Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Repurposing Antipsychotic Agents Against Targets of Angiogenesis Pathways for Cancer Therapy: An in-silico Approach

Author(s): Rahmon Kanmodi*, Habeeb Bankole, Regina Oddiri, Michael Arowosegbe, Ridwan Alabi, Saheed Rahmon, Oladejo Ahmodu, Bilal AbdulRasheed and Rauf Muritala

Volume 20, Issue 6, 2023

Published on: 12 July, 2023

Article ID: e060623217693 Pages: 9

DOI: 10.2174/1570163820666230606113158

Price: $65

Abstract

Background: Antipsychotics interfere with virtually all hallmarks of cancer, including angiogenesis. Vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth receptors (PDGFRs) play crucial roles in angiogenesis and represent targets of many anti-cancer agents. We assessed and compared the binding effects of antipsychotics and receptor tyrosine kinase inhibitors (RTKIs) on VEGFR2 and PDGFRα.

Methods: FDA-approved antipsychotics and RTKIs were retrieved from DrugBank. VEGFR2 and PDGFRα structures were obtained from Protein Data Bank and loaded on Biovia Discovery Studio software to remove nonstandard molecules. Molecular docking was carried out using PyRx and CBDock to determine the binding affinities of protein-ligand complexes.

Results: Risperidone exerted the highest binding effect on PDGFRα (-11.0 Kcal/mol) as compared to other antipsychotic drugs and RTKIs. Risperidone also demonstrated a stronger binding effect on VEGFR2 (-9.6 Kcal/mol) than the RTKIs, pazopanib (-8.7 Kcal/mol), axitinib (-9.3 Kcal/mol), vandetanib (-8.3 Kcal/mol), lenvatinib ( -7.6 Kcal/mol) and sunitinib (-8.3 Kcal/mol). Sorafenib (an RTKI), however, exhibited the highest VEGFR2 binding affinity of -11.7 Kcal/mol.

Conclusion: Risperidone's superior binding affinity with PDGFRα when compared to all reference RTKIs and antipsychotic drugs, as well as its stronger binding effect on VEGFR2 over the RTKIs, sunitinib, pazopanib, axitinib, vandetanib, and lenvatinib, imply that it could be repurposed to inhibit angiogenic pathways and subjected to pre-clinical and clinical trials for cancer therapy.

Graphical Abstract

[1]
Siafis S, Davis JM, Leucht S. Antipsychotic drugs: From ‘major tranquilizers’ to neuroscience-based-nomenclature. Psychol Med 2021; 51(3): 522-4.
[http://dx.doi.org/10.1017/S0033291719003957] [PMID: 31910928]
[2]
Bari D, Saravanan K, Ahmad A. A review on antipsychotics for schizophrenia. Int J Pharm Sci Res 2019; 10(12): 5234-51.
[3]
Nerkar A, Bhise S. Polypharmacological drugs in treatment of schizophrenia. Curr Trends Pharm Pharm Chem 2020; 2(3): 116-24.
[4]
Gerlach L, Kales HC, Kim HM, et al. Trends in antipsychotic and mood stabilizer prescribing in long-term care in the US: 2011–2014. J Am Med Dir Assoc 2020; 21(11): 1629-35.
[5]
Olten B, Bloch MH. Meta regression: Relationship between antipsychotic receptor binding profiles and side-effects. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84(Pt A): 272-81.
[http://dx.doi.org/10.1016/j.pnpbp.2018.01.023] [PMID: 29410000]
[6]
Bravo-José P, Sáez-Lleó CI, Peris-Martí JF. Deprescribing antipsychotics in long term care patients with dementia. Farm Hosp 2019; 43(4): 140-5.
[PMID: 31276444]
[7]
Loryan I, Melander E, Svensson M, et al. In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: Link to spatial receptor occupancy. Mol Psychiatry 2016; 21(11): 1527-36.
[http://dx.doi.org/10.1038/mp.2015.229] [PMID: 26809840]
[8]
Persico M, Abbruzzese C, Matteoni S, et al. Tackling the behavior of cancer cells: Molecular bases for repurposing antipsychotic drugs in the treatment of glioblastoma. Cells 2022; 11(2): 263.
[http://dx.doi.org/10.3390/cells11020263] [PMID: 35053377]
[9]
Blokhin IO, Khorkova O, Saveanu RV, Wahlestedt C. Molecular mechanisms of psychiatric diseases. Neurobiol Dis 2020; 146(105136): 105136.
[http://dx.doi.org/10.1016/j.nbd.2020.105136] [PMID: 33080337]
[10]
Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules 2018; 23(8): 2087.
[http://dx.doi.org/10.3390/molecules23082087] [PMID: 30127324]
[11]
Keating D, McWilliams S, Schneider I, et al. Pharmacological guidelines for schizophrenia: A systematic review and comparison of recommendations for the first episode. BMJ Open 2017; 7(1): e013881.
[http://dx.doi.org/10.1136/bmjopen-2016-013881] [PMID: 28062471]
[12]
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: Overview and treatment options. P&T 2014; 39(9): 638-45.
[PMID: 25210417]
[13]
Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet 2013; 382(9896): 951-62.
[http://dx.doi.org/10.1016/S0140-6736(13)60733-3] [PMID: 23810019]
[14]
Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation vs. first-generation antipsychotic drugs for schizophrenia: A meta-analysis. Lancet 2009; 373(9657): 31-41.
[http://dx.doi.org/10.1016/S0140-6736(08)61764-X] [PMID: 19058842]
[15]
Crossley NA, Constante M, McGuire P, Power P. Efficacy of atypical vs. typical antipsychotics in the treatment of early psychosis: Meta-analysis. Br J Psychiatry 2010; 196(6): 434-9.
[http://dx.doi.org/10.1192/bjp.bp.109.066217] [PMID: 20513851]
[16]
Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health 2019; 9(4): 217-22.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[17]
Hernández-Lemus E, Martínez-García M. Pathway-based drug-repurposing schemes in cancer: The role of translational bioinformatics. Front Oncol 2021; 10(605680): 605680.
[http://dx.doi.org/10.3389/fonc.2020.605680] [PMID: 33520715]
[18]
Rybinski B, Yun K. Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2016; 7(44): 72322-42.
[http://dx.doi.org/10.18632/oncotarget.11875] [PMID: 27608848]
[19]
Comen EA, Bowman RL, Kleppe M. Underlying causes and therapeutic targeting of the inflammatory tumor microenvironment. Front Cell Dev Biol 2018; 6(56): 56.
[http://dx.doi.org/10.3389/fcell.2018.00056] [PMID: 29946544]
[20]
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular pathways and genomic landscape of glioblastoma stem cells: Opportunities for targeted therapy. Cancers 2022; 14(15): 3743.
[http://dx.doi.org/10.3390/cancers14153743] [PMID: 35954407]
[21]
Csatary L. Cancer and chlorpromazine. Lancet 1972; 2: 338-9.
[http://dx.doi.org/10.1016/S0140-6736(72)92955-8]
[22]
Barak Y, Achiron A, Mandel M, Mirecki I, Aizenberg D. Reduced cancer incidence among patients with schizophrenia. Cancer 2005; 104(12): 2817-21.
[http://dx.doi.org/10.1002/cncr.21574] [PMID: 16288491]
[23]
Goldacre MJ, Kurina LM, Wotton CJ, Yeates D, Seagroatt V. Schizophrenia and cancer: An epidemiological study. Br J Psychiatry 2005; 187(4): 334-8.
[http://dx.doi.org/10.1192/bjp.187.4.334] [PMID: 16199792]
[24]
Shchors K, Massaras A, Hanahan D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell 2015; 28(4): 456-71.
[http://dx.doi.org/10.1016/j.ccell.2015.08.012] [PMID: 26412325]
[25]
Faraz S, Pannullo S, Rosenblum M, Smith A, Wernicke AG. Long-term survival in a patient with glioblastoma on antipsychotic therapy for schizophrenia: A case report and literature review. Ther Adv Med Oncol 2016; 8(6): 421-8.
[http://dx.doi.org/10.1177/1758834016659791] [PMID: 27800031]
[26]
Kline CLB, Ralff MD, Lulla AR, et al. Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia 2018; 20(1): 80-91.
[http://dx.doi.org/10.1016/j.neo.2017.10.002] [PMID: 29216597]
[27]
Vlachos N, Lampros M, Voulgaris S, Alexiou GA. Repurposing antipsychotics for cancer treatment. Biomedicines 2021; 9(12): 1785.
[http://dx.doi.org/10.3390/biomedicines9121785] [PMID: 34944601]
[28]
Jandaghi P, Najafabadi HS, Bauer AS, et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology 2016; 151(6): 1218-31.
[http://dx.doi.org/10.1053/j.gastro.2016.08.040] [PMID: 27578530]
[29]
Sachlos E, Risueño RM, Laronde S, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012; 149(6): 1284-97.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
[30]
Olfati Z, Rigi G, Vaseghi H, Zahra Z, Sohrabi M, Hejazi SH. Evaluation of serotonin receptors (5HTR2A and 5HTR3A) mRNA expression changes in tumor of breast cancer patients. Med J Islam Repub Iran 2020; 34(99): 99.
[http://dx.doi.org/10.47176/mjiri.34.99] [PMID: 33315977]
[31]
Razavi SA, Rahimi B, Gholipour N, Ahangari F, Ahangari G. Serotonin (5HTR2A and 5HTR3A) and GABA (GABAB) receptor genes overexpression are correlated with non-small cell lung cancer (NSCLC). Curr Cancer Ther Rev 2019; 15(2): 155-61.
[http://dx.doi.org/10.2174/1573394714666180626155751]
[32]
Hejazi S, Ahangari G, Deezagi A. Alternative viewpoint against breast cancer based on selective serotonin receptors 5HTR3A and 5HTR2A antagonists that can mediate apoptosis in MCF-7 cell line. Curr Drug Discov Technol 2016; 12(4): 240-9.
[http://dx.doi.org/10.2174/1570163813666151126215210] [PMID: 26768715]
[33]
Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol 2018; 8: 248.
[http://dx.doi.org/10.3389/fonc.2018.00248]
[34]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[35]
Rajabi M, Mousa S. The role of angiogenesis in cancer treatment. Biomedicines 2017; 5(4): 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[36]
Umar HI, Awonyemi IO, Abegunde SM, Igbe FO, Siraj B. In silico molecular docking of bioactive molecules isolated from Raphia taedigera seed oil as potential anti-cancer agents targeting vascular endothelial growth factor receptor-2. Chemistry Africa 2021; 4(1): 161-74.
[http://dx.doi.org/10.1007/s42250-020-00206-8]
[37]
Lin CL, Tsai ML, Chen Y, et al. Platelet-derived growth factor receptor-α subunit targeting suppresses metastasis in advanced thyroid cancer in vitro and in vivo. Biomol Ther 2021; 29(5): 551-61.
[http://dx.doi.org/10.4062/biomolther.2020.205] [PMID: 34031270]
[38]
Comunanza V, Bussolino F. Therapy for cancer: Strategy of combining anti-angiogenic and target therapies. Front Cell Dev Biol 2017; 5(101): 101.
[http://dx.doi.org/10.3389/fcell.2017.00101] [PMID: 29270405]
[39]
Jászai J, Schmidt M. Trends and challenges in tumor anti-angiogenic therapies. Cells 2019; 8(9): 1102.
[http://dx.doi.org/10.3390/cells8091102] [PMID: 31540455]
[40]
Rose P, Prlić A, Altunkaya A, et al. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res 2016; 45(D1): D271-81.
[41]
Wishart DS, Knox C, Guo AC, et al. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34(90001(S1)): D668-72.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[42]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[43]
Yang H, Lou C, Sun L, et al. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019; 35(6): 1067-9.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[44]
Trott O, Olson AJ. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[45]
Ranade PB, Navale DN, Zote SW, Kulal DK, Wagh SJ. Blind docking of 4-Amino-7-Chloroquinoline analogs as potential dengue virus protease inhibitor using CB Dock a web server. Indian J Biochem Biophys 2023; 60(1): 55-7.
[46]
Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 2016; 8(3): 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[47]
Delavan B, Roberts R, Huang R, Bao W, Tong W, Liu Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov Today 2018; 23(2): 382-94.
[http://dx.doi.org/10.1016/j.drudis.2017.10.009] [PMID: 29055182]
[48]
Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov 2020; 15(4): 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[49]
Padhy BM, Gupta YK. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J Postgrad Med 2011; 57(2): 153-60.
[http://dx.doi.org/10.4103/0022-3859.81870] [PMID: 21654146]
[50]
Rudrapal M, Khairnar SJ, Jadhav AG. Drug repurposing (DR): An emerging approach in drug discovery. Drug Repurposing-Hypothesis. IntechOpen 2020.
[51]
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2018; 175(2): 168-80.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[52]
Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug repurposing for rare diseases. Trends Pharmacol Sci 2021; 42(4): 255-67.
[http://dx.doi.org/10.1016/j.tips.2021.01.003] [PMID: 33563480]
[53]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[54]
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF‐FGFR and VEGF‐VEGFR signalling in cancer treatment. Cell Prolif 2021; 54(4): e13009.
[http://dx.doi.org/10.1111/cpr.13009] [PMID: 33655556]
[55]
Roskoski R Jr. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res 2017; 120: 116-32.
[56]
Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010; 31(1): 158-75.
[http://dx.doi.org/10.1097/BCR.0b013e3181c7ed82] [PMID: 20061852]
[57]
Ruan L, Zhang S, Chen X, Liang W, Xie Q. Role of anti-angiogenic factors in the pathogenesis of breast cancer: A review of therapeutic potential. Pathol Res Pract 2022; 236: 153956.
[http://dx.doi.org/10.1016/j.prp.2022.153956] [PMID: 35700578]
[58]
Qi S, Deng S, Lian Z, Yu K. Novel drugs with high efficacy against tumor angiogenesis. Int J Mol Sci 2022; 23(13): 6934.
[http://dx.doi.org/10.3390/ijms23136934] [PMID: 35805939]
[59]
Appiah-Kubi K, Wang Y, Qian H, et al. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol 2016; 37(8): 10053-66.
[http://dx.doi.org/10.1007/s13277-016-5069-z] [PMID: 27193823]
[60]
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283(1): 16-44.
[http://dx.doi.org/10.1111/joim.12690] [PMID: 28940884]
[61]
Zhang H, Sun JD, Yan L, Zhao XP. PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem Biophys Res Commun 2016; 478(2): 845-51.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.035] [PMID: 27507215]
[62]
Lin LH, Lin JS, Yang CC, Cheng HW, Chang KW, Liu CJ. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. Int J Mol Sci 2020; 21(7): 2360.
[http://dx.doi.org/10.3390/ijms21072360] [PMID: 32235327]
[63]
Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25(3): 273-83.
[http://dx.doi.org/10.1016/j.cytogfr.2014.03.003] [PMID: 24703957]
[64]
Mikulskis P, Genheden S, Ryde U. A large-scale test of free-energy simulation estimates of protein-ligand binding affinities. J Chem Inf Model 2014; 54(10): 2794-806.
[http://dx.doi.org/10.1021/ci5004027] [PMID: 25264937]
[65]
Wan S, Bhati AP, Zasada SJ, Coveney PV. Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction. Interface Focus 2020; 10(6): 20200007.
[http://dx.doi.org/10.1098/rsfs.2020.0007] [PMID: 33178418]
[66]
Mitra S, Anand U, Jha NK, et al. Anticancer applications and pharmacological properties of piperidine and piperine: A comprehensive review on molecular mechanisms and therapeutic perspectives. Front Pharmacol 2022; 12(772418): 772418.
[http://dx.doi.org/10.3389/fphar.2021.772418] [PMID: 35069196]
[67]
Dilly SJ, Clark AJ, Marsh A, et al. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment. Cancer Lett 2017; 393(16-21): 16-21.
[http://dx.doi.org/10.1016/j.canlet.2017.01.042] [PMID: 28188816]
[68]
Mao W, Shao M, Gao P, et al. The important roles of RET, VEGFR2 and the RAF/MEK/ERK pathway in cancer treatment with sorafenib. Acta Pharmacol Sin 2012; 33(10): 1311-8.
[http://dx.doi.org/10.1038/aps.2012.76] [PMID: 22941289]
[69]
Mei J, Zhu X, Wang Z, Wang Z. VEGFR, RET, and RAF/MEK/ERK pathway take part in the inhibition of osteosarcoma MG63 cells with sorafenib treatment. Cell Biochem Biophys 2014; 69(1): 151-6.
[http://dx.doi.org/10.1007/s12013-013-9781-7] [PMID: 24375110]
[70]
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019; 176(6): 1248-64.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[71]
Harrison DJ, Gill JD, Roth ME, et al. Initial in vivo testing of a multitarget kinase inhibitor, regorafenib, by the Pediatric Preclinical Testing Consortium. Pediatr Blood Cancer 2020; 67(6): e28222.
[http://dx.doi.org/10.1002/pbc.28222] [PMID: 32207565]
[72]
Pan PJ, Liu YC, Hsu FT. Protein kinase B and extracellular signal-regulated kinase inactivation is associated with regorafenib-induced inhibition of osteosarcoma progression in vitro and in vivo. J Clin Med 2019; 8(6): 900.
[http://dx.doi.org/10.3390/jcm8060900] [PMID: 31238539]
[73]
Rakesh KP, Shantharam CS, Sridhara MB, Manukumar HM, Qin HL. Benzisoxazole: A privileged scaffold for medicinal chemistry. MedChemComm 2017; 8(11): 2023-39.
[http://dx.doi.org/10.1039/C7MD00449D] [PMID: 30108720]
[74]
Uto Y. 1,2-Benzisoxazole compounds: A patent review (2009 – 2014). Expert Opin Ther Pat 2015; 25(6): 643-62.
[http://dx.doi.org/10.1517/13543776.2015.1027192] [PMID: 25800253]
[75]
Abdelshaheed MM, Fawzy IM, El-Subbagh HI, Youssef KM. Piperidine nucleus in the field of drug discovery. Future J Pharmaceut Sci 2021; 7(1): 188.
[http://dx.doi.org/10.1186/s43094-021-00335-y]
[76]
Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur J Med Chem 2018; 157: 480-502.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.017] [PMID: 30114660]
[77]
Keretsu S, Ghosh S, Cho SJ. Molecular modeling study of c-KIT/PDGFRα dual inhibitors for the treatment of gastrointestinal stromal tumors. Int J Mol Sci 2020; 21(21): 8232.
[http://dx.doi.org/10.3390/ijms21218232] [PMID: 33153146]
[78]
Yang W, Wang S, Zhang X, et al. New natural compound inhibitors of PDGFRA (platelet-derived growth factor receptor α) based on computational study for high− grade glioma therapy. Front Neurosci 2022; 16: 1060012.
[PMID: 36685223]
[79]
Garuti L, Roberti M, Bottegoni G, Ferraro M. Diaryl urea: A privileged structure in anticancer agents. Curr Med Chem 2016; 23(15): 1528-48.
[http://dx.doi.org/10.2174/0929867323666160411142532] [PMID: 27063259]
[80]
Lu YY, Wang JJ, Zhang XK, Li WB, Guo XL. 1118-20, an indazole diarylurea compound, inhibits hepatocellular carcinoma HepG2 proliferation and tumour angiogenesis involving Wnt/β-catenin pathway and receptor tyrosine kinases. J Pharm Pharmacol 2015; 67(10): 1393-405.
[http://dx.doi.org/10.1111/jphp.12440] [PMID: 26076716]
[81]
Catalano A, Iacopetta D, Sinicropi MS, Franchini C. Diarylureas as antitumor agents. Appl Sci 2021; 11(1): 374.
[http://dx.doi.org/10.3390/app11010374] [PMID: 33477901]
[82]
Catalano A. Diarylurea: A privileged scaffold in drug discovery and therapeutic development. Curr Med Chem 2022; 29(25): 4302-6.
[http://dx.doi.org/10.2174/0929867329666220111121251] [PMID: 35021967]
[83]
Shan Y, Wang C, Zhang L, Wang J, Wang M, Dong Y. Expanding the structural diversity of diarylureas as multi-target tyrosine kinase inhibitors. Bioorg Med Chem 2016; 24(4): 750-8.
[http://dx.doi.org/10.1016/j.bmc.2015.12.038] [PMID: 26753815]
[84]
Modi S, Kulkarni VM. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Med Drug Discov 2019; 2: 100009.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy