Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

MDM2-mediated Inhibitory Effect of Arsenic Trioxide on Small Cell Lung Cancer Cell Line by Degrading Mutant p53

Author(s): Yu-Sheng Wang, Ji-Zhong Yin, Xiao-Qian Shi, Xue-Wei Zhao, Bing Li* and Meng-Hang Yang*

Volume 23, Issue 16, 2023

Published on: 26 June, 2023

Page: [1829 - 1837] Pages: 9

DOI: 10.2174/1871520623666230530095435

Price: $65

conference banner
Abstract

Introduction: Small cell lung cancer (SCLC) is featured by a high TP53 mutant rate. Our previous research found that arsenic trioxide (As2O3) could significantly inhibit the growth and metastasis of SCLC. Studies have shown that the degradation of mutant p53 mediated by murine double minute 2 (MDM2) can be induced by As2O3, which probably contributes to the inhibition of SCLC, but the detailed mechanism is still unclear. We aimed to testify that As2O3 can inhibit the growth of SCLC cells by degrading mutant p53 protein via binding to MDM2.

Methods: CCK-8 assay, cell cycle analysis, and western blot of apoptosis markers were used to evaluate the inhibitory effect of As2O3 on NCI-H446 cells (containing mutant p53) and NCI-H1299 cells (p53 null). The effects of As2O3 on p53 and its downstream proteins were identified by western blot using mut-p53-knockdown and overexpressed cell models. MDM2-knockdown cell models were constructed, and western blot, co-IP of mut-p53, and ubiquitin were carried out to explore the mediating effect of MDM2 in As2O3 induced mut-p53 degradation.

Results: As2O3 inhibited proliferation and induced cell cycle arrest and apoptosis of SCLC cells in a dose- and timedependent manner. After mut-p53 knockdown or overexpressed, the inhibitory effect of As2O3 was dampened or enhanced. Additionally, As2O3-induced mut-p53 ubiquitination was significantly weakened after MDM2 knockdown.

Conclusion: As2O3 could inhibit SCLC cells by inhibiting proliferation and inducing cell cycle arrest and apoptosis. These inhibitory effects were achieved at least in part by upregulating MDM2, which, in turn, promotes ubiquitination and degradation of mut-p53.

Graphical Abstract

[1]
Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387.
[http://dx.doi.org/10.1016/j.jtho.2021.11.003] [PMID: 34808341]
[2]
Bernhardt, E.B.; Jalal, S.I. Small cell lung cancer. Cancer Treat. Res., 2016, 170, 301-322.
[http://dx.doi.org/10.1007/978-3-319-40389-2_14] [PMID: 27535400]
[3]
Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: What we know, what we need to know and the path forward. Nat. Rev. Cancer, 2017, 17(12), 725-737.
[http://dx.doi.org/10.1038/nrc.2017.87] [PMID: 29077690]
[4]
Levine, A.J.; Hu, W.; Feng, Z. The P53 pathway: What questions remain to be explored? Cell Death Differ., 2006, 13(6), 1027-1036.
[http://dx.doi.org/10.1038/sj.cdd.4401910] [PMID: 16557269]
[5]
Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell, 2009, 137(3), 413-431.
[http://dx.doi.org/10.1016/j.cell.2009.04.037] [PMID: 19410540]
[6]
Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer, 2009, 9(10), 749-758.
[http://dx.doi.org/10.1038/nrc2723] [PMID: 19776744]
[7]
George, J.; Lim, J.S.; Jang, S.J.; Cun, Y. Ozretić L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; Müller, C.; Dahmen, I.; Jahchan, N.S.; Park, K.S.; Yang, D.; Karnezis, A.N.; Vaka, D.; Torres, A.; Wang, M.S.; Korbel, J.O.; Menon, R.; Chun, S.M.; Kim, D.; Wilkerson, M.; Hayes, N.; Engelmann, D.; Pützer, B.; Bos, M.; Michels, S.; Vlasic, I.; Seidel, D.; Pinther, B.; Schaub, P.; Becker, C.; Altmüller, J.; Yokota, J.; Kohno, T.; Iwakawa, R.; Tsuta, K.; Noguchi, M.; Muley, T.; Hoffmann, H.; Schnabel, P.A.; Petersen, I.; Chen, Y.; Soltermann, A.; Tischler, V.; Choi, C.; Kim, Y.H.; Massion, P.P.; Zou, Y.; Jovanovic, D.; Kontic, M.; Wright, G.M.; Russell, P.A.; Solomon, B.; Koch, I.; Lindner, M.; Muscarella, L.A.; la Torre, A.; Field, J.K.; Jakopovic, M.; Knezevic, J.; Castaños-Vélez, E.; Roz, L.; Pastorino, U.; Brustugun, O.T.; Lund-Iversen, M.; Thunnissen, E.; Köhler, J.; Schuler, M.; Botling, J.; Sandelin, M.; Sanchez-Cespedes, M.; Salvesen, H.B.; Achter, V.; Lang, U.; Bogus, M.; Schneider, P.M.; Zander, T.; Ansén, S.; Hallek, M.; Wolf, J.; Vingron, M.; Yatabe, Y.; Travis, W.D.; Nürnberg, P.; Reinhardt, C.; Perner, S.; Heukamp, L.; Büttner, R.; Haas, S.A.; Brambilla, E.; Peifer, M.; Sage, J.; Thomas, R.K. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563), 47-53.
[http://dx.doi.org/10.1038/nature14664] [PMID: 26168399]
[8]
Hayashi, Y.; Tsujii, M.; Kodama, T.; Akasaka, T.; Kondo, J.; Hikita, H.; Inoue, T.; Tsujii, Y.; Maekawa, A.; Yoshii, S.; Shinzaki, S.; Watabe, K.; Tomita, Y.; Inoue, M.; Tatsumi, T.; Iijima, H.; Takehara, T. p53 functional deficiency in human colon cancer cells promotes fibroblast-mediated angiogenesis and tumor growth. Carcinogenesis, 2016, 37(10), 972-984.
[http://dx.doi.org/10.1093/carcin/bgw085] [PMID: 27520561]
[9]
Molchadsky, A.; Rotter, V. p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis, 2017, 38(4), 347-358.
[http://dx.doi.org/10.1093/carcin/bgw092] [PMID: 28334334]
[10]
Stiewe, T.; Haran, T.E. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist. Updat., 2018, 38, 27-43.
[http://dx.doi.org/10.1016/j.drup.2018.05.001] [PMID: 29857816]
[11]
Chen, G.Q.; Shi, X.G.; Tang, W.; Xiong, S.M.; Zhu, J.; Cai, X.; Han, Z.G.; Ni, J.H.; Shi, G.Y.; Jia, P.M.; Liu, M.M.; He, K.L.; Niu, C.; Ma, J.; Zhang, P.; Zhang, T.D.; Paul, P.; Naoe, T.; Kitamura, K.; Miller, W.; Waxman, S.; Wang, Z.Y.; de The, H.; Chen, S.J.; Chen, Z. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood, 1997, 89(9), 3345-3353.
[PMID: 9129041]
[12]
Shi, X.Q.Y.; Huang, H.; Fang, Z.; Shi, Z.Q.; Tang, H.; Waxman, S.; Wang, Z.Y. Efficacy and mechanism of arsenic trioxide intrapleural injection in non-small cell lung cancer patients with malignant pleural effusions. J. Intern. Med. Concepts. Pract., 2019, 14(2), 77-82.
[13]
Xie, S.L.; Yang, M.H.; Chen, K.; Huang, H.; Zhao, X.W.; Zang, Y.S.; Li, B. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem. Biophys., 2015, 71(3), 1325-1333.
[http://dx.doi.org/10.1007/s12013-014-0352-3] [PMID: 25413961]
[14]
Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566.
[http://dx.doi.org/10.2174/1568009614666140725090000] [PMID: 25088040]
[15]
Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. BioMed Res. Int., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/4647252] [PMID: 31093499]
[16]
Zheng, J.C.; Chang, K.J.; Jin, Y.X.; Zhao, X.W.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the metastasis of small cell lung cancer by blocking calcineurin-nuclear factor of activated t cells (NFAT) signaling. Med. Sci. Monit., 2019, 25, 2228-2237.
[http://dx.doi.org/10.12659/MSM.913091] [PMID: 30913205]
[17]
Chang, K.J.; Yang, M.H.; Zheng, J.C.; Li, B.; Nie, W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am. J. Transl. Res., 2016, 8(2), 1133-1143.
[PMID: 27158399]
[18]
Schwaederlé, M.; Lazar, V.; Validire, P.; Hansson, J.; Lacroix, L.; Soria, J.C.; Pawitan, Y.; Kurzrock, R. VEGF-A expression correlates with TP53 mutations in non–small cell lung cancer: Implications for antiangiogenesis therapy. Cancer Res., 2015, 75(7), 1187-1190.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2305] [PMID: 25672981]
[19]
Shinmen, N.; Koshida, T.; Kumazawa, T.; Sato, K.; Shimada, H.; Matsutani, T.; Iwadate, Y.; Takiguchi, M.; Hiwasa, T. Activation of NFAT signal by p53-K120R mutant. FEBS Lett., 2009, 583(12), 1916-1922.
[http://dx.doi.org/10.1016/j.febslet.2009.04.041] [PMID: 19416725]
[20]
Yoon, J.W.; Lamm, M.; Iannaccone, S.; Higashiyama, N.; Leong, K.F.; Iannaccone, P.; Walterhouse, D. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. DNA Repair (Amst.), 2015, 34, 9-17.
[http://dx.doi.org/10.1016/j.dnarep.2015.06.006] [PMID: 26282181]
[21]
Yan, W.; Jung, Y.S.; Zhang, Y.; Chen, X. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS One, 2014, 9(8), e103497.
[http://dx.doi.org/10.1371/journal.pone.0103497] [PMID: 25116336]
[22]
Yan, W.; Zhang, Y.; Zhang, J.; Liu, S.; Cho, S.J.; Chen, X. Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression. J. Biol. Chem., 2011, 286(20), 17478-17486.
[http://dx.doi.org/10.1074/jbc.M111.231639] [PMID: 21454520]
[23]
Chen, S.; Wu, J.L.; Liang, Y.; Tang, Y.G.; Song, H.X.; Wu, L.L.; Xing, Y.F.; Yan, N.; Li, Y.T.; Wang, Z.Y.; Xiao, S.J.; Lu, X.; Chen, S.J.; Lu, M. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell, 2021, 39(2), 225-239.e8.
[http://dx.doi.org/10.1016/j.ccell.2020.11.013]
[24]
Zhao, Y.; Yu, H.; Hu, W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin., 2014, 46(3), 180-189.
[http://dx.doi.org/10.1093/abbs/gmt147] [PMID: 24389645]
[25]
Midgley, C.A.; Lane, D.P. p53 protein stability in tumour cells is not determined by mutation but is dependent on MDM2 binding. Oncogene, 1997, 15(10), 1179-1189.
[http://dx.doi.org/10.1038/sj.onc.1201459] [PMID: 9294611]
[26]
Chou, R.H.; Huang, H. Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem. Biophys. Res. Commun., 2002, 293(1), 298-306.
[http://dx.doi.org/10.1016/S0006-291X(02)00212-7] [PMID: 12054599]
[27]
Chen, X.; Zhang, M.; Liu, L.X. The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncol. Rep., 2009, 22(1), 73-80.
[PMID: 19513507]
[28]
Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr(III), Fe(III) and Cu(II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117700.
[http://dx.doi.org/10.1016/j.saa.2019.117700] [PMID: 31748163]
[29]
Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct., 2021, 1242, 130693.
[http://dx.doi.org/10.1016/j.molstruc.2021.130693]
[30]
El‐Remaily, M.A.E.A.A.A. Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5‐a]pyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl. Organomet. Chem., 2021.
[31]
Aljohani, S. Design, structural inspection of new bis(1H-benzo[d]imidazol-2-yl)methanone complexes: Biomedical applications and theoretical implementations via DFT and docking approaches. Inorg. Chem. Commun., 2022, 72023, 110331.
[32]
Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem., 2022, 97(C), 107643.
[http://dx.doi.org/10.1016/j.compbiolchem.2022.107643] [PMID: 35189479]
[33]
Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[34]
Byers, L.A.; Rudin, C.M. Small cell lung cancer: Where do we go from here? Cancer, 2015, 121(5), 664-672.
[http://dx.doi.org/10.1002/cncr.29098] [PMID: 25336398]
[35]
Schulz-Heddergott, R.; Moll, U. Gain-of-Function (GOF) Mutant p53 as actionable therapeutic target. Cancers, 2018, 10(6), 188.
[http://dx.doi.org/10.3390/cancers10060188] [PMID: 29875343]
[36]
Duffy, M.J. Targeting p53 for the treatment of cancer. Semin. Cancer Biol., 2020, 2022, 58-67.
[PMID: 32741700]
[37]
Zandi, R.; Selivanova, G.; Christensen, C.L.; Gerds, T.A.; Willumsen, B.M.; Poulsen, H.S. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin. Cancer Res., 2011, 17(9), 2830-2841.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3168] [PMID: 21415220]
[38]
Gazitt, Y.; Akay, C. Arsenic trioxide: An anti cancer missile with multiple warheads. Hematology, 2005, 10(3), 205-213.
[http://dx.doi.org/10.1080/10245330500067090] [PMID: 16019469]
[39]
Huang, C.; Ma, W.Y.; Li, J.; Dong, Z. Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res., 1999, 59(13), 3053-3058.
[PMID: 10397243]
[40]
Liu, Q.; Hilsenbeck, S.; Gazitt, Y. Arsenic trioxide–induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood, 2003, 101(10), 4078-4087.
[http://dx.doi.org/10.1182/blood-2002-10-3231] [PMID: 12531793]
[41]
Akay, C.; Gazitt, Y. Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle, 2003, 2(4), 358-368.
[PMID: 12851490]
[42]
Boyko-Fabian, M.; Niehr, F.; Distel, L.; Budach, V.; Tinhofer, I. Increased growth-inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PLoS One, 2014, 9(6), e98867.
[http://dx.doi.org/10.1371/journal.pone.0098867] [PMID: 24927258]
[43]
Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104.
[http://dx.doi.org/10.1101/cshperspect.a026104] [PMID: 26931810]
[44]
Morsi, R.Z.; Hage-Sleiman, R.; Kobeissy, H.; Dbaibo, G. Noxa: Role in cancer pathogenesis and treatment. Curr. Cancer Drug Targets, 2018, 18(10), 914-928.
[http://dx.doi.org/10.2174/1568009618666180308105048] [PMID: 29521234]
[45]
Chipuk, J.E.; Bouchier-Hayes, L.; Kuwana, T.; Newmeyer, D.D.; Green, D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 2005, 309(5741), 1732-1735.
[http://dx.doi.org/10.1126/science.1114297] [PMID: 16151013]
[46]
Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.; Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998, 282(5393), 1497-1501.
[http://dx.doi.org/10.1126/science.282.5393.1497] [PMID: 9822382]
[47]
Subhasree, N.; Jiangjiang, Q.; Kalkunte, S.; Minghai, W.; Ruiwen, Z. The MDM2-p53 pathway revisited. J. Biomed. Res., 2013, 27(4), 254-271.
[http://dx.doi.org/10.7555/JBR.27.20130030] [PMID: 23885265]
[48]
Hamadeh, H.K.; Vargas, M.; Lee, E.; Menzel, D.B. Arsenic disrupts cellular levels of p53 and MDM2: A potential mechanism of carcinogenesis. Biochem. Biophys. Res. Commun., 1999, 263(2), 446-449.
[http://dx.doi.org/10.1006/bbrc.1999.1395] [PMID: 10491313]
[49]
Huang, Y.; Zhang, J.; McHenry, K.T.; Kim, M.M.; Zeng, W.; Lopez-Pajares, V.; Dibble, C.C.; Mizgerd, J.P.; Yuan, Z.M. Induction of cytoplasmic accumulation of p53: A mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res., 2008, 68(22), 9131-9136.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3025] [PMID: 19010883]
[50]
Halasi, M.; Pandit, B.; Gartel, A.L. Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle, 2014, 13(20), 3202-3206.
[http://dx.doi.org/10.4161/15384101.2014.950132] [PMID: 25485499]
[51]
Zhu, H.B.; Yang, K.; Xie, Y.Q.; Lin, Y.W.; Mao, Q.Q.; Xie, L.P. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells. World J. Surg. Oncol., 2013, 11(1), 22.
[http://dx.doi.org/10.1186/1477-7819-11-22] [PMID: 23356234]
[52]
Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[53]
Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21 WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci., 2000, 97(18), 10014-10019.
[http://dx.doi.org/10.1073/pnas.180316197] [PMID: 10954755]
[54]
Jadhav, V.; Ray, P.; Sachdeva, G.; Bhatt, P. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci., 2016, 148, 41-52.
[http://dx.doi.org/10.1016/j.lfs.2016.02.042] [PMID: 26883975]
[55]
Li, Y.; Qu, X.; Qu, J.; Zhang, Y.; Liu, J.; Teng, Y.; Hu, X.; Hou, K.; Liu, Y. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett., 2009, 284(2), 208-215.
[http://dx.doi.org/10.1016/j.canlet.2009.04.035] [PMID: 19457607]
[56]
Kircelli, F.; Akay, C.; Gazitt, Y. Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. Int. J. Oncol., 2007, 30(4), 993-1001.
[http://dx.doi.org/10.3892/ijo.30.4.993] [PMID: 17332940]
[57]
Feng, J.; Tamaskovic, R.; Yang, Z.; Brazil, D.P.; Merlo, A.; Hess, D.; Hemmings, B.A. Stabilization of MDM2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J. Biol. Chem., 2004, 279(34), 35510-35517.
[http://dx.doi.org/10.1074/jbc.M404936200] [PMID: 15169778]
[58]
Chang, K.J.; Yin, J.Z.; Huang, H.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell- maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl. Lung Cancer Res., 2020, 9(4), 1379-1396.
[http://dx.doi.org/10.21037/tlcr-20-467] [PMID: 32953511]
[59]
Zheng, C.Y.; Lam, S.K.; Li, Y.Y.; Ho, J. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int. J. Oncol., 2015, 46(3), 1067-1078.
[http://dx.doi.org/10.3892/ijo.2015.2826] [PMID: 25572414]
[60]
Cheng, Y.; Chang, L.W.; Tsou, T.C. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch. Toxicol., 2006, 80(6), 310-318.
[http://dx.doi.org/10.1007/s00204-005-0045-1] [PMID: 16328441]
[61]
Mathieu, J.; Besançon, F. Clinically tolerable concentrations of arsenic trioxide induce p53-independent cell death and repress NF-κB activation in Ewing sarcoma cells. Int. J. Cancer, 2006, 119(7), 1723-1727.
[http://dx.doi.org/10.1002/ijc.21970] [PMID: 16646077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy