Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Tumor-associated Macrophages (TAMs) in Cancer Resistance; Modulation by Natural Products

Author(s): Holya A. Lafta, Ali H. AbdulHussein, Saif A. J. Al-Shalah, Yasir S. Alnassar, Naseer M. Mohammed, Sally M. Akram, Maytham T. Qasim and Masoud Najafi*

Volume 23, Issue 12, 2023

Published on: 15 February, 2023

Page: [1104 - 1122] Pages: 19

DOI: 10.2174/1568026623666230201145909

Price: $65

Abstract

Tumor-associated macrophages (TAMs) play a pivotal role in the progression and resistance of tumors to different anticancer drugs. TAMs can modulate the tumor microenvironment (TME) in favor of immune system exhaustion. The interactions of TAMs with TME can affect the function of cytotoxic CD8+ T lymphocytes (CTLs) and natural killer (NK) cells. Furthermore, TAMs can induce cancer cell proliferation by releasing some growth factors, such as transforming growth factor (TGF)-β. TAMs have several positive cross-talks with other immune suppressive cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancerassociated fibroblasts (CAFs), and cancer cells, leading to the release of growth factors, the proliferation of cancer cells and tumor growth. These interactions also can induce invasion and migration of cancer cells, angiogenesis, and metastasis. The inhibition of TAMs is an intriguing strategy for overcoming tumor resistance and suppression of cancer cells. Some natural-derived agents such as melatonin, curcumin, resveratrol, apigenin, and other flavonoids have shown the ability to modulate TME, including TAMs. These adjuvants may be able to boost antitumor immunity through the modulation of TAMs. This review explains the modulatory effects of some well-known naturally derived agents on the activity of TAMs. The modulation of TAMs by these agents may be useful in suppressing tumor growth and invasion.

Graphical Abstract

[1]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[2]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[3]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; Implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[4]
Moslehi, M.; Moazamiyanfar, R.; Dakkali, M.S.; Rezaei, S.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Taeb, S.; Najafi, M. Modulation of the immune system by melatonin; implications for cancer therapy. Int. Immunopharmacol., 2022, 108, 108890.
[http://dx.doi.org/10.1016/j.intimp.2022.108890] [PMID: 35623297]
[5]
Yu, D.L.; Lou, Z.P.; Ma, F.Y.; Najafi, M. The interactions of paclitaxel with tumour microenvironment. Int. Immunopharmacol., 2022, 105, 108555.
[http://dx.doi.org/10.1016/j.intimp.2022.108555] [PMID: 35121223]
[6]
Taeb, S.; Ashrafizadeh, M.; Zarrabi, A.; Rezapoor, S.; Musa, A.E.; Farhood, B.; Najafi, M. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr. Cancer Drug Targets, 2022, 22(1), 18-30.
[http://dx.doi.org/10.2174/1568009622666211224154952] [PMID: 34951575]
[7]
Sadeghi Rad, H.; Monkman, J.; Warkiani, M.E.; Ladwa, R.; O’Byrne, K.; Rezaei, N.; Kulasinghe, A. Understanding the tumor microenvironment for effective immunotherapy. Med. Res. Rev., 2021, 41(3), 1474-1498.
[http://dx.doi.org/10.1002/med.21765] [PMID: 33277742]
[8]
Mu, Q.; Najafi, M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int. Immunopharmacol., 2021, 98, 107895.
[http://dx.doi.org/10.1016/j.intimp.2021.107895] [PMID: 34171623]
[9]
Mortezaee, K.; Majidpoor, J. The impact of hypoxia on immune state in cancer. Life Sci., 2021, 286, 120057.
[http://dx.doi.org/10.1016/j.lfs.2021.120057] [PMID: 34662552]
[10]
Mortezaee, K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci., 2021, 277, 119627.
[http://dx.doi.org/10.1016/j.lfs.2021.119627] [PMID: 34004256]
[11]
Majidpoor, J.; Mortezaee, K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin. Immunol., 2021, 226, 108707.
[http://dx.doi.org/10.1016/j.clim.2021.108707] [PMID: 33662590]
[12]
Wang, J.; Li, D.; Cang, H.; Guo, B. Crosstalk between cancer and immune cells: Role of tumor‐associated macrophages in the tumor microenvironment. Cancer Med., 2019, 8(10), 4709-4721.
[http://dx.doi.org/10.1002/cam4.2327] [PMID: 31222971]
[13]
Yang, L.; Zhang, Y. Tumor-associated macrophages: From basic research to clinical application. J. Hematol. Oncol., 2017, 10(1), 58.
[http://dx.doi.org/10.1186/s13045-017-0430-2] [PMID: 28241846]
[14]
Cassetta, L.; Kitamura, T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front. Cell Dev. Biol., 2018, 6, 38.
[http://dx.doi.org/10.3389/fcell.2018.00038] [PMID: 29670880]
[15]
Heusinkveld, M.; van der Burg, S.H. Identification and manipulation of tumor associated macrophages in human cancers. J. Transl. Med., 2011, 9(1), 216.
[http://dx.doi.org/10.1186/1479-5876-9-216] [PMID: 22176642]
[16]
Yu, C.; Yang, B.; Najafi, M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin. Pharmacol. Toxicol., 2021, 129(6), 397-415.
[http://dx.doi.org/10.1111/bcpt.13648] [PMID: 34473898]
[17]
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol., 2021, 69, 5-23.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.014] [PMID: 31421264]
[18]
Fu, X.; He, Y.; Li, M.; Huang, Z.; Najafi, M. Targeting of the tumor microenvironment by curcumin. Biofactors, 2021, 47(6), 914-932.
[http://dx.doi.org/10.1002/biof.1776] [PMID: 34375483]
[19]
Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res., 2014, 2014, 149185.
[http://dx.doi.org/10.1155/2014/149185] [PMID: 24901008]
[20]
Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: a review. Apoptosis, 2022, 27(5-6), 297-310.
[http://dx.doi.org/10.1007/s10495-022-01721-4] [PMID: 35312885]
[21]
Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis, 2021, 26(11-12), 561-573.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[22]
Jiang, J.; Wu, C.; Lu, B. Cytokine-induced killer cells promote antitumor immunity. J. Transl. Med., 2013, 11(1), 83.
[http://dx.doi.org/10.1186/1479-5876-11-83] [PMID: 23536996]
[23]
Streltsova, M.A.; Barsov, E.V.; Erokhina, S.A.; Sapozhnikov, A.M.; Kovalenko, E.I. Current approaches to engineering of NK cells for cancer immunotherapy. Curr. Pharm. Des., 2018, 24(24), 2810-2824.
[http://dx.doi.org/10.2174/1381612824666180829113013] [PMID: 30156154]
[24]
Wang, Z.; Liu, Y.; Musa, A.E. Regulation of cell death mechanisms by melatonin: implications in cancer therapy. Anticancer. Agents Med. Chem., 2022, 22(11), 2080-2090.
[http://dx.doi.org/10.2174/1871520621999211108090712] [PMID: 34749627]
[25]
Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer, 2021, 124(2), 359-367.
[http://dx.doi.org/10.1038/s41416-020-01048-4] [PMID: 32929195]
[26]
Wu, S.Y.; Fu, T.; Jiang, Y.Z.; Shao, Z.M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[27]
Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[28]
Bożyk, A.; Wojas-Krawczyk, K.; Krawczyk, P.; Milanowski, J. Tumor microenvironment—a short review of cellular and interaction diversity. Biology , 2022, 11(6), 929.
[http://dx.doi.org/10.3390/biology11060929] [PMID: 35741450]
[29]
Ribeiro Franco, P.I.; Rodrigues, A.P.; de Menezes, L.B.; Pacheco Miguel, M. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract., 2020, 216(1), 152729.
[http://dx.doi.org/10.1016/j.prp.2019.152729] [PMID: 31735322]
[30]
Mortezaee, K. Immune escape: A critical hallmark in solid tumors. Life Sci., 2020, 258, 118110.
[http://dx.doi.org/10.1016/j.lfs.2020.118110] [PMID: 32698074]
[31]
Ogle, M.E.; Segar, C.E.; Sridhar, S.; Botchwey, E.A. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med., 2016, 241(10), 1084-1097.
[http://dx.doi.org/10.1177/1535370216650293] [PMID: 27229903]
[32]
Epelman, S.; Lavine, K.J.; Randolph, G.J. Origin and functions of tissue macrophages. Immunity, 2014, 41(1), 21-35.
[http://dx.doi.org/10.1016/j.immuni.2014.06.013] [PMID: 25035951]
[33]
Noy, R.; Pollard, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1), 49-61.
[http://dx.doi.org/10.1016/j.immuni.2014.06.010] [PMID: 25035953]
[34]
Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 2020, 877, 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[35]
Yuan, A.; Hsiao, Y.J.; Chen, H.Y.; Chen, H.W.; Ho, C.C.; Chen, Y.Y.; Liu, Y.C.; Hong, T.H.; Yu, S.L.; Chen, J.J.W.; Yang, P.C. Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep., 2015, 5(1), 14273.
[http://dx.doi.org/10.1038/srep14273] [PMID: 26399191]
[36]
Edholm, E-S.; Rhoo, K.H.; Robert, J. Evolutionary aspects of macrophages polarization. Results Probl. Cell Differ., 2017, 3-22.
[http://dx.doi.org/10.1007/978-3-319-54090-0_1] [PMID: 28455703]
[37]
Sierra-Filardi, E.; Nieto, C.; Domínguez-Soto, Á.; Barroso, R.; Sánchez-Mateos, P.; Puig-Kroger, A.; López-Bravo, M.; Joven, J.; Ardavín, C.; Rodríguez-Fernández, J.L.; Sánchez-Torres, C.; Mellado, M.; Corbí, Á.L. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-dependent gene expression profile. J. Immunol., 2014, 192(8), 3858-3867.
[http://dx.doi.org/10.4049/jimmunol.1302821] [PMID: 24639350]
[38]
Van Dyken, S.J.; Locksley, R.M. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu. Rev. Immunol., 2013, 31(1), 317-343.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095906] [PMID: 23298208]
[39]
Molgora, M.; Colonna, M. Turning enemies into allies—reprogramming tumor-associated macrophages for cancer therapy. Med, 2021, 2(6), 666-681.
[http://dx.doi.org/10.1016/j.medj.2021.05.001] [PMID: 34189494]
[40]
Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[41]
De Palma, M.; Lewis, C.E. Macrophages limit chemotherapy. Nature, 2011, 472(7343), 303-304.
[http://dx.doi.org/10.1038/472303a] [PMID: 21512566]
[42]
Li, X.; Liu, R.; Su, X.; Pan, Y.; Han, X.; Shao, C.; Shi, Y. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol. Cancer, 2019, 18(1), 177.
[http://dx.doi.org/10.1186/s12943-019-1102-3] [PMID: 31805946]
[43]
Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol., 2019, 70, 459-466.
[http://dx.doi.org/10.1016/j.intimp.2019.02.050] [PMID: 30861466]
[44]
Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Kumar Patra, J.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; Battino, M.; Tundis, R.; Campos, M.G.; Farzaei, M.H.; Xiao, J. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res., 2020, 151, 104584.
[http://dx.doi.org/10.1016/j.phrs.2019.104584] [PMID: 31809853]
[45]
Chhabra, G.; Singh, C.K.; Ndiaye, M.A.; Fedorowicz, S.; Molot, A.; Ahmad, N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett., 2018, 422, 9-18.
[http://dx.doi.org/10.1016/j.canlet.2018.02.025] [PMID: 29471004]
[46]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[47]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[48]
Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and colorectal cancer: From basic to clinical evidences. Int. J. Mol. Sci., 2020, 21(7), 2364.
[http://dx.doi.org/10.3390/ijms21072364] [PMID: 32235371]
[49]
Farooqi, A.A.; Tahir, F.; Fakhar, M.; Butt, G.; Colombo Pimentel, T.; Wu, N.; Yulaevna, I.M.; Attar, R. Antimetastatic effects of citrus-derived bioactive ingredients: Mechanistic insights. Cell. Mol. Biol., 2021, 67(2), 178-186.
[http://dx.doi.org/10.14715/cmb/2021.67.2.28] [PMID: 34817319]
[50]
Sindhu, R.K.; Verma, R.; Salgotra, T.; Rahman, M.H.; Shah, M.; Akter, R.; Murad, W.; Mubin, S.; Bibi, P.; Qusti, S.; Alshammari, E.M.; Batiha, G.E.S.; Tomczyk, M.; Al-kuraishy, H.M. Impacting the remedial potential of nano delivery-based flavonoids for breast cancer treatment. Molecules, 2021, 26(17), 5163.
[http://dx.doi.org/10.3390/molecules26175163] [PMID: 34500597]
[51]
Han, L.; Fu, Q.; Deng, C.; Luo, L.; Xiang, T.; Zhao, H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand. J. Immunol., 2022, 95(1), e13106.
[http://dx.doi.org/10.1111/sji.13106]
[52]
Kim, K.; Yang, W.H.; Jung, Y.S.; Cha, J. A new aspect of an old friend: The beneficial effect of metformin on anti-tumor immunity. BMB Rep., 2020, 53(10), 512-520.
[http://dx.doi.org/10.5483/BMBRep.2020.53.10.149] [PMID: 32731915]
[53]
Talib, W.H.; Alsayed, A.R.; Abuawad, A.; Daoud, S.; Mahmod, A.I. Melatonin in cancer treatment: Current knowledge and future opportunities. Molecules, 2021, 26(9), 2506.
[http://dx.doi.org/10.3390/molecules26092506] [PMID: 33923028]
[54]
Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H.B. Dietary sources and bioactivities of melatonin. Nutrients, 2017, 9(4), 367.
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[55]
Mu, Q.; Najafi, M. Modulation of the tumor microenvironment (TME) by melatonin. Eur. J. Pharmacol., 2021, 907, 174365.
[http://dx.doi.org/10.1016/j.ejphar.2021.174365] [PMID: 34302814]
[56]
González, G.A.; Rueda, R.N.; Sánchez-Barceló, E.J. Clinical uses of melatonin: Evaluation of human trials on cancer treatment. Melatonin Res., 2019, 2(2), 47-69.
[http://dx.doi.org/10.32794/mr11250021]
[57]
Zhang, Z.J.; Yuan, J.; Bi, Y.; Wang, C.; Liu, Y. The effect of metformin on biomarkers and survivals for breast cancer- a systematic review and meta-analysis of randomized clinical trials. Pharmacol. Res., 2019, 141, 551-555.
[http://dx.doi.org/10.1016/j.phrs.2019.01.036] [PMID: 30664988]
[58]
Ahn-Jarvis, J.; Parihar, A.; Doseff, A. Dietary flavonoids for immunoregulation and cancer: food design for targeting disease. Antioxidants, 2019, 8(7), 202.
[http://dx.doi.org/10.3390/antiox8070202] [PMID: 31261915]
[59]
Xu, T.; Wang, X.; Ma, C.; Ji, J.; Xu, W.; Shao, Q.; Liao, X.; Li, Y.; Cheng, F.; Wang, Q. Identification of potential regulating effect of baicalin on NFκB/CCL2/CCR2 signaling pathway in rats with cerebral ischemia by antibody-based array and bioinformatics analysis. J. Ethnopharmacol., 2022, 284, 114773.
[http://dx.doi.org/10.1016/j.jep.2021.114773] [PMID: 34699947]
[60]
Joshi, N.; Tripathi, D.K.; Nagar, N.; Poluri, K.M. Hydroxyl groups on annular ring-b dictate the affinities of flavonol-CCL2 chemokine binding interactions. ACS Omega, 2021, 6(15), 10306-10317.
[http://dx.doi.org/10.1021/acsomega.1c00655] [PMID: 34056184]
[61]
Cho, D.I.; Koo, N.Y.; Chung, W.J.; Kim, T.S.; Ryu, S.Y.; Im, S.Y.; Kim, K.M. Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action. Life Sci., 2002, 71(17), 2071-2082.
[http://dx.doi.org/10.1016/S0024-3205(02)01971-9] [PMID: 12175900]
[62]
Yang, H.; Du, Z.; Wang, W.; Song, M.; Sanidad, K.; Sukamtoh, E.; Zheng, J.; Tian, L.; Xiao, H.; Liu, Z.; Zhang, G. Structure-activity relationship of curcumin: role of the methoxy group in anti-inflammatory and anticolitis effects of curcumin. J. Agric. Food Chem., 2017, 65(22), 4509-4515.
[http://dx.doi.org/10.1021/acs.jafc.7b01792] [PMID: 28513174]
[63]
Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Commun. Signal., 2022, 16(3), 333-348.
[http://dx.doi.org/10.1007/s12079-021-00648-w] [PMID: 34611852]
[64]
Wu, X.; Xu, W.W.; Huan, X.; Wu, G.; Li, G.; Zhou, Y.H.; Najafi, M. Mechanisms of cancer cell killing by metformin: A review on different cell death pathways. Mol. Cell. Biochem., 2022.
[http://dx.doi.org/10.1007/s11010-022-04502-4] [PMID: 35771397]
[65]
Xia, Y.; Chen, S.; Zeng, S.; Zhao, Y.; Zhu, C.; Deng, B.; Zhu, G.; Yin, Y.; Wang, W.; Hardeland, R.; Ren, W. Melatonin in macrophage biology: Current understanding and future perspectives. J. Pineal Res., 2019, 66(2), e12547.
[http://dx.doi.org/10.1111/jpi.12547] [PMID: 30597604]
[66]
Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis, 2022, 27(9-10), 647-667.
[http://dx.doi.org/10.1007/s10495-022-01750-z] [PMID: 35849264]
[67]
Perera, P.Y.; Kadow, J.F.; Fairchild, C.R.; Johnston, K.A.; Vogel, S.N. Analysis of structure activity relationships for LPS-mimetic activities of taxane analogs in murine macrophages. J. Endotoxin Res., 1999, 5(5-6), 261-267.
[http://dx.doi.org/10.1177/09680519990050050201]
[68]
Singh, A.; Dutta, P.K.; Kumar, H.; Kureel, A.K.; Rai, A.K. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr. Polym., 2018, 193, 99-107.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.092] [PMID: 29773403]
[69]
Park, H.J.; Yang, H.J.; Kim, K.H.; Kim, S.H. Aqueous extract of Orostachys japonicus A. Berger exerts immunostimulatory activity in RAW 264.7 macrophages. J. Ethnopharmacol., 2015, 170, 210-217.
[http://dx.doi.org/10.1016/j.jep.2015.04.012] [PMID: 25978952]
[70]
He, S.; Wang, S.; Liu, S.; Li, Z.; Liu, X.; Wu, J. Baicalein potentiated m1 macrophage polarization in cancer through targeting pi3kγ/nf-κbsignaling. Front. Pharmacol., 2021, 12, 743837.
[http://dx.doi.org/10.3389/fphar.2021.743837]
[71]
Mi, S.; Qu, Y.; Chen, X.; Wen, Z.; Chen, P.; Cheng, Y. Radiotherapy increases 12-lox and CCL5 levels in esophageal cancer cells and promotes cancer metastasis viathp-1-derived macrophages. OncoTargets Ther., 2020, 13, 7719-7733.
[http://dx.doi.org/10.2147/OTT.S257852] [PMID: 32801779]
[72]
Huang, J.; Chen, X.; Chang, Z.; Xiao, C.; Najafi, M. Boosting anti-tumour immunity using adjuvant apigenin. Anticancer. Agents Med. Chem., 2022.
[PMID: 35616683]
[73]
Moslehi, M.; Rezaei, S.; Talebzadeh, P.; Ansari, M.J.; Jawad, M.A.; Jalil, A.T.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Taeb, S.; Najafi, M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin. Exp. Pharmacol. Physiol., 2022.
[PMID: 36111951]
[74]
Woo, J.H.; Jang, D.S.; Choi, J.H. Luteolin promotes apoptosis of endometriotic cells and inhibits the alternative activation of endometriosis-associated macrophages. Biomol. Ther. , 2021, 29(6), 678-684.
[http://dx.doi.org/10.4062/biomolther.2021.045] [PMID: 34011694]
[75]
Parashar, P.; Rathor, M.; Dwivedi, M.; Saraf, S. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics, 2018, 10(1), 33.
[http://dx.doi.org/10.3390/pharmaceutics10010033] [PMID: 29534519]
[76]
Soromou, L.W.; Zhang, Z.; Li, R.; Chen, N.; Guo, W.; Huo, M.; Guan, S.; Lu, J.; Deng, X. Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. Molecules, 2012, 17(3), 3574-3585.
[http://dx.doi.org/10.3390/molecules17033574] [PMID: 22441335]
[77]
Sulaiman, G.M.; Waheeb, H.M.; Jabir, M.S.; Khazaal, S.H.; Dewir, Y.H.; Naidoo, Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci. Rep., 2020, 10(1), 9362.
[http://dx.doi.org/10.1038/s41598-020-66419-6] [PMID: 32518242]
[78]
Ning, Y.; Feng, W.; Cao, X.; Ren, K.; Quan, M.; Chen, A.; Xu, C.; Qiu, Y.; Cao, J.; Li, X.; Luo, X. Genistein inhibits stemness of SKOV3 cells induced by macrophages co-cultured with ovarian cancer stem-like cells through IL-8/STAT3 axis. J. Exp. Clin. Cancer Res., 2019, 38(1), 19.
[http://dx.doi.org/10.1186/s13046-018-1010-1] [PMID: 30646963]
[79]
Amini, P.; Moazamiyanfar, R.; Dakkali, M.S.; Khani, A.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Johari, R.; Taeb, S.; Najafi, M. Resveratrol in cancer therapy; from stimulation of genomic stability to adjuvant cancer therapy; A comprehensive review. Curr. Top. Med. Chem., 2022.
[http://dx.doi.org/10.2174/1568026623666221014152759] [PMID: 36239730]
[80]
Lu, X.; Meng, T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology, 2019, 224(3), 355-361.
[http://dx.doi.org/10.1016/j.imbio.2019.03.002] [PMID: 30926154]
[81]
Martin, F.; Olsson, N.O.; Jeannin, J.F. Effects of four agents that modify microtubules and microfilaments (vinblastine, colchicine, lidocaine, and cytochalasin B) on macrophage-mediated cytotoxicity to tumor cells. Cancer Immunol. Immunother., 1981, 10(10), 113-119.
[http://dx.doi.org/10.1007/BF00205882]
[82]
Guan, W.; Li, F.; Zhao, Z.; Zhang, Z.; Hu, J.; Zhang, Y. Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy viathe CSF1/CSF1R-CXCL12/CXCR4 axis in castration-resistant prostate cancer. Genes , 2021, 12(5), 773.
[http://dx.doi.org/10.3390/genes12050773] [PMID: 34069563]
[83]
Ye, X.; Chen, X.; He, R.; Meng, W.; Chen, W.; Wang, F.; Meng, X. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin. Front. Pharmacol., 2022, 13, 969611.
[http://dx.doi.org/10.3389/fphar.2022.969611] [PMID: 36324685]
[84]
Jurczyk, M.; Kasperczyk, J. Wrześniok, D.; Beberok, A.; Jelonek, K. Nanoparticles loaded with docetaxel and resveratrol as an advanced tool for cancer therapy. Biomedicines, 2022, 10(5), 1187.
[http://dx.doi.org/10.3390/biomedicines10051187] [PMID: 35625921]
[85]
Vinod, B.S.; Nair, H.H.; Vijayakurup, V.; Shabna, A.; Shah, S.; Krishna, A.; Pillai, K.S.; Thankachan, S.; Anto, R.J. Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2-Akt axis. Cell Death Discov., 2015, 1(1), 15061.
[http://dx.doi.org/10.1038/cddiscovery.2015.61] [PMID: 27551486]
[86]
Deng, L.; Wu, X.; Zhu, X.; Yu, Z.; Liu, Z.; Wang, J.; Zheng, Y. Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am. J. Transl. Res., 2021, 13(1), 57-72.
[PMID: 33527008]
[87]
Zhao, M.D.; Li, J.Q.; Chen, F.Y.; Dong, W.; Wen, L.J.; Fei, W.D.; Zhang, X.; Yang, P.L.; Zhang, X.M.; Zheng, C.H. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int. J. Nanomedicine, 2019, 14, 9453-9467.
[http://dx.doi.org/10.2147/IJN.S224579] [PMID: 31819443]
[88]
Kim, B.; Lee, C.; Lee, E.S.; Shin, B.S.; Youn, Y.S. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J. Pharmaceut. Sci., 2016, 11(6), 708-714.
[http://dx.doi.org/10.1016/j.ajps.2016.05.005]
[89]
Fukui, M.; Yamabe, N.; Zhu, B.T. Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur. J. Cancer, 2010, 46(10), 1882-1891.
[http://dx.doi.org/10.1016/j.ejca.2010.02.004] [PMID: 20223651]
[90]
Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(13), 6995.
[http://dx.doi.org/10.3390/ijms22136995] [PMID: 34209703]
[91]
Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res., 2019, 79(18), 4557-4566.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3962] [PMID: 31350295]
[92]
Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[93]
Ruytinx, P.; Proost, P.; Van Damme, J.; Struyf, S. Chemokine-induced macrophage polarization in inflammatory conditions. Front. Immunol., 2018, 9, 1930.
[http://dx.doi.org/10.3389/fimmu.2018.01930] [PMID: 30245686]
[94]
Pathria, P.; Louis, T.L.; Varner, J.A. Targeting tumor-associated macrophages in cancer. Trends Immunol., 2019, 40(4), 310-327.
[http://dx.doi.org/10.1016/j.it.2019.02.003] [PMID: 30890304]
[95]
Lee, H-W.; Choi, H-J.; Ha, S-J.; Lee, K-T.; Kwon, Y-G. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim. Biophys. Acta, 2013, 1835(2), 170-179.
[PMID: 23287570]
[96]
Argyle, D.; Kitamura, T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front. Immunol., 2018, 9, 2629.
[http://dx.doi.org/10.3389/fimmu.2018.02629] [PMID: 30483271]
[97]
Ohta, M.; Kitadai, Y.; Tanaka, S.; Yoshihara, M.; Yasui, W.; Mukaida, N.; Haruma, K.; Chayama, K. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int. J. Cancer, 2002, 102(3), 220-224.
[http://dx.doi.org/10.1002/ijc.10705] [PMID: 12397639]
[98]
Long, K.B.; Gladney, W.L.; Tooker, G.M.; Graham, K.; Fraietta, J.A.; Beatty, G.L. IFNγ and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov., 2016, 6(4), 400-413.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1032] [PMID: 26896096]
[99]
Jin, J.; Lin, J.; Xu, A.; Lou, J.; Qian, C.; Li, X.; Wang, Y.; Yu, W.; Tao, H. CCL2: An important mediator between tumor cells and host cells in tumor microenvironment. Front. Oncol., 2021, 11, 722916.
[http://dx.doi.org/10.3389/fonc.2021.722916] [PMID: 34386431]
[100]
Yao, W.; Ba, Q.; Li, X.; Li, H.; Zhang, S.; Yuan, Y.; Wang, F.; Duan, X.; Li, J.; Zhang, W.; Wang, H. A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine, 2017, 22, 58-67.
[http://dx.doi.org/10.1016/j.ebiom.2017.07.014] [PMID: 28754304]
[101]
Lai, S.W.; Liu, Y.S.; Lu, D.Y.; Tsai, C.F. Melatonin modulates the microenvironment of glioblastoma multiforme by targeting sirtuin 1. Nutrients, 2019, 11(6), 1343.
[http://dx.doi.org/10.3390/nu11061343] [PMID: 31207928]
[102]
Mendonca, P.; Hilliard, A.; Soliman, K. The inhibitory effects of ganoderma lucium on cell proliferation, apoptosis, and tnf‐α‐ induced ccl2 release in genetically different triple‐negative breast cancer cells. FASEB J., 2021, 35(s1) fasebj.2021.35.S1.00410
[http://dx.doi.org/10.1096/fasebj.2021.35.S1.00410]
[103]
Yang, X.; Lin, Y.; Shi, Y.; Li, B.; Liu, W.; Yin, W.; Dang, Y.; Chu, Y.; Fan, J.; He, R. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment viastat3-ccl2 signaling. Cancer Res., 2016, 76(14), 4124-4135.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2973] [PMID: 27216177]
[104]
Deng, S.; Ramos-Castaneda, M.; Velasco, W.V.; Clowers, M.J.; Gutierrez, B.A.; Noble, O.; Dong, Y.; Zarghooni, M.; Alvarado, L.; Caetano, M.S.; Yang, S.; Ostrin, E.J.; Behrens, C.; Wistuba, I.I.; Stabile, L.P.; Kadara, H.; Watowich, S.S.; Moghaddam, S.J. Interplay between estrogen and Stat3/NF-κB-driven immunomodulation in lung cancer. Carcinogenesis, 2020, 41(11), 1529-1542.
[http://dx.doi.org/10.1093/carcin/bgaa064] [PMID: 32603404]
[105]
Malla, R.; Padmaraju, V.; Kundrapu, D.B. Tumor-associated macrophages: Potential target of natural compounds for management of breast cancer. Life Sci., 2022, 301, 120572.
[http://dx.doi.org/10.1016/j.lfs.2022.120572] [PMID: 35489567]
[106]
Bauer, D.; Mazzio, E.; Hilliard, A.; Oriaku, E.; Soliman, K. Effect of apigenin on whole transcriptome profile of TNF α activated MDA MB 468 triple negative breast cancer cells. Oncol. Lett., 2020, 19(3), 2123-2132.
[http://dx.doi.org/10.3892/ol.2020.11327] [PMID: 32194710]
[107]
Yue, W.; Wang, T.; Zachariah, E.; Lin, Y.; Yang, C.S.; Xu, Q.; DiPaola, R.S.; Tan, X.L. Transcriptomic analysis of pancreatic cancer cells in response to metformin and aspirin: An implication of synergy. Sci. Rep., 2015, 5(1), 13390.
[http://dx.doi.org/10.1038/srep13390] [PMID: 26294325]
[108]
Wu, C.Y.; Yang, Y.H.; Lin, Y.Y.; Kuan, F.C.; Lin, Y.S.; Lin, W.Y.; Tsai, M.Y.; Yang, J.J.; Cheng, Y.C.; Shu, L.H.; Lu, M.C.; Chen, Y.J.; Lee, K.D.; Kang, H.Y. Anti-cancer effect of danshen and dihydroisotanshinone I on prostate cancer: targeting the crosstalk between macrophages and cancer cells viainhibition of the STAT3/CCL2 signaling pathway. Oncotarget, 2017, 8(25), 40246-40263.
[http://dx.doi.org/10.18632/oncotarget.14958] [PMID: 28157698]
[109]
Wu, C.Y.; Cherng, J.Y.; Yang, Y.H.; Lin, C.L.; Kuan, F.C.; Lin, Y.Y.; Lin, Y.S.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Lu, M.C.; Lung, J.; Chen, P.C.; Lin, H.K.; Lee, K.D.; Tsai, Y.H. Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells. Oncotarget, 2017, 8(53), 90925-90947.
[http://dx.doi.org/10.18632/oncotarget.18767] [PMID: 29207614]
[110]
Mendonca, P.; Horton, A.; Bauer, D.; Messeha, S.; Soliman, K.F.A. The inhibitory effects of butein on cell proliferation and TNF- α-induced CCL2 release in racially different triple negative breast cancer cells. PLoS One, 2019, 14(10), e0215269.
[http://dx.doi.org/10.1371/journal.pone.0215269] [PMID: 31665136]
[111]
Herman, J.G.; Stadelman, H.L.; Roselli, C.E. Curcumin blocks CCL2-induced adhesion, motility and invasion, in part, through down-regulation of CCL2 expression and proteolytic activity. Int. J. Oncol., 2009, 34(5), 1319-1327.
[PMID: 19360344]
[112]
Zang, X.; Zhang, X.; Zhao, X.; Hu, H.; Qiao, M.; Deng, Y.; Chen, D. Targeted delivery of miRNA 155 to tumor associated macrophages for tumor immunotherapy. Mol. Pharm., 2019, 16(4), 1714-1722.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00065] [PMID: 30860846]
[113]
Farajzadeh Valilou, S.; Keshavarz-Fathi, M.; Silvestris, N.; Argentiero, A.; Rezaei, N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev., 2018, 39, 46-61.
[http://dx.doi.org/10.1016/j.cytogfr.2018.01.007] [PMID: 29373197]
[114]
Mu, X.; Shi, W.; Xu, Y.; Xu, C.; Zhao, T.; Geng, B.; Yang, J.; Pan, J.; Hu, S.; Zhang, C.; Zhang, J.; Wang, C.; Shen, J.; Che, Y.; Liu, Z.; Lv, Y.; Wen, H.; You, Q. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle, 2018, 17(4), 428-438.
[http://dx.doi.org/10.1080/15384101.2018.1444305] [PMID: 29468929]
[115]
Yan, D.; Wang, H.W.; Bowman, R.L.; Joyce, J.A. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1 α activation. Cell Rep., 2016, 16(11), 2914-2927.
[http://dx.doi.org/10.1016/j.celrep.2016.08.035] [PMID: 27626662]
[116]
Genard, G.; Lucas, S.; Michiels, C. Reprogramming of tumor-associated macrophages with anticancer therapies: Radiotherapy versus chemo-and immunotherapies. Front. Immunol., 2017, 8, 828.
[http://dx.doi.org/10.3389/fimmu.2017.00828] [PMID: 28769933]
[117]
Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev., 2006, 25(3), 315-322.
[http://dx.doi.org/10.1007/s10555-006-9001-7] [PMID: 16967326]
[118]
Mortezaee, K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol. Int., 2021, 45(2), 273-286.
[http://dx.doi.org/10.1002/cbin.11506] [PMID: 33236822]
[119]
Wang, B.; Zhang, W.; Zhou, X.; Liu, M.; Hou, X.; Cheng, Z.; Chen, D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv., 2019, 26(1), 1265-1279.
[http://dx.doi.org/10.1080/10717544.2019.1693707] [PMID: 31777307]
[120]
Zhang, L.J.; Huang, R.; Shen, Y.W.; Liu, J.; Wu, Y.; Jin, J.M.; Zhang, H.; Sun, Y.; Chen, H.Z.; Luan, X. Enhanced anti-tumor efficacy by inhibiting HIF-1 α to reprogram TAMs via core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy. Biomater. Sci., 2021, 9(19), 6403-6415.
[http://dx.doi.org/10.1039/D1BM00675D] [PMID: 34259235]
[121]
Rauh, M.J.; Sly, L.M.; Kalesnikoff, J.; Hughes, M.R.; Cao, L.P.; Lam, V.; Krystal, G. The role of SHIP1 in macrophage programming and activation. Biochem. Soc. Trans., 2004, 32(5), 785-788.
[http://dx.doi.org/10.1042/BST0320785] [PMID: 15494015]
[122]
Villalobos-Ayala, K.; Ortiz Rivera, I.; Alvarez, C.; Husain, K.; DeLoach, D.; Krystal, G.; Hibbs, M.L.; Jiang, K.; Ghansah, T. Apigenin increases ship-1 expression, promotes tumoricidal macrophages and anti-tumor immune responses in murine pancreatic cancer. Cancers , 2020, 12(12), 3631.
[http://dx.doi.org/10.3390/cancers12123631] [PMID: 33291556]
[123]
Lin, Y.; Zhang, M.; Zhou, L.; Wang, Y.; Wang, M.; Du, J.; Kui, F.; Gu, W.; Lin, H.; Li, H. Melatonin maintains macrophage m1 phenotype to reverse lps-stimulated tumor immune tolerance. 2020.
[http://dx.doi.org/10.21203/rs.3.rs-37928/v1]
[124]
Cheuk, I.W.; Chen, J.; Siu, M.; Ho, J.C.; Lam, S.S.; Shin, V.Y.; Kwong, A. Resveratrol enhanced chemosensitivity by reversing macrophage polarization in breast cancer. Clin. Transl. Oncol., 2022, 24(5), 854-863.
[http://dx.doi.org/10.1007/s12094-021-02731-5] [PMID: 34859370]
[125]
Bart, V.M.T.; Pickering, R.J.; Taylor, P.R.; Ipseiz, N. Macrophage reprogramming for therapy. Immunology, 2021, 163(2), 128-144.
[http://dx.doi.org/10.1111/imm.13300] [PMID: 33368269]
[126]
Liao, Y.; Shen, W.; Kong, G.; Lv, H.; Tao, W.; Bo, P. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells. PLoS One, 2014, 9(3), e92007.
[http://dx.doi.org/10.1371/journal.pone.0092007] [PMID: 24646936]
[127]
Gao, F.; Lin, Y.; Zhang, M.; Niu, Y.; Sun, L.; Li, W.; Xia, H.; Lin, H.; Guo, Z.; Du, G. The combination of lps and melatonin induces m2 macrophage apoptosis to prevent lung cancer. Explor. Res. Hypothesis Med., 2022, 7(4), 201-216.
[http://dx.doi.org/10.14218/ERHM.2022.00014]
[128]
Wang, Y.; Lin, Y.X.; Qiao, S.L.; Wang, J.; Wang, H. Progress in tumor-associated macrophages: From bench to bedside. Adv. Biosyst., 2019, 3(2), 1800232.
[http://dx.doi.org/10.1002/adbi.201800232] [PMID: 32627370]
[129]
Vari, F.; Arpon, D.; Keane, C.; Hertzberg, M.S.; Talaulikar, D.; Jain, S.; Cui, Q.; Han, E.; Tobin, J.; Bird, R.; Cross, D.; Hernandez, A.; Gould, C.; Birch, S.; Gandhi, M.K. Immune evasion viaPD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood, 2018, 131(16), 1809-1819.
[http://dx.doi.org/10.1182/blood-2017-07-796342] [PMID: 29449276]
[130]
Mukherjee, S.; Fried, A.; Hussaini, R.; White, R.; Baidoo, J.; Yalamanchi, S.; Banerjee, P. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 168-168.
[http://dx.doi.org/10.1186/s13046-018-0792-5] [PMID: 30041669]
[131]
Pan, J.; Shen, J.; Si, W.; Du, C.; Chen, D.; Xu, L.; Yao, M.; Fu, P.; Fan, W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget, 2017, 8(39), 65743-65758.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[132]
Hu, L.; Cao, D.; Li, Y.; He, Y.; Guo, K. Resveratrol sensitized leukemia stem cell-like KG-1a cells to cytokine-induced killer cells-mediated cytolysis through NKG2D ligands and TRAIL receptors. Cancer Biol. Ther., 2012, 13(7), 516-526.
[http://dx.doi.org/10.4161/cbt.19601] [PMID: 22406996]
[133]
Lee, Y.J.; Kim, J. Resveratrol activates natural killer cells through akt- and mTORC2-mediated c-MYB upregulation. Int. J. Mol. Sci., 2020, 21(24), 9575.
[http://dx.doi.org/10.3390/ijms21249575] [PMID: 33339133]
[134]
Jeong, S.K.; Yang, K.; Park, Y.S.; Choi, Y.J.; Oh, S.J.; Lee, C.W.; Lee, K.Y.; Jeong, M.H.; Jo, W.S. Interferon gamma induced by resveratrol analog, HS-1793, reverses the properties of tumor associated macrophages. Int. Immunopharmacol., 2014, 22(2), 303-310.
[http://dx.doi.org/10.1016/j.intimp.2014.07.004] [PMID: 25042796]
[135]
Wang, X.; Guo, G.; Guan, H.; Yu, Y.; Lu, J.; Yu, J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 87.
[http://dx.doi.org/10.1186/s13046-019-1085-3] [PMID: 30777100]
[136]
Ju, X.; Zhang, H.; Zhou, Z.; Chen, M.; Wang, Q. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling. Exp. Cell Res., 2020, 396(2), 112315.
[http://dx.doi.org/10.1016/j.yexcr.2020.112315] [PMID: 33031808]
[137]
Qu, Q.X.; Huang, Q.; Shen, Y.; Zhu, Y.B.; Zhang, X.G. The increase of circulating PD-L1-expressing CD68+ macrophage in ovarian cancer. Tumour Biol., 2016, 37(4), 5031-5037.
[http://dx.doi.org/10.1007/s13277-015-4066-y] [PMID: 26541760]
[138]
Han, X.; Zhao, N.; Zhu, W.; Wang, J.; Liu, B.; Teng, Y. Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. Cell. Immunol., 2021, 368, 104423.
[http://dx.doi.org/10.1016/j.cellimm.2021.104423] [PMID: 34399171]
[139]
Cheng, L.; Liu, J.; Liu, Q.; Liu, Y.; Fan, L.; Wang, F.; Yu, H.; Li, Y.; Bu, L.; Li, X.; Wei, W.; Wang, H.; Sun, G. Exosomes from melatonin treated hepatocellularcarcinoma cells alter the immunosupression status through stat3 pathway in macrophages. Int. J. Biol. Sci., 2017, 13(6), 723-734.
[http://dx.doi.org/10.7150/ijbs.19642] [PMID: 28655998]
[140]
Chen, D.; Zhang, X.; Li, Z.; Zhu, B. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics, 2021, 11(3), 1016-1030.
[http://dx.doi.org/10.7150/thno.51777] [PMID: 33391518]
[141]
Wu, K.; Lin, K.; Li, X.; Yuan, X.; Xu, P.; Ni, P.; Xu, D. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front. Immunol., 2020, 11, 1731.
[http://dx.doi.org/10.3389/fimmu.2020.01731] [PMID: 32849616]
[142]
Qu, P.; Wang, L.; Lin, P.C. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Lett., 2016, 380(1), 253-256.
[http://dx.doi.org/10.1016/j.canlet.2015.10.022] [PMID: 26519756]
[143]
DeLeon-Pennell, K.Y.; Barker, T.H.; Lindsey, M.L. Fibroblasts: The arbiters of extracellular matrix remodeling. Matrix Biol., 2020, 91-92, 1-7.
[http://dx.doi.org/10.1016/j.matbio.2020.05.006] [PMID: 32504772]
[144]
Omidi, Y.; Barar, J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts, 2014, 4(2), 55-67.
[PMID: 25035848]
[145]
Jiang, Y.; Wang, C.; Zhou, S. Targeting tumor microenvironment in ovarian cancer: Premise and promise. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188361.
[http://dx.doi.org/10.1016/j.bbcan.2020.188361] [PMID: 32234508]
[146]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[147]
Conti, I.; Rollins, B.J. CCL2 (monocyte chemoattractant protein-1) and cancer. Semin. Cancer Biol., 2004, 14(3), 149-154.
[http://dx.doi.org/10.1016/j.semcancer.2003.10.009] [PMID: 15246049]
[148]
Liu, D.; Lu, Q.; Wang, X.; Wang, J.; Lu, N.; Jiang, Z.; Hao, X.; Li, J.; Liu, J.; Cao, P.; Peng, G.; Tao, Y.; Zhao, D.; He, F.; Tang, L. LSECtin on tumor-associated macrophages enhances breast cancer stemness via interaction with its receptor BTN3A3. Cell Res., 2019, 29(5), 365-378.
[http://dx.doi.org/10.1038/s41422-019-0155-6] [PMID: 30858559]
[149]
Fan, Q.M.; Jing, Y.Y.; Yu, G.F.; Kou, X.R.; Ye, F.; Gao, L.; Li, R.; Zhao, Q.D.; Yang, Y.; Lu, Z.H.; Wei, L.X. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett., 2014, 352(2), 160-168.
[http://dx.doi.org/10.1016/j.canlet.2014.05.008] [PMID: 24892648]
[150]
Wan, S.; Zhao, E.; Kryczek, I.; Vatan, L.; Sadovskaya, A.; Ludema, G.; Simeone, D.M.; Zou, W.; Welling, T.H. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014, 147(6), 1393-1404.
[http://dx.doi.org/10.1053/j.gastro.2014.08.039] [PMID: 25181692]
[151]
Iriki, T.; Ohnishi, K.; Fujiwara, Y.; Horlad, H.; Saito, Y.; Pan, C.; Ikeda, K.; Mori, T.; Suzuki, M.; Ichiyasu, H.; Kohrogi, H.; Takeya, M.; Komohara, Y. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression viaSTAT3 activation. Lung Cancer, 2017, 106, 22-32.
[http://dx.doi.org/10.1016/j.lungcan.2017.01.003] [PMID: 28285690]
[152]
Zhu, X.; Shen, H.; Yin, X.; Yang, M.; Wei, H.; Chen, Q.; Feng, F.; Liu, Y.; Xu, W.; Li, Y. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J. Exp. Clin. Cancer Res., 2019, 38(1), 81.
[http://dx.doi.org/10.1186/s13046-019-1095-1] [PMID: 30770776]
[153]
Xin, L.; Zhou, L.Q.; Liu, C.; Zeng, F.; Yuan, Y.W.; Zhou, Q.; Li, S.H.; Wu, Y.; Wang, J.L.; Wu, D.Z.; Lu, H. Transfer of LncRNA CRNDE in TAM‐derived exosomes is linked with cisplatin resistance in gastric cancer. EMBO Rep., 2021, 22(12), e52124.
[http://dx.doi.org/10.15252/embr.202052124] [PMID: 34647680]
[154]
Lopez-Yrigoyen, M.; Cassetta, L.; Pollard, J.W. Macrophage targeting in cancer. Ann. N. Y. Acad. Sci., 2021, 1499(1), 18-41.
[http://dx.doi.org/10.1111/nyas.14377] [PMID: 32445205]
[155]
Buchholz, S.M.; Goetze, R.G.; Singh, S.K.; Ammer-Herrmenau, C.; Richards, F.M.; Jodrell, D.I.; Buchholz, M.; Michl, P.; Ellenrieder, V.; Hessmann, E.; Neesse, A. Depletion of macrophages improves therapeutic response to gemcitabine in murine pancreas cancer. Cancers , 2020, 12(7), 1978.
[http://dx.doi.org/10.3390/cancers12071978] [PMID: 32698524]
[156]
Shen, C.K.; Huang, B.R.; Yeh, W.L.; Chen, C.W.; Liu, Y.S.; Lai, S.W.; Tseng, W.P.; Lu, D.Y.; Tsai, C.F. Regulatory effects of IL-1β in the interaction of GBM and tumor-associated monocyte through VCAM-1 and ICAM-1. Eur. J. Pharmacol., 2021, 905, 174216.
[http://dx.doi.org/10.1016/j.ejphar.2021.174216] [PMID: 34058204]
[157]
Hu, R.; Han, Q.; Zhang, J. STAT3: A key signaling molecule for converting cold to hot tumors. Cancer Lett., 2020, 489, 29-40.
[http://dx.doi.org/10.1016/j.canlet.2020.05.035] [PMID: 32522692]
[158]
Aslan, C.; Maralbashi, S.; Salari, F.; Kahroba, H.; Sigaroodi, F.; Kazemi, T.; Kharaziha, P. Tumor‐derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J. Cell. Physiol., 2019, 234(10), 16885-16903.
[http://dx.doi.org/10.1002/jcp.28374] [PMID: 30793767]
[159]
Li, B.; Song, T.N.; Wang, F.R.; Yin, C.; Li, Z.; Lin, J.P.; Meng, Y.Q.; Feng, H.M.; Jing, T. Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1+ TAM expansion. Oncogenesis, 2019, 8(3), 17.
[http://dx.doi.org/10.1038/s41389-019-0126-2] [PMID: 30796203]
[160]
Shiri, S.; Alizadeh, A.M.; Baradaran, B.; Farhanghi, B.; Shanehbandi, D.; Khodayari, S.; Khodayari, H.; Tavassoli, A. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac. J. Cancer Prev., 2015, 16(9), 3917-3922.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3917] [PMID: 25987060]
[161]
Mukherjee, S.; Hussaini, R.; White, R.; Atwi, D.; Fried, A.; Sampat, S.; Piao, L.; Pan, Q.; Banerjee, P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol. Immunother., 2018, 67(5), 761-774.
[http://dx.doi.org/10.1007/s00262-018-2130-3] [PMID: 29453519]
[162]
Zhang, X.; Tian, W.; Cai, X.; Wang, X.; Dang, W.; Tang, H.; Cao, H.; Wang, L.; Chen, T. Hydrazinocurcumin encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following stat3 suppression. PLoS One, 2013, 8(6), e65896.
[http://dx.doi.org/10.1371/journal.pone.0065896] [PMID: 23825527]
[163]
Singh, M.; Ramos, I.; Asafu-Adjei, D.; Quispe-Tintaya, W.; Chandra, D.; Jahangir, A.; Zang, X.; Aggarwal, B.B.; Gravekamp, C. Curcumin improves the therapeutic efficacy of Listeria at ‐ M age‐b vaccine in correlation with improved T‐cell responses in blood of a triple‐negative breast cancer model 4T1. Cancer Med., 2013, 2(4), 571-582.
[http://dx.doi.org/10.1002/cam4.94] [PMID: 24156030]
[164]
Pang, L.; Han, S.; Jiao, Y.; Jiang, S.; He, X.; Li, P. Bu Fei decoction attenuates the tumor associated macrophage stimulated proliferation, migration, invasion and immunosuppression of non-small cell lung cancer, partially via IL-10 and PD-l1 regulation. Int. J. Oncol., 2017, 51(1), 25-38.
[http://dx.doi.org/10.3892/ijo.2017.4014] [PMID: 28534943]
[165]
Majidpoor, J.; Mortezaee, K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell. Oncol., 2021, 44(4), 715-737.
[http://dx.doi.org/10.1007/s13402-021-00602-3] [PMID: 33835425]
[166]
Larionova, I.; Kazakova, E.; Gerashchenko, T.; Kzhyshkowska, J. New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis. Cancers , 2021, 13(13), 3253.
[http://dx.doi.org/10.3390/cancers13133253] [PMID: 34209679]
[167]
Cook, K.M.; Figg, W.D. Angiogenesis inhibitors: Current strategies and future prospects. CA Cancer J. Clin., 2010, 60(4), 222-243.
[http://dx.doi.org/10.3322/caac.20075] [PMID: 20554717]
[168]
Galdiero, M.R.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol., 2013, 228(7), 1404-1412.
[http://dx.doi.org/10.1002/jcp.24260] [PMID: 23065796]
[169]
Xu, F.; Wei, Y.; Tang, Z.; Liu, B.; Dong, J. Tumor associated macrophages in lung cancer: Friendly or evil?(Review) Mol. Med. Rep., 2020, 22(5), 4107-4115.
[http://dx.doi.org/10.3892/mmr.2020.11518] [PMID: 33000214]
[170]
Nisar, S.; Yousuf, P.; Masoodi, T.; Wani, N.A.; Hashem, S.; Singh, M.; Sageena, G.; Mishra, D.; Kumar, R.; Haris, M.; Bhat, A.A.; Macha, M.A. Chemokine-cytokine networks in the head and neck tumor microenvironment. Int. J. Mol. Sci., 2021, 22(9), 4584.
[http://dx.doi.org/10.3390/ijms22094584] [PMID: 33925575]
[171]
Li, L.; Yu, R.; Cai, T.; Chen, Z.; Lan, M.; Zou, T.; Wang, B.; Wang, Q.; Zhao, Y.; Cai, Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int. Immunopharmacol., 2020, 88, 106939.
[http://dx.doi.org/10.1016/j.intimp.2020.106939] [PMID: 33182039]
[172]
Xin, H.; Herrmann, A.; Reckamp, K.; Zhang, W.; Pal, S.; Hedvat, M.; Zhang, C.; Liang, W.; Scuto, A.; Weng, S.; Morosini, D.; Cao, Z.A.; Zinda, M.; Figlin, R.; Huszar, D.; Jove, R.; Yu, H. Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res., 2011, 71(21), 6601-6610.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1217] [PMID: 21920898]
[173]
de Groot, J.; Liang, J.; Kong, L.Y.; Wei, J.; Piao, Y.; Fuller, G.; Qiao, W.; Heimberger, A.B. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget, 2012, 3(9), 1036-1048.
[http://dx.doi.org/10.18632/oncotarget.663] [PMID: 23013619]
[174]
Bauer, D.; Redmon, N.; Mazzio, E.; Soliman, K.F. Apigenin inhibits TNF α/IL-1 α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One, 2017, 12(4), e0175558-e0175558.
[http://dx.doi.org/10.1371/journal.pone.0175558] [PMID: 28441391]
[175]
Gai, X.; Zhou, P.; Xu, M.; Liu, Z.; Zheng, X.; Liu, Q. Hyperactivation of IL-6/STAT3 pathway leaded to the poor prognosis of post-TACE HCCs by HIF-1 α/SNAI1 axis-induced epithelial to mesenchymal transition. J. Cancer, 2020, 11(3), 570-582.
[http://dx.doi.org/10.7150/jca.35631] [PMID: 31942180]
[176]
Fang, B.; Chen, X.; Wu, M.; Kong, H.; Chu, G.; Zhou, Z.; Zhang, C.; Chen, B. Luteolin inhibits angiogenesis of the M2 like TAMs via the downregulation of hypoxia inducible factor 1α and the STAT3 signalling pathway under hypoxia. Mol. Med. Rep., 2018, 18(3), 2914-2922.
[http://dx.doi.org/10.3892/mmr.2018.9250] [PMID: 30015852]
[177]
Kuroda, M.; Mimaki, Y.; Honda, S.; Tanaka, H.; Yokota, S.; Mae, T. Phenolics from Glycyrrhiza glabra roots and their ppar-γ ligand-binding activity. Bioorg. Med. Chem., 2010, 18(2), 962-970.
[http://dx.doi.org/10.1016/j.bmc.2009.11.027] [PMID: 20022509]
[178]
Wang, C.; Li, Y.; Chen, H.; Huang, K.; Liu, X.; Qiu, M.; Liu, Y.; Yang, Y.; Yang, J. CYP4X1 inhibition by flavonoid CH625 normalizes glioma vasculature through reprogramming tams via CB2 and egfr-stat3 axis. J. Pharmacol. Exp. Ther., 2018, 365(1), 72-83.
[http://dx.doi.org/10.1124/jpet.117.247130] [PMID: 29437915]
[179]
Wang, C.; Li, Y.; Chen, H.; Zhang, J.; Zhang, J.; Qin, T.; Duan, C.; Chen, X.; Liu, Y.; Zhou, X.; Yang, J. Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett., 2017, 402, 131-141.
[http://dx.doi.org/10.1016/j.canlet.2017.05.030] [PMID: 28602979]
[180]
Gong, G.; Wang, H.; Kong, X.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. Flavonoids are identified from the extract of Scutellariae radix to suppress inflammatory-induced angiogenic responses in cultured RAW 264.7 macrophages. Sci. Rep., 2018, 8(1), 17412.
[http://dx.doi.org/10.1038/s41598-018-35817-2] [PMID: 30479366]
[181]
Woo, J.H.; Ahn, J.H.; Jang, D.S.; Lee, K.T.; Choi, J.H. Effect of kumatakenin isolated from cloves on the apoptosis of cancer cells and the alternative activation of tumor-associated macrophages. J. Agric. Food Chem., 2017, 65(36), 7893-7899.
[http://dx.doi.org/10.1021/acs.jafc.7b01543] [PMID: 28763204]
[182]
Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J. Biomed. Sci., 2019, 26(1), 78.
[http://dx.doi.org/10.1186/s12929-019-0568-z] [PMID: 31629410]
[183]
Lim, S.Y.; Yuzhalin, A.E.; Gordon-Weeks, A.N.; Muschel, R.J. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene, 2016, 35(44), 5735-5745.
[http://dx.doi.org/10.1038/onc.2016.107] [PMID: 27086923]
[184]
Wyckoff, J.B.; Wang, Y.; Lin, E.Y.; Li, J.; Goswami, S.; Stanley, E.R.; Segall, J.E.; Pollard, J.W.; Condeelis, J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res., 2007, 67(6), 2649-2656.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1823] [PMID: 17363585]
[185]
Wang, R.; Zhang, J.; Chen, S.; Lu, M.; Luo, X.; Yao, S.; Liu, S.; Qin, Y.; Chen, H. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer, 2011, 74(2), 188-196.
[http://dx.doi.org/10.1016/j.lungcan.2011.04.009] [PMID: 21601305]
[186]
Ding, L.; Liang, G.; Yao, Z.; Zhang, J.; Liu, R.; Chen, H.; Zhou, Y.; Wu, H.; Yang, B.; He, Q. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget, 2015, 6(34), 36441-36455.
[http://dx.doi.org/10.18632/oncotarget.5541] [PMID: 26497364]
[187]
Pradhan, R.; Chatterjee, S.; Hembram, K.C.; Sethy, C.; Mandal, M.; Kundu, C.N. Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J. Nutr. Biochem., 2021, 92, 108624.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108624] [PMID: 33705943]
[188]
Kimura, Y.; Sumiyoshi, M. Resveratrol prevents tumor growth and metastasis by inhibiting lymphangiogenesis and m2 macrophage activation and differentiation in tumor-associated macrophages. Nutr. Cancer, 2016, 68(4), 667-678.
[http://dx.doi.org/10.1080/01635581.2016.1158295] [PMID: 27145432]
[189]
Choi, H.J.; Choi, H.J.; Chung, T.W.; Ha, K.T. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C-C motif) ligand 2 expression in tumor-associated macrophage. Biochem. Biophys. Res. Commun., 2016, 470(1), 101-106.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.002] [PMID: 26766793]
[190]
McClelland, S.; Cox, C.; O’Connor, R.; de Gaetano, M.; McCarthy, C.; Cryan, L.; Fitzgerald, D.; Belton, O. Conjugated linoleic acid suppresses the migratory and inflammatory phenotype of the monocyte/macrophage cell. Atherosclerosis, 2010, 211(1), 96-102.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.003] [PMID: 20223456]
[191]
Tsai, C.H.; Tzeng, S.F.; Hsieh, S.C.; Yang, Y.C.; Hsiao, Y.W.; Tsai, M.H.; Hsiao, P.W. A standardized herbal extract mitigates tumor inflammation and augments chemotherapy effect of docetaxel in prostate cancer. Sci. Rep., 2017, 7(1), 15624.
[http://dx.doi.org/10.1038/s41598-017-15934-0] [PMID: 29142311]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy