Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Nanomaterials used in Flexible Electronics: Recent Trends and Future Approaches

Author(s): Smita Wagholikar*, Preeti Mulay, Omkar Wagholikar and Varnika Mulay

Volume 18, Issue 6, 2024

Published on: 12 July, 2023

Article ID: e190523217123 Pages: 12

DOI: 10.2174/1872212118666230519161338

Price: $65

conference banner
Abstract

The latest research in soft electronics reveals a substantial demand for devices that can fold, bend and stretch to suit the requirements of technological advances. Cellulose, silk, and elastomers are employed in making biodegradable, environmentally benign substrates that accommodate nanofibers, nanoparticles, nanotubes, graphene, and biomaterials in their nano-form. Flexible materials can hold circuits and sensors and can substitute conventional substrates. Transient electronics, e-skin, and biosensors are the most sought-after in medical technology, sensors, energy storage devices, and wearables. These stretchable materials lead the way for developing eco-friendly and sustainable technology to attain sustainable development goals. This research work discusses nano species imbibed in printable and flexible electronics. An analysis of the documents extracted from the Scopus database using VOSviewer and patents in the domain of flexible electronics are presented along with altmetrics.

Graphical Abstract

[1]
J. Qi, S. Chen, C. Lan, A.C. Wang, X. Cui, Z. You, Q. Zhang, Y. Li, Z.L. Wang, H. Wang, and Z. Lin, "Large‐grained perovskite films enabled by one-step meniscus‐assisted solution printing of cross‐aligned conductive nanowires for biodegradable flexible solar cells", Adv. Energy Mater., vol. 10, no. 35, p. 2001185, 2020.
[http://dx.doi.org/10.1002/aenm.202001185]
[2]
S. Saha, S. Dawood, P. Butreddy, G. Pathiraja, and H. Rathnayake, "Novel biodegradable low- κ dielectric nanomaterials from natural polyphenols", RSC Advances, vol. 11, no. 27, pp. 16698-16705, 2021.
[http://dx.doi.org/10.1039/D1RA01513C] [PMID: 35479177]
[3]
P. Sahatiya, A. Kadu, H. Gupta, P. Thanga Gomathi, and S. Badhulika, "Flexible, disposable cellulose-paper-based MoS2/Cu2S hybrid for wireless environmental monitoring and multifunctional sensing of chemical stimuli", ACS Appl. Mater. Interfaces, vol. 10, no. 10, pp. 9048-9059, 2018.
[http://dx.doi.org/10.1021/acsami.8b00245] [PMID: 29442495]
[4]
P. Sivasubramanian, J.H. Chang, S. Nagendran, C.D. Dong, M. Shkir, and M. Kumar, "A review on bismuth-based nanocomposites for energy and environmental applications", Chemosphere, vol. 307, no. 1, p. 135652, 2022.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135652] [PMID: 35817189]
[5]
R. Hossain, K. Hassan, and V. Sahajwalla, "Utilising problematic waste to detect toxic gas release in the environment: Fabricating a NiO doped CuO nanoflake based ammonia sensor from e-waste", Nanoscale Adv., vol. 4, no. 19, pp. 4066-4079, 2022.
[http://dx.doi.org/10.1039/D1NA00743B] [PMID: 36285214]
[6]
Y. Yao, L. Lan, X. Liu, Y. Ying, and J. Ping, "Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics", Biosens. Bioelectron., vol. 148, p. 111799, 2020.
[http://dx.doi.org/10.1016/j.bios.2019.111799] [PMID: 31675611]
[7]
E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, and M.C. Hersam, "Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose", Chem. Mater., vol. 29, no. 5, pp. 2332-2340, 2017.
[http://dx.doi.org/10.1021/acs.chemmater.7b00029]
[8]
B. Seong, H. Lee, J. Lee, L. Lin, H.S. Jang, and D. Byun, "Biomimetic, flexible, and self-healable printed silver electrode by spontaneous self-layering phenomenon of a gelatin scaffold", ACS Appl. Mater. Interfaces, vol. 10, no. 30, pp. 25666-25672, 2018.
[http://dx.doi.org/10.1021/acsami.8b10052] [PMID: 29992804]
[9]
K.A. Deo, M.K. Jaiswal, S. Abasi, G. Lokhande, S. Bhunia, T.U. Nguyen, and A.K. Gaharwar, "Nanoengineered ink for designing 3D printable flexible bioelectronics", ACS Nano, vol. 16, no. 6, pp. 8798-8811, 2022.
[10]
F.B. Kadumudi, M. Hasany, M.K. Pierchala, M. Jahanshahi, N. Taebnia, M. Mehrali, C.F. Mitu, M.A. Shahbazi, T.G. Zsurzsan, A. Knott, T.L. Andresen, and A. Dolatshahi-Pirouz, "The manufacture of unbreakable bionics via multifunctional and self-healing silk–graphene hydrogels", Adv. Mater., vol. 33, no. 35, p. 2100047, 2021.
[http://dx.doi.org/10.1002/adma.202100047] [PMID: 34247417]
[11]
T. Liu, W. Wu, K.N. Liao, Q. Sun, X. Gong, V.A.L. Roy, Z.Z. Yu, and R.K.Y. Li, "Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices", Carbohydr. Polym., vol. 214, pp. 213-220, 2019.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.040] [PMID: 30925991]
[12]
J. Chen, L. Li, Z. Zhu, Z. Luo, W. Tang, L. Wang, and H. Li, "Bioinspired design of highly sensitive flexible tactile sensors for wearable healthcare monitoring", Mater. Today Chem., vol. 23, p. 100718, 2022.
[http://dx.doi.org/10.1016/j.mtchem.2021.100718]
[13]
J.V. Vaghasiya, "K. Křípalová, S. Hermanová, C.C. Mayorga-Martinez, and M. Pumera, “Real-time biomonitoring device based on 2D black phosphorus and polyaniline nanocomposite flexible supercapacitors”", Small, vol. 17, no. 38, p. 2102337, 2021.
[http://dx.doi.org/10.1002/smll.202102337] [PMID: 34369073]
[14]
S.W. Hwang, C.H. Lee, H. Cheng, J.W. Jeong, S.K. Kang, J.H. Kim, J. Shin, J. Yang, Z. Liu, G.A. Ameer, Y. Huang, and J.A. Rogers, "Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors", Nano Lett., vol. 15, no. 5, pp. 2801-2808, 2015.
[http://dx.doi.org/10.1021/nl503997m] [PMID: 25706246]
[15]
Y.S. Zhang, S.A. Jiang, J.D. Lin, P.C. Yang, and C.R. Lee, "Stretchable freestanding films of 3D nanocrystalline blue phase elastomer and their tunable applications", Adv. Opt. Mater., vol. 9, no. 1, p. 2001427, 2021.
[http://dx.doi.org/10.1002/adom.202001427]
[16]
Z. Bao, "Skin-inspired organic electronic materials and devices", MRS Bull., vol. 41, no. 11, pp. 897-904, 2016.
[http://dx.doi.org/10.1557/mrs.2016.247]
[17]
M. Chen, X. Hu, K. Li, J. Sun, Z. Liu, B. An, X. Zhou, and Z. Liu, "Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive films for wearable tactile sensors and artificial skin", Carbon, vol. 164, pp. 111-120, 2020.
[http://dx.doi.org/10.1016/j.carbon.2020.03.042]
[18]
Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang, A. Dai, R. Doshi, A. Huang, Y. Song, R. Gehlhar, A.D. Ames, and W. Gao, "Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces", Sci. Robot., vol. 5, no. 41, p. eaaz7946, 2020.
[http://dx.doi.org/10.1126/scirobotics.aaz7946] [PMID: 32607455]
[19]
Q. Wang, M. Jian, C. Wang, and Y. Zhang, "Carbonized silk nanofiber membrane for transparent and sensitive electronic skin", Adv. Funct. Mater., vol. 27, no. 9, p. 1605657, 2017.
[http://dx.doi.org/10.1002/adfm.201605657]
[20]
M. Zhang, C. Wang, Q. Wang, M. Jian, and Y. Zhang, "Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors", ACS Appl. Mater. Interfaces, vol. 8, no. 32, pp. 20894-20899, 2016.
[http://dx.doi.org/10.1021/acsami.6b06984] [PMID: 27462991]
[21]
D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, and Y. Chen, "Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage", Nat. Nanotechnol., vol. 9, no. 7, pp. 555-562, 2014.
[http://dx.doi.org/10.1038/nnano.2014.93] [PMID: 24813695]
[22]
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.H. Kim, "Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials", Adv. Mater., vol. 28, no. 22, pp. 4203-4218, 2016.
[http://dx.doi.org/10.1002/adma.201504150] [PMID: 26779680]
[23]
J. George, and N S S., "Cellulose nanocrystals: Synthesis, functional properties, and applications", Nanotechnol. Sci. Appl., vol. 8, pp. 45-54, 2015.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[24]
C.R. Kagan, E. Lifshitz, E.H. Sargent, and D.V. Talapin, "Building devices from colloidal quantum dots", Science, vol. 353, no. 6302, p. aac5523, 2016.
[http://dx.doi.org/10.1126/science.aac5523] [PMID: 27563099]
[25]
W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, "Flexible electronics toward wearable sensing", Acc. Chem. Res., vol. 52, no. 3, pp. 523-533, 2019.
[http://dx.doi.org/10.1021/acs.accounts.8b00500] [PMID: 30767497]
[26]
D. López Barreiro, Z. Martín-Moldes, J. Yeo, S. Shen, M.J. Hawker, F.J. Martin-Martinez, D.L. Kaplan, and M.J. Buehler, "Conductive silk-based composites using biobased carbon materials", Adv. Mater., vol. 31, no. 44, p. 1904720, 2019.
[http://dx.doi.org/10.1002/adma.201904720] [PMID: 31532880]
[27]
W. Yang, L. Lv, X. Li, X. Han, M. Li, and C. Li, "Quaternized silk nanofibrils for electricity generation from moisture and ion rectification", ACS Nano, vol. 14, no. 8, pp. 10600-10607, 2020.
[http://dx.doi.org/10.1021/acsnano.0c04686] [PMID: 32806080]
[28]
A. Rai, S. Bhaskar, N. Reddy, and S.S. Ramamurthy, "Cellphone-aided attomolar zinc ion detection using silkworm protein-based nanointerface engineering in a plasmon-coupled dequenched emission platform", ACS Sustain. Chem. Eng., vol. 9, no. 44, pp. 14959-14974, 2021.
[http://dx.doi.org/10.1021/acssuschemeng.1c05437]
[29]
J. Liao, M. Yang, W. Zhang, D. Zeng, C. Ning, and H. Yuan, "Spider silk-inspired universal strategy: Directional patching of one-dimensional nanomaterial-based flexible transparent electrodes for smart flexible electronics", Chem. Eng. J., vol. 389, p. 123663, 2020.
[http://dx.doi.org/10.1016/j.cej.2019.123663]
[30]
Witchey N.J., and Soon-Shiong P., "Smart article visual communication based on facial movement", U.S. Patent 11,457,680, 2022. Washington, DC: U.S. Patent and Trademark Office https://patents.google.com/patent/US11457680B2/en
[31]
Dincer C., Laubender E., Maier D., Schumann S., Urban G., and Guder F., "Disposable wearable sensor for continuous monitoring of breath biochemistry", U.S. Patent 17/612,617, , 2022. https://patents.google.com/patent/US20220240808A1/en
[32]
Han J.W., Meyyappan M., and Moon D.I., "Physically unclonable all-printed carbon nanotube network", U.S. Patent 11,244,775, 2022. Washington, DC: U.S. Patent and Trademark Office https://patents.google.com/patent/US11244775B2/en
[33]
Roumi F., and Roumi M., "Three-dimensional ion transport networks and current collectors for electrochemical cells", U.S. Patent 11,271,214, 2022. Washington, DC: U.S. Patent and Trademark Office., 2022. https://patents.google.com/patent/US11271214B2/en
[34]
Gogotsi Y., and Anasori B., "Antennas comprising MX-ene films and composites", U.S. Patent 11,456,527, 2022. Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/US11456527B2/en
[35]
Haick H., and Khatib M., "Hydrolytically stable self-healing elastomer", U.S. Patent 17/613,826, 2022. https://patents.google.com/patent/US20220243014A1/en
[36]
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D.H. Kim, "Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials", Adv. Materials, vol. 28, no. 22, pp. 4203-4218, 2022.
[37]
Y. Yang, and W. Gao, "Wearable and flexible electronics for continuous molecular monitoring", Chem. Soc. Rev., vol. 48, no. 6, pp. 1465-1491, 2019.
[http://dx.doi.org/10.1039/C7CS00730B] [PMID: 29611861]
[38]
S. Park, S.W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, and T. Someya, "Self-powered ultra-flexible electronics via nano-grating patterned organic photovoltaics", Nature, vol. 561, no. 7724, pp. 516-521, 2018.
[http://dx.doi.org/10.1038/s41586-018-0536-x] [PMID: 30258137]
[39]
K.I. Jang, K. Li, H.U. Chung, S. Xu, H.N. Jung, Y. Yang, J.W. Kwak, H.H. Jung, J. Song, C. Yang, A. Wang, Z. Liu, J.Y. Lee, B.H. Kim, J.H. Kim, J. Lee, Y. Yu, B.J. Kim, H. Jang, K.J. Yu, J. Kim, J.W. Lee, J.W. Jeong, Y.M. Song, Y. Huang, Y. Zhang, and J.A. Rogers, "Self-assembled three dimensional network designs for soft electronics", Nat. Commun., vol. 8, no. 1, p. 15894, 2017.
[http://dx.doi.org/10.1038/ncomms15894] [PMID: 28635956]
[40]
Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang, A. Dai, and W. Gao, "Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces", Sci. Robotics, vol. 5, no. 41, p. eaaz7946, 2022.
[41]
K.K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M.K. Awasthi, and A. Pandey, "Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review", Environ. Res., vol. 207, p. 112202, 2022.
[http://dx.doi.org/10.1016/j.envres.2021.112202] [PMID: 34655607]
[42]
Y. Xin, K. Odachi, and T. Shirai, "Fabrication of ultra-bright carbon nano-onions via a one-step microwave pyrolysis of fish scale waste in seconds", Green Chem., vol. 24, no. 10, pp. 3969-3976, 2022.
[http://dx.doi.org/10.1039/D1GC04785J]
[43]
L. Wang, D. Xiang, E. Harkin-Jones, X. Zhang, Y. Li, Y. Zheng, C. Zhao, and P. Wang, "A flexible and multipurpose piezoresistive strain sensor based on carbonized phenol formaldehyde foam for human motion monitoring", Macromol. Mater. Eng., vol. 304, -no. 12, p. -1900492,2019.
[http://dx.doi.org/10.1002/mame.201900492]
[44]
M. Yinji, Z. Yingchao, C. Shisheng, H. Zhiyuan, L. Xin, W. Fengle, C. Yu, W. Zhouheng, L. Hangfei, Y. Chen, and X. Feng, "Flexible hybrid electronics for digital healthcare", Adv. Mater., vol. 32, no. 15, p. e1902062, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy