Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Formulation and Evaluation of Quercetin-loaded Banana Starch Nanoparticles

Author(s): Dharmendra Kumar* and Pramod Kumar Sharma

Volume 13, Issue 4, 2023

Published on: 15 June, 2023

Article ID: e240523217291 Pages: 9

DOI: 10.2174/2210681213666230524145559

Price: $65

conference banner
Abstract

Aims: Formulation and evaluation of quercetin-loaded nanoparticles.

Background: Nowadays, polymeric nanoparticles are one of the most chosen drug delivery systems for the treatment of life-threatening diseases such as cancer. Drug loading, drug entrapment, and drug release have been the challenges in nanoformulations till now. Various researchers are working to improve these limitations.

Objective: Formulation of quercetin-loaded starch nanoparticles .Evaluation of drug loading, entrapment, size release, and activity of prepared starch nanoparticles.

Methods: In the present study, starch was isolated from a novel source, i.e., unripe banana fruit. Banana starch contains amylose and amylopectin in a certain ratio. Quercetin-loaded banana starch nanoparticles were prepared using the nano-precipitation method. Drug loading and drug entrapment were determined by different methods.

Results: The enhanced water absorption capacity of prepared nanoparticles proved the breaking of intramolecular bonding of amylopectin. In vitro drug release of quercetin was found to be sustained for up to 12 hours from prepared nanoparticles. SEM was used to determine the particle size and morphology of prepared particles, which were found to be 67.67-133.27 and spherical, respectively. The antioxidant activity of prepared nanoparticles was evaluated by the DPPH scavenging model. The MTT assay for cytotoxicity studies was done using H661 lung cancer cell lines.

Conclusion: In this research work, banana as a new source of starch was used to prepare quercetin nanoparticles by nano-precipitation method. The various factors of starch that affect the properties of nanoparticles such as water/oil absorption capacity, drug entrapment/loading, and drug release profile were studied. This study also revealed the effect of starch on particle morphology and size. The yield of prepared nanoparticles was lower than expected but particle size and shape were satisfactory. Prepared nanoparticles were evaluated for their antioxidant and cytotoxic potential. Finally, researchers felt the ratio of amylase and amylopectin were considerable factors in the selection of any starch for the formulation of any drug delivery system. This ratio affects the precipitation of nanoparticles, their properties such as oil/water absorption, drug entrapment, and loading as well as the drug release profile of the formulation.

Graphical Abstract

[1]
Dharmendra, K.; Pramod, S.K.; Use, T. Phytochemicals and pharmacological activity of Salvadora persica: A review. Curr. Nutr. Food Sci., 2021, 17(3), 302-309.
[2]
Dharmendra, K.; Pramod, S.K. A review on opuntia species and its chemistry, pharmacognosy, pharmacology and bioapplications. Curr. Nutr. Food Sci., 2020, 16(8), 1227-1244.
[3]
Ning, S.; Dai, X.; Tang, W.; Guo, Q.; Lyu, M.; Zhu, D.; Zhang, W.; Qian, H.; Yao, X.; Wang, X. Cancer cell membrane-coated C-TiO2 hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy. Acta Biomater., 2022, 152, 562-574.
[http://dx.doi.org/10.1016/j.actbio.2022.08.067] [PMID: 36067874]
[4]
Zhu, D.; Ling, R.; Chen, H.; Lyu, M.; Qian, H.; Wu, K.; Li, G.; Wang, X. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res., 2022, 15(8), 7320-7328.
[http://dx.doi.org/10.1007/s12274-022-4359-6]
[5]
He, G.; Ma, Y.; Zhou, H.; Sun, S.; Wang, X.; Qian, H.; Xu, Y.; Miao, Z.; Zha, Z. Mesoporous NiS2 nanospheres as a hydrophobic anticancer drug delivery vehicle for synergistic photothermal–chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(1), 143-149.
[http://dx.doi.org/10.1039/C8TB02473A] [PMID: 32254958]
[6]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[7]
Farrag, Y.; Ide, W.; Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int. J. Biol. Macromol., 2018, 114, 426-433.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.134] [PMID: 29580996]
[8]
Kumar, D; Sharma, P Nanoparticulate system for cancer therapy: An updated review. Int. J. Nanomater. Nanotechnol. Nanomed., 2018, 4(2), 22-34.
[9]
Beck-Broichsitter, M.; Rytting, E.; Lebhardt, T.; Wang, X.; Kissel, T. Preparation of nanoparticles by solvent displacement for drug delivery: A shift in the “ouzo region” upon drug loading. Eur. J. Pharm. Sci., 2010, 41(2), 244-253.
[http://dx.doi.org/10.1016/j.ejps.2010.06.007] [PMID: 20600881]
[10]
Hertog, M.G.L.; Hollman, P.C.H.; Venema, D.P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem., 1992, 40(9), 1591-1598.
[http://dx.doi.org/10.1021/jf00021a023]
[11]
Scambia, G.; Ranelletti, F.O.; Panici, P.B.; Piantelli, M.; Bonanno, G.; De Vincenzo, R.; Ferrandina, G.; Maggiano, N.; Capelli, A.; Mancuso, S. Inhibitory effect of quercetin on primary ovarian and endometrial cancers and synergistic activity with cis-diamminedichloroplatinum(II). Gynecol. Oncol., 1992, 45(1), 13-19.
[http://dx.doi.org/10.1016/0090-8258(92)90484-Z] [PMID: 1601330]
[12]
Fazeli, M.; Lipponen, J. Developing self-assembled starch nanoparticles in starch nanocomposite films. ACS Omega, 2022, 7(49), 44962-44971.
[http://dx.doi.org/10.1021/acsomega.2c05251]
[13]
Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A.A. Progress in starch modification in the last decade. Food Hydrocoll., 2012, 26(2), 398-404.
[http://dx.doi.org/10.1016/j.foodhyd.2011.02.016]
[14]
Ma, X.; Jian, R.; Chang, P.R.; Yu, J. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules, 2008, 9(11), 3314-3320.
[http://dx.doi.org/10.1021/bm800987c] [PMID: 18844405]
[15]
Miskeen, S.; Hong, J.S.; Choi, H.D.; Kim, J.Y. Fabrication of citric acid-modified starch nanoparticles to improve their thermal stability and hydrophobicity. Carbohydr. Polym., 2021, 253, 117242.
[http://dx.doi.org/10.1016/j.carbpol.2020.117242] [PMID: 33278998]
[16]
Kumar, D.; Sharma, P.K. Anthelmintic, antimicrobial and antioxidant activity of different part of indian origin Salvadora persica. J. Med. P’ceutical & Alli. Sci., 2021.
[http://dx.doi.org/10.22270/jmpas.v10i3.1088]
[17]
Han, J.; Lim, S.T. Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydr. Polym., 2004, 55(2), 193-199.
[http://dx.doi.org/10.1016/j.carbpol.2003.09.006]
[18]
Cai, J.; Zhang, L.; Zhou, J.; Li, H.; Chen, H.; Jin, H. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol. Rapid Commun., 2004, 25(17), 1558-1562.
[http://dx.doi.org/10.1002/marc.200400172]
[19]
Jin, H.; Zha, C.; Gu, L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr. Res., 2007, 342(6), 851-858.
[http://dx.doi.org/10.1016/j.carres.2006.12.023] [PMID: 17280653]
[20]
Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules, 2006, 7(1), 183-189.
[http://dx.doi.org/10.1021/bm0505585] [PMID: 16398514]
[21]
Chebil, L.; Humeau, C.; Anthoni, J.; Dehez, F.; Engasser, J.M.; Ghoul, M. Solubility of flavonoids in organic solvents. J. Chem. Eng. Data, 2007, 52(5), 1552-1556.
[http://dx.doi.org/10.1021/je7001094]
[22]
Jurasekova, Z.; Domingo, C.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Phys. Chem. Chem. Phys., 2014, 16(25), 12802-12811.
[http://dx.doi.org/10.1039/C4CP00864B] [PMID: 24836778]
[23]
Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials (Basel), 2018, 11(3), 394.
[http://dx.doi.org/10.3390/ma11030394] [PMID: 29518919]
[24]
Wu, J.; Huang, Y.; Yao, R.; Deng, S.; Li, F.; Bian, X. Preparation and characterization of starch nanoparticles from potato starch by combined solid‐state acid‐catalyzed hydrolysis and nanoprecipitation. Stärke, 2019, 71(9-10), 1900095.
[http://dx.doi.org/10.1002/star.201900095]
[25]
Ahmad, M.; Gani, A.; Hassan, I.; Huang, Q.; Shabbir, H. Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Sci. Rep., 2020, 10(1), 3533.
[http://dx.doi.org/10.1038/s41598-020-60380-0] [PMID: 32103076]
[26]
Azima, F.; Nazir, N.; Efendi, H.C. Characteristics of physico-chemical and functional properties of starch extracts from tubers. J. Phys. Conf. Ser., 2020, 1469(1), 012002.
[http://dx.doi.org/10.1088/1742-6596/1469/1/012002]
[27]
Dewi, A.M.P.; Santoso, U.; Pranoto, Y.; Marseno, D.W. Dual modification of sago starch via heat moisture treatment and octenyl succinylation to improve starch hydrophobicity. Polymers (Basel), 2022, 14(6), 1086.
[http://dx.doi.org/10.3390/polym14061086] [PMID: 35335417]
[28]
Samy, M.; Abd El-Alim, S.H.; Rabia, A.E.G.; Amin, A.; Ayoub, M.M.H. Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int. J. Biol. Macromol., 2020, 156, 783-791.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.112] [PMID: 32320805]
[29]
Elmowafy, E.; El-Derany, M.O.; Biondo, F.; Tiboni, M.; Casettari, L.; Soliman, M.E. Quercetin loaded monolaurate sugar esters-based niosomes: sustained release and mutual antioxidant—hepatoprotective interplay. Pharmaceutics, 2020, 12(2), 143.
[http://dx.doi.org/10.3390/pharmaceutics12020143] [PMID: 32050489]
[30]
Rodríguez-Félix, F.; Toro-Sánchez, CLD.; Moroyoqui, F.J.C.; Juárez, J.; Ruiz-Cruz, S.; López-Ahumada, G.A.; Carvajal-Millan, E.; Castro-Enríquez, D.D.; Barreras-Urbina, C.G.; Tapia-Hernández, J.A. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J. Food Sci., 2019, 84(10), 2885-2897.
[31]
Tan, Q.; Liu, W.; Guo, C.; Zhai, G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomedicine, 2011, 6, 1621-1630.
[PMID: 21904452]
[32]
Souza, M.P.; Vaz, A.F.M.; Correia, M.T.S.; Cerqueira, M.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol., 2014, 7(4), 1149-1159.
[http://dx.doi.org/10.1007/s11947-013-1160-2]
[33]
Jiang, F.; Du, C.; Zhao, N.; Jiang, W.; Yu, X.; Du, S. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem., 2022, 369, 130895.
[http://dx.doi.org/10.1016/j.foodchem.2021.130895] [PMID: 34438343]
[34]
Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766.
[http://dx.doi.org/10.1080/10837450.2020.1740933] [PMID: 32192406]
[35]
Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimarães, M.C.C.; Scherer, R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm. J., 2019, 27(7), 968-974.
[http://dx.doi.org/10.1016/j.jsps.2019.07.005] [PMID: 31997903]
[36]
Chahardoli, A.; Hajmomeni, P.; Ghowsi, M.; Qalekhani, F.; Shokoohinia, Y.; Fattahi, A. Optimization of quercetin‐assisted silver nanoparticles synthesis and evaluation of their hemocompatibility, antioxidant, anti‐inflammatory, and antibacterial effects. Glob. Chall., 2021, 5(12), 2100075.
[http://dx.doi.org/10.1002/gch2.202100075] [PMID: 34938575]
[37]
Wang, X.; Li, F.; Yan, X.; Ma, Y.; Miao, Z.H.; Dong, L.; Chen, H.; Lu, Y.; Zha, Z. Ambient aqueous synthesis of ultrasmall Ni 0.85 Se nanoparticles for noninvasive photoacoustic imaging and combined photothermal-chemotherapy of cancer. ACS Appl. Mater. Interfaces, 2017, 9(48), 41782-41793.
[http://dx.doi.org/10.1021/acsami.7b15780] [PMID: 29148694]
[38]
Al-Hasawi, N.; Amine, S.; Novotny, L. The in vitro Anti-proliferative interaction of flavonoid quercetin and toxic metal cadmium in the 1321N1 human astrocytoma cell line. Sci. Pharm., 2018, 86(3), 36.
[http://dx.doi.org/10.3390/scipharm86030036] [PMID: 30201909]
[39]
Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[40]
Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS One, 2015, 10(10), e0141370.
[http://dx.doi.org/10.1371/journal.pone.0141370] [PMID: 26491966]
[41]
Zheng, S.Y.; Li, Y.; Jiang, D.; Zhao, J.; Ge, J.F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep., 2011, 5(3), 822-826.
[http://dx.doi.org/10.3892/mmr.2011.726] [PMID: 22200874]
[42]
Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy