Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Studying the Optimization, Characterization, and Antioxidant Activities of Phenolic Extracts Extracted from Rhus chinensis Mill. Leaf using Microwave-assisted Extraction System with Glycerol as a Green Solvent

Author(s): Chalisa Supjaroenporn, Prapawarin Khongcharoen, Hla Myo and Nuntawat Khat-udomkiri*

Volume 20, Issue 3, 2024

Published on: 24 July, 2023

Article ID: e250523217356 Pages: 15

DOI: 10.2174/1573407219666230525152937

Price: $65

Abstract

Background: The leaves of Rhus chinensis Mill., a common deciduous tree found in the mild temperate zone of Asia, have many medicinal effects, including antioxidant properties.

Objectives and Methods: This study aims to optimize the conditions for extracting phenols from Rhus chinensis Mill. (RCM) using a microwave-assisted extraction system with glycerol (MAEG) via response surface methodology (RSM). It also aims to compare the extraction efficacy of decoction and MAEG methods in terms of the bioactive compounds and antioxidant activities of the extracts obtained through them, identify bioactive compounds in both extracts via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-ESIQTOF- MS/MS), and determine the cytotoxicity and cellular antioxidant activity of MAEG extract.

Results: Temperature and glycerol concentration significantly affected the total phenolic content (TPC) of the extracts. The validated value of TPC was 84.11 ± 4.28 mg GAE/g for the sample obtained under the optimal conditions of 12.76 min at 54.08°C and 34.48% glycerol concentration. MAEG extract exhibited higher antioxidant properties compared to the decoction extract. Different phenolic compounds in the extracts were tentatively identified by LC-QTOF. MAEG concentrations from 1 mg/mL to 7.5 mg/mL were considered non-cytotoxic to NIH/3T3 fibroblasts. Furthermore, the cell viability of NIH/3T3 fibroblasts increased after being treated with MAEG extract (from 2.5 mg/mL to 7.5 mg/mL) and subjected to H2O2- induced oxidative stress compared to H2O2 treatment alone.

Conclusion: Finally, MAEG can be used as a novel green extraction method for obtaining bioactive compounds for cosmetic and medicinal applications.

Graphical Abstract

[1]
Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process., 2018, 109, 52-73.
[http://dx.doi.org/10.1016/j.fbp.2018.03.001]
[2]
Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A.F. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules, 2019, 24(16), 3007.
[http://dx.doi.org/10.3390/molecules24163007] [PMID: 31430982]
[3]
Sharma, M.; Sridhar, K.; Gupta, V.K.; Dikkala, P.K. Greener technologies in agri-food wastes valorization for plant pigments: Step towards circular economy. Curr Res Green Sustain Chem., 2022, 5, 100340.
[http://dx.doi.org/10.1016/j.crgsc.2022.100340]
[4]
Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem., 2010, 120(4), 1185-1192.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.063]
[5]
Rapinel, V.; Claux, O.; Abert-Vian, M.; McAlinden, C.; Bartier, M.; Patouillard, N.; Jacques, L.; Chemat, F. 2-methyloxolane (2-MeOx) as sustainable lipophilic solvent to substitute hexane for green extraction of natural products. Properties, applications, and perspectives. Molecules, 2020, 25(15), 3417.
[http://dx.doi.org/10.3390/molecules25153417] [PMID: 32731508]
[6]
Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett., 2007, 5(2), 67-71.
[http://dx.doi.org/10.1007/s10311-006-0080-z]
[7]
Padmawar, A.; Herbals, A.; Bhadoriya, U.; Mechanics, M. Glycol and glycerin: Pivotal role in herbal industry as solvent/co-solvent. World J. Pharm. Med. Res., 2018, 4(5), 153-155.
[8]
Kowalska, G.; Baj, T.; Kowalski, R.; Szymańska, J. Optimization of glycerol–water extraction of selected bioactive compounds from peppermint and common nettle. Antioxidants, 2021, 10(5), 817.
[http://dx.doi.org/10.3390/antiox10050817] [PMID: 34065576]
[9]
Huang, H.; Wang, Z.; Aalim, H.; Limwachiranon, J.; Li, L.; Duan, Z.; Ren, G.; Luo, Z. Green recovery of phenolic compounds from rice byproduct (rice bran) using glycerol based on viscosity, conductivity and density. Int. J. Food Sci. Technol., 2019, 54(4), 1363-1371.
[http://dx.doi.org/10.1111/ijfs.14026]
[10]
Aalim, H.; Belwal, T.; Jiang, L.; Huang, H.; Meng, X.; Luo, Z. Extraction optimization, antidiabetic and antiglycation potentials of aqueous glycerol extract from rice (Oryza sativa L.) bran. Lebensm. Wiss. Technol., 2019, 103, 147-154.
[http://dx.doi.org/10.1016/j.lwt.2019.01.006]
[11]
Apostolakis, A.; Grigorakis, S.; Makris, D.P. Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Separ. Purif. Tech., 2014, 128, 89-95.
[http://dx.doi.org/10.1016/j.seppur.2014.03.010]
[12]
Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol., 2016, 53(11), 3939-3947.
[http://dx.doi.org/10.1007/s13197-016-2381-y] [PMID: 28035149]
[13]
Bao, N.; Wang, D.; Fu, X.; Xie, H.; Gao, G.; Luo, Z. Green extraction of phenolic compounds from lotus seedpod (Receptaculum nelumbinis) assisted by ultrasound coupled with glycerol. Foods, 2021, 10(2), 239.
[http://dx.doi.org/10.3390/foods10020239] [PMID: 33503852]
[14]
Trasanidou, D.; Apostolakis, A.; Makris, D.P. Development of a green process for the preparation of antioxidant and pigment-enriched extracts from winery solid wastes using response surface methodology and kinetics. Chem. Eng. Commun., 2016, 203(10), 1317-1325.
[http://dx.doi.org/10.1080/00986445.2016.1189416]
[15]
Makris, D.P.; Passalidi, V.; Kallithraka, S.; Mourtzinos, I. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology. Prep. Biochem. Biotechnol., 2016, 46(2), 176-182.
[http://dx.doi.org/10.1080/10826068.2015.1015562] [PMID: 25806718]
[16]
Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. J. Food Meas. Charact., 2020, 14(1), 39-47.
[http://dx.doi.org/10.1007/s11694-019-00265-7]
[17]
Huamán-Castilla, N.L.; Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Pérez-Correa, J.R. Glycerol as alternative co-solvent for water extraction of polyphenols from Carménère pomace: Hot pressurized liquid extraction and computational chemistry calculations. Biomolecules, 2020, 10(3), 474.
[http://dx.doi.org/10.3390/biom10030474] [PMID: 32244874]
[18]
Limwachiranon, J.; Jiang, L.; Huang, H.; Sun, J.; Luo, Z. Improvement of phenolic compounds extraction from high-starch lotus (Nelumbo nucifera G.) seed kernels using glycerol: New insights to amylose/amylopectin – Phenolic relationships. Food Chem., 2019, 274, 933-941.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.022] [PMID: 30373030]
[19]
Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev., 2007, 1(1), 7-18.
[20]
Rajabi, H.R.; Naghiha, R.; Kheirizadeh, M.; Sadatfaraji, H.; Mirzaei, A.; Alvand, Z.M. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: Synthesis, characterization, and biological properties. Mater. Sci. Eng. C., 2017, 78, 1109-1118.
[http://dx.doi.org/10.1016/j.msec.2017.03.090] [PMID: 28575946]
[21]
Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process., 2003, 42(2), 129-133.
[http://dx.doi.org/10.1016/S0255-2701(02)00037-5]
[22]
Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit. Rev. Anal. Chem., 2021, 51(2), 138-149.
[http://dx.doi.org/10.1080/10408347.2019.1686966] [PMID: 31729248]
[23]
Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess., 2019, 6(1), 26.
[http://dx.doi.org/10.1186/s40643-019-0261-9]
[24]
More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol., 2022, 128, 296-315.
[http://dx.doi.org/10.1016/j.tifs.2022.08.016]
[25]
Sparr Eskilsson, C.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A, 2000, 902(1), 227-250.
[http://dx.doi.org/10.1016/S0021-9673(00)00921-3] [PMID: 11192157]
[26]
Mahardika, R.G.; Roanisca, O. Microwave-assisted extraction of polyphenol content from leaves of Tristaniopsis merguensis Griff. ASEAN J Chem Eng, 2020, 19(2), 110-119.
[http://dx.doi.org/10.22146/ajche.50448]
[27]
Savio Nshi, D.; He, Q. Radical scavenging capacity of Rwandan CTC tea polyphenols extracted using microwave assisted extraction. Pak. J. Nutr., 2010, 9(6), 589-593.
[http://dx.doi.org/10.3923/pjn.2010.589.593]
[28]
Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and modeling of polyphenol extraction from food: A review. Environ. Chem. Lett., 2021, 19(4), 3409-3443.
[http://dx.doi.org/10.1007/s10311-021-01217-8] [PMID: 33753968]
[29]
Anderson, E.F. Ethnobotany of hill tribes of northern Thailand. I. Medicinal plants of Akha. Econ. Bot., 1986, 40(1), 38-53.
[http://dx.doi.org/10.1007/BF02858945]
[30]
Sharma, G.; Pradhan, B.K.; Chettri, S.K.; Chettri, A.; Chettri, D.R. Indigenous knowledge and phytochemical screening of medicinal chuk from Rhus chinensis, Docynia indica and Hippophae salicifolia in Sikkim Himalaya. Indian J. Tradit. Knowl., 2019, 18(2), 250-260.
[31]
Gu, Q.; Wang, R.R.; Zhang, X.M.; Wang, Y.H.; Zheng, Y.T.; Zhou, J.; Chen, J.J. A new benzofuranone and anti-HIV constituents from the stems of Rhus chinensis. Planta Med., 2007, 73(3), 279-282.
[http://dx.doi.org/10.1055/s-2007-967113] [PMID: 17290322]
[32]
Kim, G.S.; Jeong, T-S.; Kim, Y.O.; Baek, N-I.; Cha, S.W.; Lee, J-W.; Song, K-S. Human acyl- CoA: cholesterol acyltransferase-inhibiting dammarane triterpenes from Rhus chinensis. J. Korean Soc. Appl. Biol. Chem., 2010, 53(4), 417-421.
[http://dx.doi.org/10.3839/jksabc.2010.064]
[33]
Yang, H.; Zheng, S.; Meijer, L.; Li, S.; Leclerc, S.; Yu, L.; Cheng, J.; Zhang, S. Screening the active constituents of Chinese medicinal herbs as potent inhibitors of Cdc25 tyrosine phosphatase, an activator of the mitosis-inducing p34 cdc2 kinase. J. Zhejiang Univ. Sci., 2005, 6B(7), 656-663.
[http://dx.doi.org/10.1631/jzus.2005.B0656] [PMID: 15973768]
[34]
Wang, R.R.; Gu, Q.; Yang, L.M.; Chen, J.J.; Li, S.Y.; Zheng, Y.T. Anti-HIV-1 activities of extracts from the medicinal plant Rhus chinensis. J. Ethnopharmacol., 2006, 105(1-2), 269-273.
[http://dx.doi.org/10.1016/j.jep.2005.11.008] [PMID: 16368204]
[35]
Wang, R.R.; Gu, Q.; Wang, Y.H.; Zhang, X.M.; Yang, L.M.; Zhou, J.; Chen, J.J.; Zheng, Y.T. Anti-HIV-1 activities of compounds isolated from the medicinal plant Rhus chinensis. J. Ethnopharmacol., 2008, 117(2), 249-256.
[http://dx.doi.org/10.1016/j.jep.2008.01.037] [PMID: 18343612]
[36]
Tangpu, V.; Yadav, A.K. Antidiarrhoeal activity of Rhus javanica ripen fruit extract in albino mice. Fitoterapia, 2004, 75(1), 39-44.
[http://dx.doi.org/10.1016/j.fitote.2003.08.015] [PMID: 14693218]
[37]
Bose, S.K.; Dewanjee, S.; Sen Gupta, A.; Samanta, K.C.; Kundu, M.; Mandal, S.C. In vivo evaluation of antidiarrhoeal activity of Rhus semialata fruit extract in rats. Afr. J. Tradit. Complement. Altern. Med., 2007, 5(1), 97-102.
[PMID: 20162061]
[38]
Nemkul, C.M.; Bajracharya, G.B.; Maeda, H.; Shrestha, I. Ethnomedicinal knowledge verification for the antidiarrheal and antioxidant effects of Rhus chinensis Mill. fruits with identification of thirty constituents. Pharmacogn. J., 2021, 13(1), 37-43.
[http://dx.doi.org/10.5530/pj.2021.13.6]
[39]
Shim, Y.J.; Doo, H.K.; Ahn, S.Y.; Kim, Y.S.; Seong, J.K.; Park, I.S.; Min, B.H. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. J. Ethnopharmacol., 2003, 85(2-3), 283-287.
[http://dx.doi.org/10.1016/S0378-8741(02)00370-7] [PMID: 12639753]
[40]
Zhang, Y.; Zhang, Y.; Yi, J.; Cai, S. Phytochemical characteristics and biological activities of Rhus chinensis Mill.: a review. Curr. Opin. Food Sci., 2022, 48, 100925.
[http://dx.doi.org/10.1016/j.cofs.2022.100925]
[41]
Langshiang, A.; Debnath, A.; Bhattacharjee, A.; Paul, C.; Debnath, B. Traditional healing practices of Pnar and War communities in West Jaintia Hills district of Meghalaya, Northeast India. Indian J. Tradit. Knowl., 2020, 4, 776-787.
[42]
Sariozlu, N.Y.; Kivanc, M. Gallnuts (Quercus infectoria Oliv. and Rhus chinensis Mill.) and their usage in health.Nuts and seeds in health and disease prevention; Preedy, V.R.; Watson, R.R.; Patel, V.B., Eds.; Elsevier Science B.V: Amsterdam, 2011, pp. 505-511.
[http://dx.doi.org/10.1016/B978-0-12-375688-6.10060-X]
[43]
Zhang, C.; Ma, Y.; Zhao, Y.; Hong, Y.; Cai, S.; Pang, M. Phenolic composition, antioxidant and pancreatic lipase inhibitory activities of Chinese sumac (Rhus chinensis Mill.) fruits extracted by different solvents and interaction between myricetin-3- O -rhamnoside and quercetin-3- O -rhamnoside. Int. J. Food Sci. Technol., 2018, 53(4), 1045-1053.
[http://dx.doi.org/10.1111/ijfs.13680]
[44]
Wu, Z.; Ma, Y.; Gong, X.; Zhang, Y.; Zhao, L.; Cheng, G.; Cai, S. Rhus chinensis Mill. fruits prevent high-fat/ethanol diet-induced alcoholic fatty liver in rats via AMPK/SREBP-1/FAS signaling pathway. J. Funct. Foods, 2019, 61, 103498.
[http://dx.doi.org/10.1016/j.jff.2019.103498]
[45]
Hwang, Y.H.; Jang, S.A.; Kim, T.; Ha, H. Anti- osteoporotic and anti-adipogenic effects of Rhus chinensis nutgalls in ovariectomized mice fed with a high-fat diet. Planta Med., 2019, 85(14/15), 1128-1135.
[http://dx.doi.org/10.1055/a-0989-2585] [PMID: 31408887]
[46]
Qiu, Z.; Tang, M.; Deng, G.; Yang, H.; Zhang, X.; Huang, S.; Wu, L. Antioxidant and antigenotoxic activities of ethanol extracts from Rhus chinensis Mill leaves. Food Sci. Biotechnol., 2014, 23(4), 1213-1221.
[http://dx.doi.org/10.1007/s10068-014-0166-5]
[47]
Heirangkhongjam, M.D.; Ngaseppam, I.S. Traditional medicinal uses and pharmacological properties of Rhus chinensis Mill.: A systematic review. Eur. J. Integr. Med., 2018, 21, 43-49.
[http://dx.doi.org/10.1016/j.eujim.2018.06.011]
[48]
Huo, Y.; He, J.; Jiang, Z.; Feng, J.; Ma, Z.; Zhang, X. Acaricidal activities of 40 acetone extracts against Tetranychus cinnabrinus. Acta Agriculurae Boreali-Sinica, 2014, 9, 135-140.
[49]
Huo, Y.; He, J.; Ma, Z.; Zhang, X. Acaricidal activities of acetone extracts from 107 plant species for Tetranychina harti. Acta Agrestia Sinica, 2013, 21(6), 1200-1207.
[50]
Mo, M.; Wu, H.; Han, S.; Zhao, Y.; Su, L. Bio- activity of the alcohol extracts from 16 plant species against citrus red mite Panonychus citri McGregor. Natural Enemies of Insects, 2008, 30(1), 44-49.
[51]
Kossah, R.; Nsabimana, C.; Zhang, H.; Chen, W. Optimization of extraction of polyphenols from Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Res. J. Phytochem., 2010, 4(3), 146-153.
[http://dx.doi.org/10.3923/rjphyto.2010.146.153]
[52]
Routray, W.; Orsat, V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind. Crops Prod., 2014, 58, 36-45.
[http://dx.doi.org/10.1016/j.indcrop.2014.03.038]
[53]
Iylia Arina, M.Z.; Harisun, Y. Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatal. Agric. Biotechnol., 2019, 19, 101104.
[http://dx.doi.org/10.1016/j.bcab.2019.101104]
[54]
Segatto, M.L.; Zanotti, K.; Zuin, V.G. Microwave- assisted extraction and matrix solid-phase dispersion as green analytical chemistry sample preparation techniques for the valorisation of mango processing waste. Curr. Opin. Chem. Biol., 2021, 1, 100007.
[55]
Sun, K.; Song, X.; Jia, R.; Yin, Z.; Zou, Y.; Li, L.; Yin, L.; He, C.; Liang, X.; Yue, G.; Cui, Q.; Yang, Y. Evaluation of analgesic and anti-inflammatory activities of water extract of Galla chinensis in vivo models. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/6784032] [PMID: 29670660]
[56]
Myo, H.; Nantarat, N.; Khat-Udomkiri, N. Changes in bioactive compounds of coffee pulp through fermentation-based biotransformation using Lactobacillus plantarum TISTR 543 and its antioxidant activities. Fermentation (Basel), 2021, 7(4), 292.
[http://dx.doi.org/10.3390/fermentation7040292]
[57]
Macit, M.; Eyupoglu, O.E.; Macit, C.; Duman, G. Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. J. Drug Deliv. Sci. Technol., 2021, 64, 102605.
[http://dx.doi.org/10.1016/j.jddst.2021.102605]
[58]
Myo, H.; Yaowiwat, N.; Pongkorpsakol, P.; Aonbangkhen, C.; Khat-udomkiri, N. Butylene glycol used as a sustainable solvent for extracting bioactive compounds from Camellia sinensis flowers with ultrasound-assisted extraction. ACS Omega, 2023, 8(5), 4976-4987.
[http://dx.doi.org/10.1021/acsomega.2c07481] [PMID: 36777602]
[59]
Astiti, M.A.; Jittmittraphap, A.; Leaungwutiwong, P.; Chutiwitoonchai, N.; Pripdeevech, P.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. LC-QTOF-MS/MS based molecular networking approach for the isolation of α-glucosidase inhibitors and virucidal agents from Coccinia grandis (L.) Voigt. Foods, 2021, 10(12), 3041.
[http://dx.doi.org/10.3390/foods10123041] [PMID: 34945591]
[60]
Myo, H.; Khat-udomkiri, N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason. Sonochem., 2022, 89, 106127.
[http://dx.doi.org/10.1016/j.ultsonch.2022.106127] [PMID: 36007328]
[61]
Bhuyan, D.J.; Van Vuong, Q.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Ind. Crops Prod., 2015, 69, 290-299.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.044]
[62]
Ismail-Suhaimy, N.W.; Gani, S.S.A.; Zaidan, U.H.; Halmi, M.I.E.; Bawon, P. Optimizing conditions for microwave-assisted extraction of polyphenolic content and antioxidant activity of Barleria lupulina Lindl. Plants, 2021, 10(4), 682.
[http://dx.doi.org/10.3390/plants10040682] [PMID: 33916193]
[63]
Karami, Z.; Emam-Djomeh, Z.; Mirzaee, H.A.; Khomeiri, M.; Mahoonak, A.S.; Aydani, E. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root. J. Food Sci. Technol., 2015, 52(6), 3242-3253.
[PMID: 26028705]
[64]
Chen, Y.; Xie, M.Y.; Gong, X.F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng., 2007, 81(1), 162-170.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.018]
[65]
Inta, A.; Shengji, P.; Balslev, H.; Wangpakapattanawong, P.; Trisonthi, C. A comparative study on medicinal plants used in Akha’s traditional medicine in China and Thailand, cultural coherence or ecological divergence? J. Ethnopharmacol., 2008, 116(3), 508-517.
[http://dx.doi.org/10.1016/j.jep.2007.12.015] [PMID: 18280071]
[66]
Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod., 2014, 61, 31-40.
[http://dx.doi.org/10.1016/j.indcrop.2014.06.035]
[67]
Li, Y.; Li, S.; Lin, S.J.; Zhang, J.J.; Zhao, C.N.; Li, H.B. Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules, 2017, 22(9), 1481.
[http://dx.doi.org/10.3390/molecules22091481] [PMID: 28878178]
[68]
Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem., 2010, 3(1), 43-53.
[http://dx.doi.org/10.1016/j.arabjc.2009.12.008]
[69]
Caunii, A.; Pribac, G.; Grozea, I.; Gaitin, D.; Samfira, I. Design of optimal solvent for extraction of bio–active ingredients from six varieties of Medicago sativa. Chem. Cent. J., 2012, 6(1), 123.
[http://dx.doi.org/10.1186/1752-153X-6-123] [PMID: 23098128]
[70]
Poulios, E.; Giaginis, C.; Vasios, G.K. Current state of the art on the antioxidant activity of sage (Salvia spp.) and its bioactive components. Planta Med., 2020, 86(4), 224-238.
[http://dx.doi.org/10.1055/a-1087-8276] [PMID: 31975363]
[71]
Zhao, C.N.; Zhang, J.J.; Li, Y.; Meng, X.; Li, H.B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules, 2018, 23(10), 2498.
[http://dx.doi.org/10.3390/molecules23102498] [PMID: 30274261]
[72]
Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem., 2020, 44(9), e13394.
[http://dx.doi.org/10.1111/jfbc.13394] [PMID: 32691460]
[73]
Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99(1), 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042]
[74]
Velika, B.; Kron, I. Antioxidant properties of benzoic acid derivatives against Superoxide radical. Free Radic. Antioxid., 2012, 2(4), 62-67.
[http://dx.doi.org/10.5530/ax.2012.4.11]
[75]
He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit., 2018, 24, 8198-8206.
[http://dx.doi.org/10.12659/MSM.911175] [PMID: 30428482]
[76]
Palmer, I.A.; Chen, H.; Chen, J.; Chang, M.; Li, M.; Liu, F.; Fu, Z.Q. Novel salicylic acid analogs induce a potent defense response in Arabidopsis. Int. J. Mol. Sci., 2019, 20(13), 3356.
[http://dx.doi.org/10.3390/ijms20133356] [PMID: 31288496]
[77]
Razavi, S.M.; Zahri, S.; Zarrini, G.; Nazemiyeh, H.; Mohammadi, S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Bioorg. Khim., 2009, 35(3), 414-416.
[PMID: 19621057]
[78]
Wu, Z.; Ma, Q.; Cai, S.; Sun, Y.; Zhang, Y.; Yi, J. Rhus chinensis Mill. fruits ameliorate hepatic glycolipid metabolism disorder in rats induced by high fat/high sugar diet. Nutrients, 2021, 13(12), 4480.
[http://dx.doi.org/10.3390/nu13124480] [PMID: 34960032]
[79]
Chaikul, P.; Khat-udomkiri, N.; Iangthanarat, K.; Manosroi, J.; Manosroi, A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur. J. Pharm. Sci., 2019, 131, 39-49.
[http://dx.doi.org/10.1016/j.ejps.2019.02.008] [PMID: 30735821]
[80]
Rezvanian, M.; Amin, M.C.I.M.; Ng, S.F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym., 2016, 137, 295-304.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.091] [PMID: 26686133]
[81]
Maiyo, F.C.; Moodley, R.; Singh, M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy) -benzyl isothiocyanate from Moringa oleifera. Anticancer. Agents Med. Chem., 2016, 16(5), 648-656.
[http://dx.doi.org/10.2174/1871520615666151002110424] [PMID: 26428271]
[82]
Choi, Y.T.; Jung, C.H.; Lee, S.R.; Bae, J.H.; Baek, W.K.; Suh, M.H.; Park, J.; Park, C.W.; Suh, S.I. The green tea polyphenol (−)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci., 2001, 70(5), 603-614.
[http://dx.doi.org/10.1016/S0024-3205(01)01438-2] [PMID: 11811904]
[83]
Hu, J.; Gao, J.; Zhao, Z.; Yang, X. Response surface optimization of polysaccharide extraction from Galla Chinensis and determination of its antioxidant activity in vitro. Food Sci. Technol. (Campinas), 2021, 41(1), 188-194.
[http://dx.doi.org/10.1590/fst.38619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy