadband performance", Chin. J. Eng., 2014.
Available from: https://www.hindawi.com/journals/cje/2014/365048 [http://dx.doi.org/10.1155/2014/365048]
[46]
V. Sharma, "A novel dual frequency s-band rectangular microstrip antenna for radar and space communication", J. Theor. Appl. Inf., vol. 39, no. 6, pp. 1375-1385, 2005.
[47]
V. Sharma, N.L. Gupta, and K.A. Atul, "“An extensive review on printed antenna technology and its applications”, EUropean J", Adv. Eng. Technol., vol. 5, no. 4, pp. 255-262, 2018.
[48]
A.S. Mekki, M.N. Hamidon, A. Ismail, and A.R.H. Alhawari, "Gain enhancement of a microstrip patch antenna using a reflecting layer", Int. J. Antennas Propag., vol. 2015, 2015.
Available from: https://www.hindawi.com/journals/ijap/2015/975263/ [http://dx.doi.org/10.1155/2015/975263]
[49]
V. Sharma, V.K. Saxena, J.S. Saini, D. Bhatnagar, K.B. Sharma, and L.M. Joshi, "Broadband gap-coupled assembly of patches forming elliptical patch antenna", Microw. Opt. Technol. Lett., vol. 53, no. 2, pp. 340-344, 2011.
[http://dx.doi.org/10.1002/mop.25693]
[50]
D. Gunaram, and J.K. Sharma, and Vijay,, "Dual band circular polarized printed dipole antenna for s and c band wireless applications", Prog. Electromagn. Res. C., vol. 105, pp. 129-146, 2020.
[http://dx.doi.org/10.2528/PIERC20050301]
[51]
K.G. Jangid, A. Tiwari, V. Sharma, V.S. Kulhar, V.K. Saxena, and D. Bhatnagar, "Circular patch antenna with defected ground for UWB communication with WLAN band rejection", Def. Sci. J., vol. 66, no. 2, p. 162, 2016.
[http://dx.doi.org/10.14429/dsj.66.9329]
[52]
K.G. Jangid, V. Sharma, R.K. Sharma, V. Saxena, D. Bhatnagar, and V.S. Kulhar, "Design of compact microstrip patch antenna with DGS structure for WLAN & Wi-MAX applications", European J. Adv. Eng. Technol., vol. 2, no. 1, pp. 8-11, 2015.
[53]
V. Sharma, "“Microstrip antenna: Basics and applications”, EUropean J", Adv. Eng. Technol., vol. 4, no. 5, pp. 365-373, 2017.
[54]
D. Singh, A. Thakur, and V.M. Srivastava, "Miniaturization and gain enhancement of microstrip patch antenna using defected ground with EBG", J. Commun., vol. 13, pp. 730-736, 2018.
[http://dx.doi.org/10.12720/jcm.13.12.730-736]
[55]
S. Gunaram, S. Vijay, M. Gaurav, and D.J.K. Dhirendra, "Modeling and simulation study of a wideband printed dipole elliptical patch antenna for Sub-6 GHz 5G spectrum", Int. J. Inf. Technol, vol. 7, no. 2, 2021.
[56]
V. Sharma, V. Saxena, K.B. Sharma, and D. Bhatnagar, "Multi-band elliptical patch antennas with narrow sector slot for Wi-MAX applications", Int. J. Microw. Opt. Technol., vol. 7, pp. 89-96, 2012.
[57]
S.G. Gunaram, and V. Sharma, "Radiation characteristics of dual print microstrip patch antenna using IE3D and CST electromagnetic simulation software", Int. J. Recent Technol. Eng., vol. 8, no. 4, pp. 11963-11968, 2019.
[http://dx.doi.org/10.35940/ijrte.D9919.118419]
[58]
Vijay Sharma, "Radiation Performance of an Elliptical Patch Antenna with Three Orthogonal Sector Slots", Rom. J. Inf. Sci. Technol., p. 14, 2011.
[59]
V. Sharma, K.B. Sharma, V.K. Saxena, and D. Bhatnagar, "Radiation performance of circularly polarized broadband gap coupled elliptical patch antenna", Frequenz, vol. 66, no. 3-4, pp. 69-74, 2012.
[http://dx.doi.org/10.1515/freq-2012-0018]
[60]
V. Sharma, S. Shekhawat, V.K. Saxena, J.S. Saini, K.B. Sharma, B. Soni, and D. Bhatnagar, "Right isosceles triangular microstrip antenna with narrow L-shaped slot", Microw. Opt. Technol. Lett., vol. 51, no. 12, pp. 3006-3010, 2009.
[http://dx.doi.org/10.1002/mop.24781]
[61]
V. Sharma, Gunaram, J.K. Deegwal, and D. Mathur, "Super-wideband compact offset elliptical ring patch antenna for 5G applications", Wirel. Pers. Commun., vol. 122, no. 2, pp. 1655-1670, 2022.
[http://dx.doi.org/10.1007/s11277-021-08965-4]
[62]
V. Sharma, and T. Jhajharia, "“Square slot antenna for wide circularly polarized bandwidth and axial ratio beamwidth”, Electr", Contr. Communicat. Eng., vol. 17, no. 1, pp. 1-11, 2021.
[http://dx.doi.org/10.2478/ecce-2021-0001]
[63]
V. Sharma, V.K. Saxena, J.S. Saini, D. Bhatnagar, K.B. Sharma, D. Pal, and L.M. Joshi, "Wideband dual-frequency right triangular microstrip antenna with parallel narrow slits", Microw. Opt. Technol. Lett., vol. 52, no. 5, pp. 1082-1087, 2010.
[http://dx.doi.org/10.1002/mop.25113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy