Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Aberrant Lipid Metabolism in Cancer: Current Status and Emerging Therapeutic Perspectives

Author(s): Rasha Irshad, Sazi Tabassum and Mohammad Husain*

Volume 23, Issue 12, 2023

Published on: 29 May, 2023

Page: [1090 - 1103] Pages: 14

DOI: 10.2174/1568026623666230522103321

Price: $65

Abstract

It is now an undisputed fact that cancer cells undergo metabolic reprogramming to support their malignant phenotype, and it is one of the crucial hallmarks which enables cancer cells to facilitate their survival under variable conditions ranging from lack of nutrients to conditions, such as hypoxia. Recent developments in technologies, such as lipidomics and machine learning, have underlined the critical effects of altered lipid metabolism in tumorigenesis. The cancer cells show elevated de novo fatty acid synthesis, an increased capacity to scavenge lipids from their environment, and enhanced fatty acid oxidation to fulfill their need for uncontrolled cellular proliferation, immune evasion, tumor formation, angiogenesis, metastasis, and invasion. Besides, important genes/ proteins involved in lipid metabolism have been proposed as prognostic indicators in a variety of cancer types linked to tumor survival and/or recurrence. Consequently, several approaches are being explored to regulate this metabolic dysregulation to subvert its tumorigenic properties in different types of cancers. The present review details the significance of lipid metabolism in cancer progression, the critical enzymes involved therein, and their regulation.

Moreover, the current findings of the interplay between the oncogenic pathways and the lipid metabolic enzymes are elucidated briefly. The therapeutic implications of modulating these aberrations for the advancement of anti-cancer therapies are also discussed. Although the understanding of altered lipid metabolism in cancer initiation and progression is still in its infancy and somewhat obscure, its in-depth comprehension will open promising therapeutic opportunities for the development of novel and promising strategies for cancer treatment and management.

Graphical Abstract

[1]
Park, J.B.; Lee, C.S.; Jang, J.H.; Ghim, J.; Kim, Y.J.; You, S.; Hwang, D.; Suh, P.G.; Ryu, S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer, 2012, 12(11), 782-792.
[http://dx.doi.org/10.1038/nrc3379] [PMID: 23076158]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 2011, 144.
[3]
Boroughs, L.K.; Deberardinis, R.J.; Cell, N.; Author, B. Metabolic pathways promoting cancer cell survival and growth HHS public access author manuscript. Nat. Cell Biol., 2015, 2015, 17.
[4]
Huang, J.; Li, L.; Lian, J.; Schauer, S.; Vesely, P.W.; Kratky, D.; Hoefler, G.; Lehner, R. Tumor-induced hyperlipidemia contributes to tumor growth. Cell Rep., 2016, 15(2), 336-348.
[http://dx.doi.org/10.1016/j.celrep.2016.03.020] [PMID: 27050512]
[5]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[6]
Zaidi, N.; Swinnen, J.V.; Smans, K. ATP-citrate lyase: A key player in cancer metabolism. Cancer Res., 2012, 72(15), 3709-3714.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4112] [PMID: 22787121]
[7]
Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Lett., 2017, 401, 39-45.
[http://dx.doi.org/10.1016/j.canlet.2017.05.002] [PMID: 28527945]
[8]
Mashima, T.; Seimiya, H.; Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer, 2009, 100(9), 1369-1372.
[http://dx.doi.org/10.1038/sj.bjc.6605007] [PMID: 19352381]
[9]
Rysman, E.; Brusselmans, K.; Scheys, K.; Timmermans, L.; Derua, R.; Munck, S.; Van Veldhoven, P.P.; Waltregny, D.; Daniëls, V.W.; Machiels, J.; Vanderhoydonc, F.; Smans, K.; Waelkens, E.; Verhoeven, G.; Swinnen, J.V. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res., 2010, 70(20), 8117-8126.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3871] [PMID: 20876798]
[10]
Icard, P.; Wu, Z.; Fournel, L.; Coquerel, A.; Lincet, H.; Alifano, M. ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett., 2020, 471, 125-134.
[http://dx.doi.org/10.1016/j.canlet.2019.12.010] [PMID: 31830561]
[11]
Granchi, C. ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur. J. Med. Chem., 2018, 157, 1276-1291.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.001] [PMID: 30195238]
[12]
Hatzivassiliou, G.; Zhao, F.; Bauer, D.E.; Andreadis, C.; Shaw, A.N.; Dhanak, D.; Hingorani, S.R.; Tuveson, D.A.; Thompson, C.B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 2005, 8(4), 311-321.
[http://dx.doi.org/10.1016/j.ccr.2005.09.008] [PMID: 16226706]
[13]
Qian, X.; Hu, J.; Zhao, J.; Chen, H. ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int. J. Clin. Exp. Med., 2015, 8(5), 7855-7860.
[PMID: 26221340]
[14]
Hanai, J.; Doro, N.; Sasaki, A.T.; Kobayashi, S.; Cantley, L.C.; Seth, P.; Sukhatme, V.P. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein Kinase (MAPK) and Phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J. Cell. Physiol., 2012, 227(4), 1709-1720.
[http://dx.doi.org/10.1002/jcp.22895] [PMID: 21688263]
[15]
Sun, H.; Wang, F.; Huang, Y.; Wang, J.; Zhang, L.; Shen, Y.; Lin, C.; Guo, P. Targeted inhibition of ACLY expression to reverse the resistance of sorafenib in hepatocellular carcinoma. J. Cancer, 2022, 13(3), 951-964.
[http://dx.doi.org/10.7150/jca.52778] [PMID: 35154461]
[16]
Hunkeler, M.; Hagmann, A.; Stuttfeld, E.; Chami, M.; Guri, Y.; Stahlberg, H.; Maier, T. Structural basis for regulation of human acetyl-CoA carboxylase. Nature, 2018, 558(7710), 470-474.
[http://dx.doi.org/10.1038/s41586-018-0201-4] [PMID: 29899443]
[17]
Svensson, R.U.; Parker, S.J.; Eichner, L.J.; Kolar, M.J.; Wallace, M.; Brun, S.N.; Lombardo, P.S.; Van Nostrand, J.L.; Hutchins, A.; Vera, L.; Gerken, L.; Greenwood, J.; Bhat, S.; Harriman, G.; Westlin, W.F.; Harwood, H.J., Jr; Saghatelian, A.; Kapeller, R.; Metallo, C.M.; Shaw, R.J. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med., 2016, 22(10), 1108-1119.
[http://dx.doi.org/10.1038/nm.4181] [PMID: 27643638]
[18]
Lally, J.S.V.; Ghoshal, S.; DePeralta, D.K.; Moaven, O.; Wei, L.; Masia, R.; Erstad, D.J.; Fujiwara, N.; Leong, V.; Houde, V.P.; Anagnostopoulos, A.E.; Wang, A.; Broadfield, L.A.; Ford, R.J.; Foster, R.A.; Bates, J.; Sun, H.; Wang, T.; Liu, H.; Ray, A.S.; Saha, A.K.; Greenwood, J.; Bhat, S.; Harriman, G.; Miao, W.; Rocnik, J.L.; Westlin, W.F.; Muti, P.; Tsakiridis, T.; Harwood, H.J., Jr; Kapeller, R.; Hoshida, Y.; Tanabe, K.K.; Steinberg, G.R.; Fuchs, B.C. Inhibition of acetyl-coa carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab., 2019, 29(1), 174-182.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.08.020] [PMID: 30244972]
[19]
Butler, L.M.; Mah, C.Y.; Machiels, J.; Vincent, A.D.; Irani, S.; Mutuku, S.M.; Spotbeen, X.; Bagadi, M.; Waltregny, D.; Moldovan, M.; Dehairs, J.; Vanderhoydonc, F.; Bloch, K.; Das, R.; Stahl, J.; Kench, J.G.; Gevaert, T.; Derua, R.; Waelkens, E.; Nassar, Z.D.; Selth, L.A.; Trim, P.J.; Snel, M.F.; Lynn, D.J.; Tilley, W.D.; Horvath, L.G.; Centenera, M.M.; Swinnen, J.V. Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition. Cancer Res., 2021, 81(19), 4981-4993.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3863] [PMID: 34362796]
[20]
Chirala, S.S.; Wakil, S.J. Structure and Function of Animal Fatty Acid Synthase Lipids, 2004, 39(11), 1045-53.
[http://dx.doi.org/10.1007/s11745-004-1329-9]
[21]
Flavin, R.; Peluso, S.; Nguyen, P.L.; Loda, M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol., 2010, 6(4), 551-562.
[http://dx.doi.org/10.2217/fon.10.11] [PMID: 20373869]
[22]
Bauerschlag, D.O.; Maass, N.; Leonhardt, P.; Verburg, F.A.; Pecks, U.; Zeppernick, F.; Morgenroth, A.; Mottaghy, F.M.; Tolba, R.; Meinhold-Heerlein, I.; Bräutigam, K. Fatty acid synthase overexpression: Target for therapy and reversal of chemoresistance in ovarian cancer. J. Transl. Med., 2015, 13(1), 146.
[http://dx.doi.org/10.1186/s12967-015-0511-3] [PMID: 25947066]
[23]
Oh, J.E.; Jung, B.H.; Park, J.; Kang, S.; Lee, H. Deciphering fatty acid synthase inhibition-triggered metabolic flexibility in prostate cancer cells through untargeted metabolomics. Cells, 2020, 9(11), 2447.
[http://dx.doi.org/10.3390/cells9112447] [PMID: 33182594]
[24]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules, 2020, 25(17), 3935.
[http://dx.doi.org/10.3390/molecules25173935] [PMID: 32872164]
[25]
Yu, Y.; Kim, H.; Choi, S.; Yu, J.; Lee, J.Y.; Lee, H.; Yoon, S.; Kim, W.Y. Targeting a lipid desaturation enzyme, SCD1, selectively eliminates colon cancer stem cells through the suppression of Wnt and NOTCH signaling. Cells, 2021, 10(1), 106.
[http://dx.doi.org/10.3390/cells10010106] [PMID: 33430034]
[26]
Liu, Y.; Liu, X.; Wang, H.; Ding, P.; Wang, C. Agrimonolide inhibits cancer progression and induces ferroptosis and apoptosis by targeting SCD1 in ovarian cancer cells. Phytomedicine, 2022, 101, 154102.
[http://dx.doi.org/10.1016/j.phymed.2022.154102] [PMID: 35526323]
[27]
Noto, A.; Raffa, S.; De Vitis, C.; Roscilli, G.; Malpicci, D.; Coluccia, P.; Di Napoli, A.; Ricci, A.; Giovagnoli, M.R.; Aurisicchio, L.; Torrisi, M.R.; Ciliberto, G.; Mancini, R. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis., 2013, 4(12), e947.
[http://dx.doi.org/10.1038/cddis.2013.444] [PMID: 24309934]
[28]
Guo, W.; Tan, H.Y.; Chen, F.; Wang, N.; Feng, Y. Targeting cancer metabolism to resensitize chemotherapy: Potential development of cancer chemosensitizers from traditional chinese medicines. Cancers , 2020, 12(2), 404.
[http://dx.doi.org/10.3390/cancers12020404] [PMID: 32050640]
[29]
Padanad, M.S.; Konstantinidou, G.; Venkateswaran, N.; Melegari, M.; Rindhe, S.; Mitsche, M.; Yang, C.; Batten, K.; Huffman, K.E.; Liu, J.; Tang, X.; Rodriguez-Canales, J.; Kalhor, N.; Shay, J.W.; Minna, J.D.; McDonald, J.; Wistuba, I.I.; DeBerardinis, R.J.; Scaglioni, P.P. Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep., 2016, 16(6), 1614-1628.
[http://dx.doi.org/10.1016/j.celrep.2016.07.009] [PMID: 27477280]
[30]
Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.W.; Cravatt, B.F. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 2010, 140(1), 49-61.
[http://dx.doi.org/10.1016/j.cell.2009.11.027] [PMID: 20079333]
[31]
Nomura, D.K.; Lombardi, D.P.; Chang, J.W.; Niessen, S.; Ward, A.M.; Long, J.Z.; Hoover, H.H.; Cravatt, B.F. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem. Biol., 2011, 18(7), 846-856.
[http://dx.doi.org/10.1016/j.chembiol.2011.05.009] [PMID: 21802006]
[32]
Zhang, J.; Liu, Z.; Lian, Z.; Liao, R.; Chen, Y.; Qin, Y.; Wang, J.; Jiang, Q.; Wang, X.; Gong, J. Monoacylglycerol lipase: A novel potential therapeutic target and prognostic indicator for hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 35784.
[http://dx.doi.org/10.1038/srep35784] [PMID: 27767105]
[33]
Gil-Ordóñez, A.; Martín-Fontecha, M.; Ortega-Gutiérrez, S.; López-Rodríguez, M.L. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem. Pharmacol., 2018, 157, 18-32.
[http://dx.doi.org/10.1016/j.bcp.2018.07.036] [PMID: 30059673]
[34]
Jha, V.; Biagi, M.; Spinelli, V.; Di Stefano, M.; Macchia, M.; Minutolo, F.; Granchi, C.; Poli, G.; Tuccinardi, T. Discovery of Monoacylglycerol Lipase (MAGL) inhibitors based on a pharmacophore-guided virtual screening study. Molecules, 2020, 26(1), 78.
[http://dx.doi.org/10.3390/molecules26010078] [PMID: 33375358]
[35]
Poli, G.; Lapillo, M.; Jha, V.; Mouawad, N.; Caligiuri, I.; Macchia, M.; Minutolo, F.; Rizzolio, F.; Tuccinardi, T.; Granchi, C. Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 589-596.
[http://dx.doi.org/10.1080/14756366.2019.1571271] [PMID: 30696302]
[36]
Wang, B.; Tontonoz, P. Phospholipid remodeling in physiology and disease. Annu. Rev. Physiol., 2019, 81(1), 165-188.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114444] [PMID: 30379616]
[37]
Cummings, B.S. Phospholipase A2 as targets for anti-cancer drugs. Biochem. Pharmacol., 2007, 74(7), 949-959.
[http://dx.doi.org/10.1016/j.bcp.2007.04.021] [PMID: 17531957]
[38]
Vecchi, L.; Araújo, T.G.; Azevedo, F.V.P.V.; Mota, S.T.S.; Ávila, V.M.R.; Ribeiro, M.A.; Goulart, L.R. Phospholipase A2 drives tumorigenesis and cancer aggressiveness through its interaction with Annexin A1. Cells, 2021, 10(6), 1472.
[http://dx.doi.org/10.3390/cells10061472] [PMID: 34208346]
[39]
Yamashita, S.I.; Yamashita, J.I.; Sakamoto, K.; Inada, K.; Nakashima, Y.; Murata, K.; Saishoji, T.; Nomura, K.; Ogawa, M. Increased expression of membrane-associated phospholipase A2 shows malignant potential of human breast cancer cells. Cancer, 1993, 71(10), 3058-3064.
[http://dx.doi.org/10.1002/1097-0142(19930515)71:10<3058:AID-CNCR2820711028>3.0.CO;2-8] [PMID: 8490834]
[40]
Perestrelo, R.; Petkovic, M.; Silva, C.L. Analytical platforms for the determination of phospholipid turnover in breast cancer tissue: Role of phospholipase activity in breast cancer development. Metabolites, 2021, 11(1), 32.
[http://dx.doi.org/10.3390/metabo11010032] [PMID: 33406793]
[41]
Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci., 2015, 16(1), 924-949.
[http://dx.doi.org/10.3390/ijms16010924] [PMID: 25561239]
[42]
Liscovitch, M.; Czarny, M.; Fiucci, G.; Lavie, Y.; Tang, X. Localization and possible functions of phospholipase D isozymes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1999, 1439(2), 245-263.
[http://dx.doi.org/10.1016/S1388-1981(99)00098-0] [PMID: 10425399]
[43]
Xu, L.; Shen, Y.; Joseph, T.; Bryant, A.; Luo, J.Q.; Frankel, P.; Rotunda, T.; Foster, D.A. Mitogenic phospholipase D activity is restricted to caveolin-enriched membrane microdomains. Biochem. Biophys. Res. Commun., 2000, 273(1), 77-83.
[http://dx.doi.org/10.1006/bbrc.2000.2907] [PMID: 10873567]
[44]
Xu, L.; Frankel, P.; Jackson, D.; Rotunda, T.; Boshans, R.L.; D’Souza-Schorey, C.; Foster, D.A. Elevated phospholipase D activity in H-Ras- but not K-Ras-transformed cells by the synergistic action of RalA and ARF6. Mol. Cell. Biol., 2003, 23(2), 645-654.
[http://dx.doi.org/10.1128/MCB.23.2.645-654.2003] [PMID: 12509462]
[45]
Yao, Y.; Wang, X.; Li, H.; Fan, J.; Qian, X.; Li, H.; Xu, Y. Phospholipase D as a key modulator of cancer progression. Biol. Rev. Camb. Philos. Soc., 2020, 95(4), 911-935.
[http://dx.doi.org/10.1111/brv.12592] [PMID: 32073216]
[46]
Cho, J.H.; Han, J.S. Phospholipase D and its essential role in cancer. Mol. Cells, 2017, 40(11), 805-813.
[PMID: 29145720]
[47]
Eder, A.M.; Sasagawa, T.; Mao, M.; Aoki, J.; Mills, G.B. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: Role of phospholipase D and phospholipase A2. Clin. Cancer Res., 2000, 6(6), 2482-2491.
[PMID: 10873103]
[48]
Hsu, Y.L.; Hung, J.Y.; Ko, Y.C.; Hung, C.H.; Huang, M.S.; Kuo, P.L.; Phospholipase, D. Phospholipase D signaling pathway is involved in lung cancer-derived IL-8 increased osteoclastogenesis. Carcinogenesis, 2010, 31(4), 587-596.
[http://dx.doi.org/10.1093/carcin/bgq030] [PMID: 20106902]
[49]
Qi, C.; Park, J.H.; Gibbs, T.C.; Shirley, D.W.; Bradshaw, C.D.; Ella, K.M.; Meier, K.E. Lysophosphatidic acid stimulates phospholipase D activity and cell proliferation in PC-3 human prostate cancer cells. J. Cell. Physiol., 1998, 174(2), 261-272.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199802)174:2<261:AID-JCP13>3.0.CO;2-F] [PMID: 9428812]
[50]
Bruntz, R.C.; Lindsley, C.W.; Brown, H.A.; Phospholipase, D. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol. Rev., 2014, 66(4), 1033-1079.
[http://dx.doi.org/10.1124/pr.114.009217] [PMID: 25244928]
[51]
Kang, D.W.; Lee, S.W.; Hwang, W.C.; Lee, B.H.; Choi, Y.S.; Suh, Y.A.; Choi, K.Y.; Min, D.S. Phospholipase D1 acts through Akt/TopBP1 and RB1 to Regulate the E2F1-Dependent apoptotic program in cancer cells. Cancer Res., 2017, 77(1), 142-152.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3032] [PMID: 27793841]
[52]
Kang, D.W.; Lee, B.H.; Suh, Y.A.; Choi, Y.S.; Jang, S.J.; Kim, Y.M.; Choi, K.Y.; Min, D.S. Phospholipase D1 Inhibition linked to upregulation of ICAT blocks colorectal cancer growth hyperactivated by Wnt/β/β-Catenin and PI3K/Akt signaling. Clin. Cancer Res., 2017, 23(23), 7340-7350.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0749] [PMID: 28939743]
[53]
Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: Emerging therapeutic targets in cancer. Cell Death Dis., 2016, 7(5), e2226.
[http://dx.doi.org/10.1038/cddis.2016.132] [PMID: 27195673]
[54]
Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med., 2021, 218(1), e20201606.
[http://dx.doi.org/10.1084/jem.20201606] [PMID: 33601415]
[55]
Gatza, M.L.; Silva, G.O.; Parker, J.S.; Fan, C.; Perou, C.M. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat. Genet., 2014, 46(10), 1051-1059.
[http://dx.doi.org/10.1038/ng.3073] [PMID: 25151356]
[56]
Yeh, C.S.; Wang, J.Y.; Cheng, T.L.; Juan, C.H.; Wu, C.H.; Lin, S.R. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett., 2006, 233(2), 297-308.
[http://dx.doi.org/10.1016/j.canlet.2005.03.050] [PMID: 15885896]
[57]
Wang, R.; Cheng, Y.; Su, D.; Gong, B.; He, X.; Zhou, X.; Pang, Z.; Cheng, L.; Chen, Y.; Yao, Z. Cpt1c regulated by AMPK promotes papillary thyroid carcinomas cells survival under metabolic stress conditions. J. Cancer, 2017, 8(18), 3675-3681.
[http://dx.doi.org/10.7150/jca.21148] [PMID: 29151954]
[58]
Cha, Y.; Kim, H.; Koo, J. Expression of lipid metabolism-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Int. J. Mol. Sci., 2017, 18(1), 232.
[http://dx.doi.org/10.3390/ijms18010232] [PMID: 28124996]
[59]
Jeon, T.I.; Osborne, T.F. SREBPs: Metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab., 2012, 23(2), 65-72.
[http://dx.doi.org/10.1016/j.tem.2011.10.004] [PMID: 22154484]
[60]
Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J., 2012, 279(15), 2610-2623.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08644.x] [PMID: 22621751]
[61]
Cheng, C.; Geng, F.; Cheng, X.; Guo, D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun., 2018, 38(1), 27.
[http://dx.doi.org/10.1186/s40880-018-0301-4] [PMID: 29784041]
[62]
Espenshade, P.J.; Li, W.P.; Yabe, D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11694-11699.
[http://dx.doi.org/10.1073/pnas.182412799] [PMID: 12193656]
[63]
Huang, W.C.; Li, X.; Liu, J.; Lin, J.; Chung, L.W.K. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol. Cancer Res., 2012, 10(1), 133-142.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0206] [PMID: 22064655]
[64]
Bao, J.; Zhu, L.; Zhu, Q.; Su, J.; Liu, M.; Huang, W. SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol. Lett., 2016, 12(4), 2409-2416.
[http://dx.doi.org/10.3892/ol.2016.4988] [PMID: 27703522]
[65]
Li, C.; Yang, W.; Zhang, J.; Zheng, X.; Yao, Y.; Tu, K.; Liu, Q. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int. J. Mol. Sci., 2014, 15(5), 7124-7138.
[http://dx.doi.org/10.3390/ijms15057124] [PMID: 24776759]
[66]
Wang, Y.; Wang, H.; Zhao, Q.; Xia, Y.; Hu, X.; Guo, J. PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med. Oncol., 2015, 32(8), 212.
[http://dx.doi.org/10.1007/s12032-015-0655-2] [PMID: 26141060]
[67]
Li, X.; Wu, J.B.; Li, Q.; Shigemura, K.; Chung, L.W.K.; Huang, W.C. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget, 2016, 7(11), 12869-12884.
[http://dx.doi.org/10.18632/oncotarget.7331] [PMID: 26883200]
[68]
Zhang, B.; Wu, J.; Guo, P.; Wang, Y.; Fang, Z.; Tian, J.; Yu, Y.; Teng, W.; Yingbin, L.; Li, Y. Down-regulation of SREBP via PI3K/AKT/mTOR pathway inhibits the proliferation and invasion of non-small-cell lung cancer cells. OncoTargets Ther., 2020, 13, 8951-8961.
[http://dx.doi.org/10.2147/OTT.S266073] [PMID: 32982287]
[69]
Luo, X.; Zhao, X.; Cheng, C.; Li, N.; Liu, Y.; Cao, Y. The implications of signaling lipids in cancer metastasis. Exp. Mol. Med., 2018, 50(9), 1-10.
[http://dx.doi.org/10.1038/s12276-018-0150-x] [PMID: 30242145]
[70]
Ricoult, S.J.H.; Yecies, J.L.; Ben-Sahra, I.; Manning, B.D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene, 2016, 35(10), 1250-1260.
[http://dx.doi.org/10.1038/onc.2015.179] [PMID: 26028026]
[71]
Li, Y.; Wu, S.; Zhao, X.; Hao, S.; Li, F.; Wang, Y.; Liu, B.; Zhang, D.; Wang, Y.; Zhou, H. Key events in cancer: Dysregulation of SREBPs. Front. Pharmacol., 2023, 14, 1130747.
[http://dx.doi.org/10.3389/fphar.2023.1130747] [PMID: 36969840]
[72]
Porstmann, T.; Santos, C.R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.R.; Chung, Y.L.; Schulze, A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab., 2008, 8(3), 224-236.
[http://dx.doi.org/10.1016/j.cmet.2008.07.007] [PMID: 18762023]
[73]
Grunt, T.W. Interacting cancer machineries: Cell signaling, lipid metabolism, and epigenetics. Trends Endocrinol. Metab., 2018, 29(2), 86-98.
[http://dx.doi.org/10.1016/j.tem.2017.11.003] [PMID: 29203141]
[74]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[75]
Auciello, F.R.; Bulusu, V.; Oon, C.; Tait-Mulder, J.; Berry, M.; Bhattacharyya, S.; Tumanov, S.; Allen-Petersen, B.L.; Link, J.; Kendsersky, N.D.; Vringer, E.; Schug, M.; Novo, D.; Hwang, R.F.; Evans, R.M.; Nixon, C.; Dorrell, C.; Morton, J.P.; Norman, J.C.; Sears, R.C.; Kamphorst, J.J.; Sherman, M.H. A stromal lysolipid–autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov., 2019, 9(5), 617-627.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1212] [PMID: 30837243]
[76]
Schulze, A.; Harris, A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491(7424), 364-373.
[http://dx.doi.org/10.1038/nature11706] [PMID: 23151579]
[77]
Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis. Model. Mech., 2013, 6(6), 1353-1363.
[http://dx.doi.org/10.1242/dmm.011338] [PMID: 24203995]
[78]
Gansler, T.S.; Hardman, W., III; Hunt, D.A.; Schaffel, S.; Hennigar, R.A. Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum. Pathol., 1997, 28(6), 686-692.
[http://dx.doi.org/10.1016/S0046-8177(97)90177-5] [PMID: 9191002]
[79]
Migita, T.; Ruiz, S.; Fornari, A.; Fiorentino, M.; Priolo, C.; Zadra, G.; Inazuka, F.; Grisanzio, C.; Palescandolo, E.; Shin, E.; Fiore, C.; Xie, W.; Kung, A.L.; Febbo, P.G.; Subramanian, A.; Mucci, L.; Ma, J.; Signoretti, S.; Stampfer, M.; Hahn, W.C.; Finn, S.; Loda, M. Fatty acid synthase: A metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst., 2009, 101(7), 519-532.
[http://dx.doi.org/10.1093/jnci/djp030] [PMID: 19318631]
[80]
Broadfield, L.A.; Pane, A.A.; Talebi, A.; Swinnen, J.V.; Fendt, S.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev. Cell, 2021, 56(10), 1363-1393.
[http://dx.doi.org/10.1016/j.devcel.2021.04.013] [PMID: 33945792]
[81]
Diao, X.Y.; Lin, T. Progress in therapeutic strategies based on cancer lipid metabolism. Thorac. Cancer, 2019, 10(9), 1741-1743.
[http://dx.doi.org/10.1111/1759-7714.13146] [PMID: 31328418]
[82]
Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[83]
Li, Z.; Kang, Y. Lipid metabolism fuels cancer’s spread. Cell Metab., 2017, 25(2), 228-230.
[http://dx.doi.org/10.1016/j.cmet.2017.01.016] [PMID: 28178563]
[84]
Pan, J.; Fan, Z.; Wang, Z.; Dai, Q.; Xiang, Z.; Yuan, F.; Yan, M.; Zhu, Z.; Liu, B.; Li, C. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β/-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 52.
[http://dx.doi.org/10.1186/s13046-019-1049-7] [PMID: 30717785]
[85]
Ladanyi, A.; Mukherjee, A.; Kenny, H.A.; Johnson, A.; Mitra, A.K.; Sundaresan, S.; Nieman, K.M.; Pascual, G.; Benitah, S.A.; Montag, A.; Yamada, S.D.; Abumrad, N.A.; Lengyel, E. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018, 37(17), 2285-2301.
[http://dx.doi.org/10.1038/s41388-017-0093-z] [PMID: 29398710]
[86]
Yoshida, T.; Yokobori, T.; Saito, H.; Kuriyama, K.; Kumakura, Y.; Honjo, H.; Hara, K.; Sakai, M.; Miyazaki, T.; Obinata, H.; Erkhem-Ochir, B.; Gombodorj, N.; Sohda, M.; Saeki, H.; Kuwano, H.; Shirabe, K. CD36 expression is associated with cancer aggressiveness and energy source in esophageal squamous cell carcinoma. Ann. Surg. Oncol., 2021, 28(2), 1217-1227.
[http://dx.doi.org/10.1245/s10434-020-08711-3] [PMID: 32529269]
[87]
Luo, X.; Zheng, E.; Wei, L.; Zeng, H.; Qin, H.; Zhang, X.; Liao, M.; Chen, L.; Zhao, L.; Ruan, X.Z.; Yang, P.; Chen, Y. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis., 2021, 12(4), 328.
[http://dx.doi.org/10.1038/s41419-021-03596-w] [PMID: 33771982]
[88]
Ma, X.; Xiao, L.; Liu, L.; Ye, L.; Su, P.; Bi, E.; Wang, Q.; Yang, M.; Qian, J.; Yi, Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab., 2021, 33(5), 1001-1012.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.02.015] [PMID: 33691090]
[89]
Kawaguchi, K.; Senga, S.; Kubota, C.; Kawamura, Y.; Ke, Y.; Fujii, H. High expression of Fatty AcidBinding Protein 5 promotes cell growth and metastatic potential of colorectal cancer cells. FEBS Open Bio, 2016, 6(3), 190-199.
[http://dx.doi.org/10.1002/2211-5463.12031] [PMID: 27047747]
[90]
Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183.
[http://dx.doi.org/10.1016/j.gene.2018.07.035] [PMID: 30021130]
[91]
Rao, E.; Singh, P.; Zhai, X.; Li, Y.; Zhu, G.; Zhang, Y.; Hao, J.; Chi, Y.I.; Brown, R.E.; Cleary, M.P.; Li, B. Inhibition of tumor growth by a newly-identified activator for epidermal fatty acid binding protein. Oncotarget, 2015, 6(10), 7815-7827.
[http://dx.doi.org/10.18632/oncotarget.3485] [PMID: 25796556]
[92]
Wu, G.; Zhang, Z.; Tang, Q.; Liu, L.; Liu, W.; Li, Q.; Wang, Q. Study of FABP’s interactome and detecting new molecular targets in clear cell renal cell carcinoma. J. Cell. Physiol., 2020, 235(4), 3776-3789.
[http://dx.doi.org/10.1002/jcp.29272]
[93]
Li, X.; Chen, Y.T.; Hu, P.; Huang, W.C. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol. Cancer Ther., 2014, 13(4), 855-866.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0797] [PMID: 24493696]
[94]
Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer, 2020, 122(1), 4-22.
[http://dx.doi.org/10.1038/s41416-019-0650-z] [PMID: 31819192]
[95]
Veigel, D.; Wagner, R.; Stübiger, G.; Wuczkowski, M.; Filipits, M.; Horvat, R.; Benhamú, B.; López-Rodríguez, M.L.; Leisser, A.; Valent, P.; Grusch, M.; Hegardt, F.G.; García, J.; Serra, D.; Auersperg, N.; Colomer, R.; Grunt, T.W. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int. J. Cancer, 2015, 136(9), 2078-2090.
[http://dx.doi.org/10.1002/ijc.29261] [PMID: 25302649]
[96]
Bauer, D.E.; Hatzivassiliou, G.; Zhao, F.; Andreadis, C.; Thompson, C.B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 2005, 24(41), 6314-6322.
[http://dx.doi.org/10.1038/sj.onc.1208773] [PMID: 16007201]
[97]
Chajès, V.; Cambot, M.; Moreau, K.; Lenoir, G.M.; Joulin, V. Acetyl-CoA carboxylase α is essential to breast cancer cell survival. Cancer Res., 2006, 66(10), 5287-5294.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1489] [PMID: 16707454]
[98]
Knowles, L.M.; Axelrod, F.; Browne, C.D.; Smith, J.W. A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J. Biol. Chem., 2004, 279(29), 30540-30545.
[http://dx.doi.org/10.1074/jbc.M405061200] [PMID: 15138278]
[99]
Samudio, I.; Harmancey, R.; Fiegl, M.; Kantarjian, H.; Konopleva, M.; Korchin, B.; Kaluarachchi, K.; Bornmann, W.; Duvvuri, S.; Taegtmeyer, H.; Andreeff, M. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest., 2010, 120(1), 142-156.
[http://dx.doi.org/10.1172/JCI38942] [PMID: 20038799]
[100]
Vickers, A.E.M. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol. Pathol., 2009, 37(1), 78-88.
[http://dx.doi.org/10.1177/0192623308329285] [PMID: 19234235]
[101]
Dobbins, R.L.; Szczepaniak, L.S.; Bentley, B.; Esser, V.; Myhill, J.; McGarry, J.D. Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes, 2001, 50(1), 123-130.
[http://dx.doi.org/10.2337/diabetes.50.1.123] [PMID: 11147777]
[102]
Leamy, A.K.; Egnatchik, R.A.; Young, J.D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res., 2013, 52(1), 165-174.
[http://dx.doi.org/10.1016/j.plipres.2012.10.004] [PMID: 23178552]
[103]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr Cellular fatty acid metabolism and cancer. Cell Metab., 2013, 18(2), 153-161.
[http://dx.doi.org/10.1016/j.cmet.2013.05.017] [PMID: 23791484]
[104]
Schafer, Z.T.; Grassian, A.R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H.Y.; Gao, S.; Puigserver, P.; Brugge, J.S. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 2009, 461(7260), 109-113.
[http://dx.doi.org/10.1038/nature08268] [PMID: 19693011]
[105]
Carracedo, A.; Weiss, D.; Leliaert, A.K.; Bhasin, M.; de Boer, V.C.J.; Laurent, G.; Adams, A.C.; Sundvall, M.; Song, S.J.; Ito, K.; Finley, L.S.; Egia, A.; Libermann, T.; Gerhart-Hines, Z.; Puigserver, P.; Haigis, M.C.; Maratos-Flier, E.; Richardson, A.L.; Schafer, Z.T.; Pandolfi, P.P. A metabolic prosurvival role for PML in breast cancer. J. Clin. Invest., 2012, 122(9), 3088-3100.
[http://dx.doi.org/10.1172/JCI62129] [PMID: 22886304]
[106]
Schlaepfer, I.R.; Joshi, M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology, 2020, 161(2), bqz046.
[107]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[108]
Yang, H.; Deng, Q.; Ni, T. liu, Y.; Lu, L.; Dai, H.; Wang, H.; Yang, W. Targeted inhibition of LPL/FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int. J. Biol. Sci., 2021, 17(15), 4207-4222.
[http://dx.doi.org/10.7150/ijbs.64714] [PMID: 34803493]
[109]
Kim, W.T.; Yun, S.J.; Yan, C.; Jeong, P.; Kim, Y.H.; Lee, I.S.; Kang, H.W.; Park, S.; Moon, S.K.; Choi, Y.H.; Choi, Y.D.; Kim, I.Y.; Kim, J.; Kim, W.J. Metabolic pathway signatures associated with urinary metabolite biomarkers differentiate bladder cancer patients from healthy controls. Yonsei Med. J., 2016, 57(4), 865-871.
[http://dx.doi.org/10.3349/ymj.2016.57.4.865] [PMID: 27189278]
[110]
Lin, H.; Patel, S.; Affleck, V.S.; Wilson, I.; Turnbull, D.M.; Joshi, A.R.; Maxwell, R.; Stoll, E.A. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-oncol., 2017, 19(1), 43-54.
[http://dx.doi.org/10.1093/neuonc/now128] [PMID: 27365097]
[111]
Ruidas, B.; Sur, T.K.; Das Mukhopadhyay, C.; Sinha, K.; Som Chaudhury, S.; Sharma, P.; Bhowmick, S.; Majumder, R.; Saha, A. Quercetin: A silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer, 2022, 29(4), 748-760.
[http://dx.doi.org/10.1007/s12282-022-01356-y]
[112]
Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res., 2013, 52(4), 585-589.
[http://dx.doi.org/10.1016/j.plipres.2013.08.005] [PMID: 24001676]
[113]
Chen, Y.; Li, P. Fatty acid metabolism and cancer development. Sci. Bull. , 2016, 2016, 61.
[114]
Pardo, J.C.; Ruiz de Porras, V.; Gil, J.; Font, A.; Puig-Domingo, M.; Jordà, M. Lipid metabolism and epigenetics crosstalk in prostate cancer. Nutrients, 2022, 14(4), 851.
[http://dx.doi.org/10.3390/nu14040851] [PMID: 35215499]
[115]
Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; Yamada, S.D.; Peter, M.E.; Gwin, K.; Lengyel, E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med., 2011, 17(11), 1498-1503.
[http://dx.doi.org/10.1038/nm.2492] [PMID: 22037646]
[116]
Camarda, R.; Zhou, A.Y.; Kohnz, R.A.; Balakrishnan, S.; Mahieu, C.; Anderton, B.; Eyob, H.; Kajimura, S.; Tward, A.; Krings, G.; Nomura, D.K.; Goga, A. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med., 2016, 22(4), 427-432.
[http://dx.doi.org/10.1038/nm.4055] [PMID: 26950360]
[117]
Deng, H.; Li, W. Monoacylglycerol lipase inhibitors: Modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm. Sin. B, 2020, 10(4), 582-602.
[http://dx.doi.org/10.1016/j.apsb.2019.10.006] [PMID: 32322464]
[118]
Bononi, G.; Poli, G.; Rizzolio, F.; Tuccinardi, T.; Macchia, M.; Minutolo, F.; Granchi, C. An updated patent review of monoacylglycerol lipase (MAGL) inhibitors (2018-present). Expert Opin. Ther. Pat., 2021, 31(2), 153-168.
[http://dx.doi.org/10.1080/13543776.2021.1841166] [PMID: 33085920]
[119]
Prüser, J.L.; Ramer, R.; Wittig, F.; Ivanov, I.; Merkord, J.; Hinz, B. The Monoacylglycerol Lipase Inhibitor JZL184 inhibits lung cancer cell invasion and metastasis via the CB1 cannabinoid receptor. Mol. Cancer Ther., 2021, 20(5), 787-802.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0589] [PMID: 33632876]
[120]
Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med., 2019, 380(11), 1022-1032.
[http://dx.doi.org/10.1056/NEJMoa1803917] [PMID: 30865796]
[121]
Venant, H.; Rahmaniyan, M.; Jones, E.E.; Lu, P.; Lilly, M.B.; Garrett-Mayer, E.; Drake, R.R.; Kraveka, J.M.; Smith, C.D.; Voelkel-Johnson, C. The sphingosine kinase 2 inhibitor ABC294640 reduces the growth of prostate cancer cells and results in accumulation of dihydroceramides In Vitro and In Vivo. Mol. Cancer Ther., 2015, 14(12), 2744-2752.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0279] [PMID: 26494858]
[122]
Britten, C.D.; Garrett-Mayer, E.; Chin, S.H.; Shirai, K.; Ogretmen, B.; Bentz, T.A.; Brisendine, A.; Anderton, K.; Cusack, S.L.; Maines, L.W.; Zhuang, Y.; Smith, C.D.; Thomas, M.B. A phase I study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2017, 23(16), 4642-4650.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2363] [PMID: 28420720]
[123]
Pal, S.K.; Drabkin, H.A.; Reeves, J.A.; Hainsworth, J.D.; Hazel, S.E.; Paggiarino, D.A.; Wojciak, J.; Woodnutt, G.; Bhatt, R.S. A phase 2 study of the sphingosine‐1‐phosphate antibody sonepcizumab in patients with metastatic renal cell carcinoma. Cancer, 2017, 123(4), 576-582.
[http://dx.doi.org/10.1002/cncr.30393] [PMID: 27727447]
[124]
Visweswaran, M.; Arfuso, F.; Warrier, S.; Dharmarajan, A. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells. Stem Cells, 2020, 38(1), 6-14.
[http://dx.doi.org/10.1002/stem.3101] [PMID: 31648395]
[125]
Pillai, S.; Mahmud, I.; Mahar, R.; Griffith, C.; Langsen, M.; Nguyen, J.; Wojtkowiak, J.W.; Swietach, P.; Gatenby, R.A.; Bui, M.M.; Merritt, M.E.; McDonald, P.; Garrett, T.J.; Gillies, R.J. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep., 2022, 39(6), 110796.
[http://dx.doi.org/10.1016/j.celrep.2022.110796] [PMID: 35545051]
[126]
Snaebjornsson, M.T.; Janaki-Raman, S.; Schulze, A. Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab., 2020, 31(1), 62-76.
[http://dx.doi.org/10.1016/j.cmet.2019.11.010] [PMID: 31813823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy