Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Surface Roughness Modelling of the Micromechanically Patterned CNT Forests

Author(s): Mohd Asyraf Mohd Razib, Tanveer Saleh*, Masud Rana, Saiful Islam and Asan G.A. Muthalif

Volume 15, Issue 3, 2023

Published on: 01 August, 2023

Page: [189 - 198] Pages: 10

DOI: 10.2174/1876402915666230602094033

Price: $65

conference banner
Abstract

Introduction: A new method of modelling surface roughness of the resultant structure from various parameters in the microforming of CNT forests has been developed. One of the top-down microforming methods of CNT forests is called micromechanical bending (M2B). The method uses a high-speed rotating spindle to compact and flatten the surface of CNT forests. It results in the surface structure becoming smoother and increased reflectance of the surface. The reason for this phenomenon is the porosity that decreases by bending CNTs, hence preventing light from passing through. Moreover, the surface roughness is also significantly reduced. However, a study has yet to be conducted to estimate the theoretical value of surface roughness from the identified parameters.

Aim: This research aims to develop an approach to model the surface roughness of resultant surface from a set of parameters in a micropatterning method.

Methods: Experiments were conducted using a CNC machine to pattern onto CNT Forests using specific parameters, such as 1000, 1500, and 2000 rpm (spindle speed) with feed rates of 1, 5 and 10 mm/min. The step size was kept fixed at 1 μm for each level of the patterning pass. It was found that the periodic pattern of trochoidal mark was engraved on the surface, contributing to the value of measured surface roughness.

Results: The results were compared with the theoretical value from the calculation of surface roughness using trochoidal motion with the assumption of the grain sizes of 0.2 μm, 0.3 μm, and 0.4 μm. The actual value of surface roughness was measured using the XE-AFM machine. The grain of 0.2 μm produced the same experimental trend with the theoretical value at rotational speeds of 1000, 1500, and 2000 rpm. However, the theoretical result was shifted downward because the surface could return to the original position due to the elastic properties of the CNTs, hence reducing the surface roughness. The best-fit result was reported for the grain of 0.4 μm, rotational speed of 2000 rpm, and speed rate of 1 mm/min, showing less than 1% difference.

Conclusion: Experimentally and theoretically, a good agreement and comparable results proved the effectiveness of the proposed estimating method.

Graphical Abstract

[1]
Wang, J.N.; Luo, X.G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun., 2014, 5, 3848.
[http://dx.doi.org/10.1038/ncomms4848]
[2]
Collins, P.G.; Avouris, P. Nanotubes for Electronics. Sci. Am., 2000, 283(6), 62-69.
[http://dx.doi.org/10.1038/scientificamerican1200-62] [PMID: 11103460]
[3]
Fu, Y.; Nabiollahi, N.; Wang, T.; Wang, S.; Hu, Z.; Carlberg, B.; Zhang, Y.; Wang, X.; Liu, J. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology, 2012, 23(4), 045304.
[http://dx.doi.org/10.1088/0957-4484/23/4/045304] [PMID: 22222357]
[4]
Cao, A.; Dickrell, P.; Sawyer, G.; Ghasemi-Nejhad, M.N.; Ajayan, P.M. Super compressible foamlike carbon nanotube films. Science, 2005, 310(5752), 1307-10.
[5]
Yaglioglu, B.O.; Martens, R.; Hart, A.J.; Slocum, A.H. Conductive carbon nanotube composite microprobes. Adv. Mater., 2008, 20(2), 357-362.
[http://dx.doi.org/10.1002/adma.200700075]
[6]
Salvetat, J.P.; Bonard, J.M.; Thomson, N.H.; Kulik, A.J.; Forró, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys., A Mater. Sci. Process., 1999, 69(3), 255-260.
[http://dx.doi.org/10.1007/s003390050999]
[7]
Sears, K.; Skourtis, C.; Atkinson, K.; Finn, N.; Humphries, W. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon, 2010, 48(15), 4450-4456.
[http://dx.doi.org/10.1016/j.carbon.2010.08.004]
[8]
Rajabifar, B.; Kim, S.; Slinker, K.; Ehlert, G.J.; Hart, A.J.; Maschmann, M.R. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing. Appl. Phys. Lett., 2015, 107(14), 143102.
[http://dx.doi.org/10.1063/1.4932522]
[9]
Zhu, Y.W.; Sow, C-H.; Sim, M-C.; Sharma, G.; Kripesh, V. Scanning localized arc discharge lithography for the fabrication of microstructures made of carbon nanotubes. Nanotechnology, 2007, 18(38), 385304.
[http://dx.doi.org/10.1088/0957-4484/18/38/385304]
[10]
Khalid, W.; Ali, M.S.M.; Dahmardeh, M.; Choi, Y.; Yaghoobi, P.; Nojeh, A.; Takahata, K. High-aspect-ratio, free-form patterning of carbon nanotube forests using micro-electro-discharge machining. Diam. Relat. Mater., 2010, 19(11), 1405-1410.
[http://dx.doi.org/10.1016/j.diamond.2010.08.007]
[11]
Dahmardeh, M.; Nojeh, A.; Takahata, K.; Dahmardeh, M.; Nojeh, A.; Takahata, K. Possible mechanism in dry micro-electro-discharge machining of carbon-nanotube forests : A study of the effect of oxygen. J. Appl. Phys., 2011, 109(9), 093308.
[http://dx.doi.org/10.1063/1.3587158]
[12]
Saleh, T.; Moghaddam, M.V.; Mohamed Ali, M.S.; Dahmardeh, M.; Foell, C.A.; Nojeh, A.; Takahata, K. Transforming carbon nanotube forest from darkest absorber to reflective mirror. Appl. Phys. Lett., 2012, 101(6), 061913.
[http://dx.doi.org/10.1063/1.4744429]
[13]
Razib, M.A.M.; Rana, M.; Saleh, T.; Fan, H.; Koch, A.; Nojeh, A.; Takahata, K.; Muthalif, A.G.B.A. Optical anisotropy in micromechanically rolled carbon nanotube forest. Electron. Mater. Lett., 2017, 13(5), 442-448.
[http://dx.doi.org/10.1007/s13391-017-6422-0]
[14]
Asyraf, M.R.M.; Saleh, T.; Islam, S.; Rana, M.; Muthalif, A.G.A. Optical characterization of tip bended vertically aligned carbon nanotubes array. Chem. Phys. Lett., 2018, 711, 37-41.
[http://dx.doi.org/10.1016/j.cplett.2018.09.011]
[15]
Razib, M.; Saleh, T.; Hassan, M. Micro-Mechanical Bending (M2B) method for Carbon Nanotube (CNT) based sensor fabrication. >Kuala Lumpur, Malaysia 2014 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA , 2014; pp. 25-27.
[16]
Asyraf, M. Study on micro-patterning process of Vertically Aligned Carbon Nanotubes (VACNTs). Fuller. Nanotub. Carbon Nanostructures., 2015, 24(2), 88-99.
[http://dx.doi.org/10.1080/1536383X.2015.1119126]
[17]
Benardos, P.G.; Vosniakos, G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf., 2003, 43(8), 833-844.
[http://dx.doi.org/10.1016/S0890-6955(03)00059-2]
[18]
Zhou, X.; Xi, F. Modeling and predicting surface roughness of the grinding process. Int. J. Mach. Tools Manuf., 2002, 42(8), 969-977.
[http://dx.doi.org/10.1016/S0890-6955(02)00011-1]
[19]
Xi, F.; Zhou, D. Modeling surface roughness in the stone polishing process. Int. J. Mach. Tools Manuf., 2005, 45(4-5), 365-372.
[http://dx.doi.org/10.1016/j.ijmachtools.2004.09.016]
[20]
Otkur, M.; Lazoglu, I. Trochoidal milling. Int. J. Mach. Tools Manuf., 2007, 47(9), 1324-1332.
[http://dx.doi.org/10.1016/j.ijmachtools.2006.08.002]
[21]
Lazoglu, I.; Layegh, E. 3D surface topography analysis in 5-axis ball-end milling. CIRP Annals., 2017, 66(1), 133-136.
[http://dx.doi.org/10.1016/j.cirp.2017.04.021]
[22]
Hadad, M.; Ramezani, M. Manufacture Modeling and analysis of a novel approach in machining and structuring of flat surfaces using face milling process. Int. J. Mach. Tools Manuf., 2016, 105, 32-44.
[http://dx.doi.org/10.1016/j.ijmachtools.2016.03.005]
[23]
Freiburg, D.; Biermann, D. Simulation-based tool development for structuring of surfaces for tool development for structuring of surfaces sheet bulk metal forming tools. Procedia Manuf., 2018, 15, 467-474.
[http://dx.doi.org/10.1016/j.promfg.2018.07.245]
[24]
Kundrak, J.; Felho, C. 3D roughness parameters of surfaces face milled by special tools. Ind. Technol., 2016, 16(3), 532-538.
[http://dx.doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/3/532]
[25]
Denkena, B.; Biermann, D. Cutting edge geometries. CIRP Ann., 2014, 63(2), 631-653.
[http://dx.doi.org/10.1016/j.cirp.2014.05.009]
[26]
Berend, D. Technological NC simulation for grinding and cutting processes using CutS.Donostia-San Sebastián, Spain Proceedings of the 12th CIRP Conference on Modelling of Machining Operations; , 2009, 2, pp. 563-566.
[27]
Lavernhe, S.; Quinsat, Y.; Lartigue, C.; Brown, C. Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool. Int. J. Adv. Manuf. Technol., 2014, 74(1-4), 393-401.
[http://dx.doi.org/10.1007/s00170-014-5689-7]
[28]
Denkena, B.; Böß, V.; Nespor, D.; Gilge, P.; Hohenstein, S.; Seume, J. Prediction of the 3D surface topography after ball end milling and its influence on aerodynamics. Procedia CIRP, 2015, 31, 221-227.
[http://dx.doi.org/10.1016/j.procir.2015.03.049]
[29]
Masuzawa, T.; Fujino, M.; Kobayashi, K.; Suzuki, T.; Kinoshita, N. Wire electro-discharge grinding for micro-machining. CIRP Ann., 1985, 34(1), 431-434.
[http://dx.doi.org/10.1016/S0007-8506(07)61805-8]
[30]
Pakdee, U.; Chiangga, S.; Suwannatus, S.; Limsuwan, P. Growth of MWCNTs on flexible stainless steels without additional catalysts. J. Nanomater., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/5672728]
[31]
Yaglioglu, O.; Cao, A.; Hart, A.J.; Martens, R.; Slocum, A.H. Wide range control of microstructure and mechanical properties of carbon nanotube forests: A comparison between fixed and floating catalyst CVD techniques. Adv. Funct. Mater., 2012, 22(23), 5028-5037.
[http://dx.doi.org/10.1002/adfm.201200852]
[32]
Bradford, P.D.; Wang, X.; Zhao, H.; Zhu, Y.T. Tuning the compressive mechanical properties of carbon nanotube foam. Carbon, 2011, 49(8), 2834-2841.
[http://dx.doi.org/10.1016/j.carbon.2011.03.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy