Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Mechanism of Procyanidin B2 in the Treatment of Chronic Myeloid Leukemia Based on Integrating Network Pharmacology and Molecular Docking

Author(s): Hong-Xing Li, Yuan-Xue Jing, Yi-Hong Chai, Xiao-Hong Sun, Xiao-Xia He, Shi-Long Xue, Ya-Ming Xi* and Xiao-Ling Ma*

Volume 23, Issue 16, 2023

Published on: 15 June, 2023

Page: [1838 - 1847] Pages: 10

DOI: 10.2174/1871520623666230526122524

Price: $65

conference banner
Abstract

Objective: To study the pharmacological mechanism of procyanidin B2 (PCB2) on chronic myeloid leukemia (CML) by integrating network pharmacological methods systematically.

Methods: Firstly, the potential target genes of PCB2 were predicted by the pharmacological database and analysis platform (TCMSP and Pharmmapper). Meanwhile, the relevant target genes of CML were collected from GeneCards and DisGene. Pooled data were collected to screen for common target genes. Furthermore, the above intersection genes were imported into the String website to construct a protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. Besides, molecular docking was performed to verify the possible binding conformation between PCB2 and candidate targets. Finally, MTT and RT-PCR experiments of K562 cells were performed to verify the above results of network pharmacology.

Results: A total of 229 PCB2 target genes were retrieved, among which 186 target genes had interaction with CML. The pharmacological effects of PCB2 on CML were related to some important oncogenes and signaling pathways. The top ten core targets predicted by Network Analysis were as follows: AKT1, EGFR, ESR1, CASP3, SRC, VEGFA, HIF1A, ERBB2, MTOR, and IGF1. Molecular docking studies confirmed that hydrogen bonding was the main interaction force of PCB2 binding targets. According to the molecular docking score, the following three target proteins were most likely to bind to PCB2: VEGFA (-5.5 kcal/mol), SRC (-5.1 kcal/mol), and EGFR (-4.6 kcal/mol). After treatment of PCB2 for 24h, mRNA expression levels of VEGFA and HIF1A decreased significantly in K562 cells.

Conclusion: Through integrating network pharmacology combined with molecular docking, the study revealed the potential mechanism of PCB2 anti-chronic myeloid leukemia.

Graphical Abstract

[1]
Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2020, 95(6), 691-709.
[http://dx.doi.org/10.1002/ajh.25792] [PMID: 32239758]
[2]
Höglund, M.; Sandin, F.; Simonsson, B. Epidemiology of chronic myeloid leukaemia: An update. Ann. Hematol., 2015, 94(S2), 241-247.
[http://dx.doi.org/10.1007/s00277-015-2314-2] [PMID: 25814090]
[3]
Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; Hjorth-Hansen, H.; Hughes, T.P.; Janssen, J.J.W.M.; Kantarjian, H.M.; Kim, D.W.; Larson, R.A.; Lipton, J.H.; Mahon, F.X.; Mayer, J.; Nicolini, F.; Niederwieser, D.; Pane, F.; Radich, J.P.; Rea, D.; Richter, J.; Rosti, G.; Rousselot, P.; Saglio, G.; Saußele, S.; Soverini, S.; Steegmann, J.L.; Turkina, A.; Zaritskey, A.; Hehlmann, R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia, 2020, 34(4), 966-984.
[http://dx.doi.org/10.1038/s41375-020-0776-2] [PMID: 32127639]
[4]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[5]
Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib versus Imatinib for newly diagnosed chronic myeloid leukemia: Results from the randomized before trial. J. Clin. Oncol., 2018, 36(3), 231-237.
[http://dx.doi.org/10.1200/JCO.2017.74.7162] [PMID: 29091516]
[6]
Amir, M.; Javed, S. A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front. Genet., 2021, 12, 742802.
[http://dx.doi.org/10.3389/fgene.2021.742802] [PMID: 34745216]
[7]
Wolfe, H.R.; Rein, L.A.M. The evolving landscape of frontline therapy in chronic phase chronic myeloid leukemia (CML). Curr. Hematol. Malig. Rep., 2021, 16(5), 448-454.
[http://dx.doi.org/10.1007/s11899-021-00655-z] [PMID: 34661874]
[8]
Minciacchi, V.R.; Kumar, R.; Krause, D.S. Chronic myeloid leukemia: A model disease of the past, present and future. Cells, 2021, 10(1), 117.
[http://dx.doi.org/10.3390/cells10010117] [PMID: 33435150]
[9]
Hehlmann, R. Chronic myeloid leukemia in 2020. HemaSphere, 2020, 4(5), e468.
[http://dx.doi.org/10.1097/HS9.0000000000000468] [PMID: 33134861]
[10]
Lübking, A.; Dreimane, A.; Sandin, F.; Isaksson, C.; Märkevärn, B.; Brune, M.; Ljungman, P.; Lenhoff, S.; Stenke, L.; Höglund, M.; Richter, J.; Olsson-Strömberg, U. Allogeneic stem cell transplantation for chronic myeloid leukemia in the TKI era: Population-based data from the Swedish CML registry. Bone Marrow Transplant., 2019, 54(11), 1764-1774.
[http://dx.doi.org/10.1038/s41409-019-0513-5] [PMID: 30962502]
[11]
Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods, 2021, 10(12), 3152.
[http://dx.doi.org/10.3390/foods10123152] [PMID: 34945704]
[12]
Yang, H.; Xiao, L.; Yuan, Y.; Luo, X.; Jiang, M.; Ni, J.; Wang, N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem. Pharmacol., 2014, 92(4), 599-606.
[http://dx.doi.org/10.1016/j.bcp.2014.10.001] [PMID: 25450671]
[13]
Chuang, C.C.; McIntosh, M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu. Rev. Nutr., 2011, 31(1), 155-176.
[http://dx.doi.org/10.1146/annurev-nutr-072610-145149] [PMID: 21548775]
[14]
Gouvêa, C.M.C.P.; Avelar, M.M. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells. Indian J. Pharm. Sci., 2012, 74(4), 351-355.
[http://dx.doi.org/10.4103/0250-474X.107070] [PMID: 23626391]
[15]
Chen, H.; Wang, W.; Yu, S.; Wang, H.; Tian, Z.; Zhu, S. Procyanidins and their therapeutic potential against oral diseases. Molecules, 2022, 27(9), 2932.
[http://dx.doi.org/10.3390/molecules27092932] [PMID: 35566283]
[16]
Liu, J.; Zhang, W.Y.; Kong, Z.H.; Ding, D.G. Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3282-3291.
[PMID: 27467005]
[17]
Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D. Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochim. Pol., 2017, 64(3), 567-576.
[http://dx.doi.org/10.18388/abp.2017_1599] [PMID: 28787469]
[18]
Lee, Y. Cancer chemopreventive potential of Procyanidin. Toxicol. Res., 2017, 33(4), 273-282.
[http://dx.doi.org/10.5487/TR.2017.33.4.273] [PMID: 29071011]
[19]
Ma, Y.; Zhang, X.; Su, Z.; Li, N.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Insight into the molecular mechanism of a herbal injection by integrating network pharmacology and in vitro. J. Ethnopharmacol., 2015, 173, 91-99.
[http://dx.doi.org/10.1016/j.jep.2015.07.016] [PMID: 26192807]
[20]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[21]
Osman, A.E.G.; Deininger, M.W. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev., 2021, 49, 100825.
[http://dx.doi.org/10.1016/j.blre.2021.100825] [PMID: 33773846]
[22]
Hehlmann, R. The new ELN recommendations for treating CML. J. Clin. Med., 2020, 9(11), 3671.
[http://dx.doi.org/10.3390/jcm9113671] [PMID: 33207600]
[23]
Braun, T.P.; Eide, C.A.; Druker, B.J. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell, 2020, 37(4), 530-542.
[http://dx.doi.org/10.1016/j.ccell.2020.03.006] [PMID: 32289275]
[24]
Chen, J.; Wang, F.; Fang, J.; Nie, D.; Zhang, Y.; Chen, X.; Li, Y.; Tan, Y.; Ma, X.; Guo, Y.; Cao, P.; Liu, M.; Liu, H. Dynamic evolution of ponatinib‐resistant mutations in BCR–ABL1 ‐positive leukaemias revealed by next‐generation sequencing. Br. J. Haematol., 2020, 191(5), e113-e116.
[http://dx.doi.org/10.1111/bjh.17068] [PMID: 33460055]
[25]
Stetka, J.; Gursky, J.; Liñan Velasquez, J.; Mojzikova, R.; Vyhlidalova, P.; Vrablova, L.; Bartek, J.; Divoky, V. Role of DNA damage response in suppressing malignant progression of chronic myeloid leukemia and polycythemia vera: Impact of different oncogenes. Cancers, 2020, 12(4), 903.
[http://dx.doi.org/10.3390/cancers12040903] [PMID: 32272770]
[26]
Vetrie, D.; Helgason, G.V.; Copland, M. The leukaemia stem cell: Similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer, 2020, 20(3), 158-173.
[http://dx.doi.org/10.1038/s41568-019-0230-9] [PMID: 31907378]
[27]
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[28]
Zeng, Y.X.; Wang, S.; Wei, L.; Cui, Y.Y.; Chen, Y.H. Proanthocyanidins: Components, pharmacokinetics and biomedical properties. Am. J. Chin. Med., 2020, 48(4), 813-869.
[http://dx.doi.org/10.1142/S0192415X2050041X] [PMID: 32536248]
[29]
Dinner, S.; Platanias, L.C. Targeting the mTOR pathway in leukemia. J. Cell. Biochem., 2016, 117(8), 1745-1752.
[http://dx.doi.org/10.1002/jcb.25559] [PMID: 27018341]
[30]
Bibi, S.; Arslanhan, M.D.; Langenfeld, F.; Jeanningros, S.; Cerny-Reiterer, S.; Hadzijusufovic, E.; Tchertanov, L.; Moriggl, R.; Valent, P.; Arock, M. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: Possible new targets of therapy. Haematologica, 2014, 99(3), 417-429.
[http://dx.doi.org/10.3324/haematol.2013.098442] [PMID: 24598853]
[31]
Meeran, S.M.; Katiyar, S.K. Proanthocyanidins inhibit mitogenic and survival-signaling in vitro and tumor growth in vivo. Front. Biosci., 2008, 13(13), 887-897.
[http://dx.doi.org/10.2741/2729] [PMID: 17981597]
[32]
Wu, P.S.; Wang, C.Y.; Chen, P.S.; Hung, J.H.; Yen, J.H.; Wu, M.J. 8-Hydroxydaidzein downregulates JAK/STAT, MMP, oxidative phosphorylation, and PI3K/AKT pathways in K562 cells. Biomedicines, 2021, 9(12), 1907.
[http://dx.doi.org/10.3390/biomedicines9121907] [PMID: 34944720]
[33]
Luo, X.; Feng, M.; Zhu, X.; Li, Y.; Fei, J.; Zhang, Y. VEGF depletion enhances bcr-abl-specific sensitivity of arsenic trioxide in chronic myelogenous leukemia. Hematology, 2013, 18(6), 334-340.
[http://dx.doi.org/10.1179/1607845413Y.0000000083] [PMID: 24129092]
[34]
Steinbach, A.; Clark, S.M.; Clemmons, A.B. Bosutinib: A novel src/abl kinase inhibitor for chronic myelogenous leukemia. J. Adv. Pract. Oncol., 2013, 4(6), 451-455.
[PMID: 25032026]
[35]
Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 2015, 72(12), 2337-2347.
[http://dx.doi.org/10.1007/s00018-015-1867-5] [PMID: 25712020]
[36]
Nakahara, F.; Kitaura, J.; Uchida, T.; Nishida, C.; Togami, K.; Inoue, D.; Matsukawa, T.; Kagiyama, Y.; Enomoto, Y.; Kawabata, K.C.; Chen-Yi, L.; Komeno, Y.; Izawa, K.; Oki, T.; Nagae, G.; Harada, Y.; Harada, H.; Otsu, M.; Aburatani, H.; Heissig, B.; Hattori, K.; Kitamura, T. Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells. Blood, 2014, 123(25), 3932-3942.
[http://dx.doi.org/10.1182/blood-2013-01-476747] [PMID: 24825862]
[37]
Zhu, X.; Wang, L.; Zhang, B.; Li, J.; Dou, X.; Zhao, R.C. TGF- 1-induced PI3K/Akt/NF- B/MMP9 signalling pathway is activated in Philadelphia chromosome-positive chronic myeloid leukaemia hemangioblasts. J. Biochem., 2011, 149(4), 405-414.
[http://dx.doi.org/10.1093/jb/mvr016] [PMID: 21288887]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy