Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Current Concepts of Pain Pathways: A Brief Review of Anatomy, Physiology, and Medical Imaging

Author(s): Daisy-Carolina Gonzalez-Hermosillo, Leslie-Marisol Gonzalez-Hermosillo, Moises Villaseñor-Almaraz, Daniel Ballesteros-Herrera, Sergio Moreno-Jimenez, Roberto Corona-Cedillo, Francisco Velasco-Campos, Jose-Damian Carrillo-Ruiz and Ernesto Roldan-Valadez*

Volume 20, 2024

Published on: 13 July, 2023

Article ID: e190523217114 Pages: 17

DOI: 10.2174/1573405620666230519144112

Price: $65

Abstract

Background: Although the essential components of pain pathways have been identified, a thorough comprehension of the interactions necessary for creating focused treatments is still lacking. Such include more standardised methods for measuring pain in clinical and preclinical studies and more representative study populations.

Objective: This review describes the essential neuroanatomy and neurophysiology of pain nociception and its relation with currently available neuroimaging methods focused on health professionals responsible for treating pain.

Methods: Conduct a PubMed search of pain pathways using pain-related search terms, selecting the most relevant and updated information.

Results: Current reviews of pain highlight the importance of their study in different areas from the cellular level, pain types, neuronal plasticity, ascending, descending, and integration pathways to their clinical evaluation and neuroimaging. Advanced neuroimaging techniques such as fMRI, PET, and MEG are used to better understand the neural mechanisms underlying pain processing and identify potential targets for pain therapy.

Conclusion: The study of pain pathways and neuroimaging methods allows physicians to evaluate and facilitate decision-making related to the pathologies that cause chronic pain. Some identifiable issues include a better understanding of the relationship between pain and mental health, developing more effective interventions for chronic pain's psychological and emotional aspects, and better integrating data from different neuroimaging modalities for the clinical efficacy of new pain therapies.

[1]
Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am 2014; 25(4): 629-38.
[http://dx.doi.org/10.1016/j.nec.2014.06.001] [PMID: 25240653]
[2]
Zuurmond WW, de Lange JJ. Neuroanatomy and anaesthesiology. Ned Tijdschr Tandheelkd 1996; 103(5): 167-9.
[PMID: 11921928]
[3]
Renton T, Egbuniwe O. Pain. Part 2a: Trigeminal anatomy related to pain. Dent Update 2015; 42(3): 238-40.
[http://dx.doi.org/10.12968/denu.2015.42.3.238] [PMID: 26076542]
[4]
Kinney M, Seider J, Beaty AF, Coughlin K, Dyal M, Clewley D. The impact of therapeutic alliance in physical therapy for chronic musculoskeletal pain: A systematic review of the literature. Physiother Theory Pract 2018.
[http://dx.doi.org/10.1080/09593985.2018.1516015:1-13] [PMID: 30265840]
[5]
Mosquera Pan L, Luces Lago AM, Onandia Garate M, Tizón Bouza E. Transcutaneous Electrical Nerve Stimulation (TENS) for Pain Management During Labor. Rev Enferm 2016; 39(11-12): 27-32.
[PMID: 30256499]
[6]
Piovesan A, Mirams L, Poole H, Moore D, Ogden R. The relationship between pain-induced autonomic arousal and perceived duration. Emotion 2018; 19(7): 1148-61.
[http://dx.doi.org/10.1037/emo0000512] [PMID: 30265080]
[7]
Magel J, Hansen P, Meier W, et al. Implementation of an alternative pathway for patients seeking care for low back pain: A prospective observational cohort study. Phys Ther 2018; 98(12): 1000-9.
[http://dx.doi.org/10.1093/ptj/pzy105] [PMID: 30257004]
[8]
Hadi MA, McHugh GA, Closs SJ. Impact of chronic pain on patients’ quality of life: A comparative mixed-methods study. J Patient Exp 2019; 6(2): 133-41.
[http://dx.doi.org/10.1177/2374373518786013] [PMID: 31218259]
[9]
Haverfield MC, Giannitrapani K, Timko C, Lorenz K. Patient-centered pain management communication from the patient perspective. J Gen Intern Med 2018; 33(8): 1374-80.
[http://dx.doi.org/10.1007/s11606-018-4490-y] [PMID: 29845465]
[10]
Swanson N, Swanson LW. Histology of the nervous system of man and vertebrates.History of Neuroscience. New York, NY, USA: Oxford University Press 1995; pp. 805-6.
[11]
Willis WD Jr. The somatosensory system, with emphasis on structures important for pain. Brain Res Brain Res Rev 2007; 55(2): 297-313.
[http://dx.doi.org/10.1016/j.brainresrev.2007.05.010] [PMID: 17604109]
[12]
Treede RD. Gain control mechanisms in the nociceptive system. Pain 2016; 157(6): 1199-204.
[http://dx.doi.org/10.1097/j.pain.0000000000000499] [PMID: 26817644]
[13]
Melzack R, Wall PD. Pain mechanisms: A new theory. Science 1965; 150(3699): 971-9.
[http://dx.doi.org/10.1126/science.150.3699.971] [PMID: 5320816]
[14]
Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 2010; 11(12): 823-36.
[http://dx.doi.org/10.1038/nrn2947] [PMID: 21068766]
[15]
Kwon M, Altin M, Duenas H, Alev L. The role of descending inhibitory pathways on chronic pain modulation and clinical implications. Pain Pract 2014; 14(7): 656-67.
[http://dx.doi.org/10.1111/papr.12145] [PMID: 24256177]
[16]
Lau BK, Vaughan CW. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 2014; 29: 159-64.
[http://dx.doi.org/10.1016/j.conb.2014.07.010] [PMID: 25064178]
[17]
Dinakar P, Stillman AM. Pathogenesis of pain. Semin Pediatr Neurol 2016; 23(3): 201-8.
[http://dx.doi.org/10.1016/j.spen.2016.10.003] [PMID: 27989327]
[18]
Al-Chalabi M, Alsalman I. Neuroanatomy, Posterior Column (Dorsal Column). Treasure Island, FL: StatPearls. StatPearls Publishing StatPearls Publishing LLC 2018.
[19]
Atlas for Stereotaxis of the Human Brain. Stuttgart: Thieme 1969.
[20]
Garland EL. Pain processing in the human nervous system: A selective review of nociceptive and biobehavioral pathways. Prim Care 2012; 39(3): 561-71.
[http://dx.doi.org/10.1016/j.pop.2012.06.013] [PMID: 22958566]
[21]
Clarke CFM, Lawrence KS. Functional imaging for interpretation of pain pathways: Current clinical application/relevance and future initiatives. Curr Pain Headache Rep 2013; 17(2): 311.
[http://dx.doi.org/10.1007/s11916-012-0311-x] [PMID: 23315051]
[22]
Lee GI, Neumeister MW. Pain. Clin Plast Surg 2020; 47(2): 173-80.
[http://dx.doi.org/10.1016/j.cps.2019.11.001] [PMID: 32115044]
[23]
Vanderah TW. Pathophysiology of pain. Med Clin North Am 2007; 91(1): 1-12.
[http://dx.doi.org/10.1016/j.mcna.2006.10.006] [PMID: 17164100]
[24]
Yarnitsky D. Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain 2015; 156 (Suppl. 1): S24-31.
[http://dx.doi.org/10.1097/01.j.pain.0000460343.46847.58] [PMID: 25789433]
[25]
Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res 2017; 95(6): 1336-46.
[http://dx.doi.org/10.1002/jnr.23956] [PMID: 27685982]
[26]
Bao Y, Hou W, Hua B. Protease-activated receptor 2 signalling pathways: A role in pain processing. Expert Opin Ther Targets 2014; 18(1): 15-27.
[http://dx.doi.org/10.1517/14728222.2014.844792] [PMID: 24147628]
[27]
Jakab L. Physiological, pathophysiological and clinical significance of chromogranins/secretogranins. Orv Hetil 2017; 158(28): 1092-9.
[http://dx.doi.org/10.1556/650.2017.30774] [PMID: 28691876]
[28]
Sasaguri T, Taguchi T, Murata Y, et al. Interleukin-27 controls basal pain threshold in physiological and pathological conditions. Sci Rep 2018; 8(1): 11022.
[http://dx.doi.org/10.1038/s41598-018-29398-3] [PMID: 30038376]
[29]
Bannister K, Dickenson AH. What do monoamines do in pain modulation? Curr Opin Support Palliat Care 2016; 10(2): 143-8.
[http://dx.doi.org/10.1097/SPC.0000000000000207] [PMID: 27043287]
[30]
Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care 2014; 8(2): 143-51.
[http://dx.doi.org/10.1097/SPC.0000000000000055] [PMID: 24752199]
[31]
Ely S, Stynes S, Ogollah R, Foster NE, Konstantinou K. Factors associated with physiotherapists’ preference for MRI in primary care patients with low back and leg pain. Musculoskelet Sci Pract 2018; 38: 46-52.
[http://dx.doi.org/10.1016/j.msksp.2018.09.003] [PMID: 30265991]
[32]
Zarghami N, Khrapitchev AA, Perez-Balderas F, et al. Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles. Int J Nanomedicine 2018; 13: 4345-59.
[http://dx.doi.org/10.2147/IJN.S158071] [PMID: 30100719]
[33]
Shi H, Yuan C, Dai Z, Ma H, Sheng L. Gray matter abnormalities associated with fibromyalgia: A meta-analysis of voxel-based morphometric studies. Semin Arthritis Rheum 2016; 46(3): 330-7.
[http://dx.doi.org/10.1016/j.semarthrit.2016.06.002] [PMID: 27989500]
[34]
Pomares FB, Funck T, Feier NA, et al. Histological underpinnings of grey matter changes in fibromyalgia investigated using multimodal brain imaging. J Neurosci 2017; 37(5): 1090-101.
[http://dx.doi.org/10.1523/JNEUROSCI.2619-16.2016] [PMID: 27986927]
[35]
Wu GR, Marinazzo D. Point-process deconvolution of fmri bold signal reveals effective connectivity alterations in chronic pain patients. Brain Topogr 2015; 28(4): 541-7.
[http://dx.doi.org/10.1007/s10548-014-0404-4] [PMID: 25281022]
[36]
Briggs RG, Conner AK, Baker CM, et al. A connectomic atlas of the human cerebrum. Oper Neurosurg (Hagerstown) 2018; 15(suppl_1): S470-80.
[http://dx.doi.org/10.1093/ons/opy272] [PMID: 30260432]
[37]
Li J, Huang X, Sang K, Bodner M, Ma K, Dong XW. Modulation of prefrontal connectivity in postherpetic neuralgia patients with chronic pain: A resting-state functional magnetic resonance-imaging study. J Pain Res 2018; 11: 2131-44.
[http://dx.doi.org/10.2147/JPR.S166571] [PMID: 30323648]
[38]
Baker CM, Burks JD, Briggs RG, et al. A connectomic atlas of the human cerebrum-chapter 3: The motor, premotor, and sensory cortices. Oper Neurosurg (Hagerstown) 2018; 15(suppl_1): S75-S121.
[http://dx.doi.org/10.1093/ons/opy256] [PMID: 30260446]
[39]
Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole MR. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001; 94(2): 149-58.
[http://dx.doi.org/10.1016/S0304-3959(01)00349-9] [PMID: 11690728]
[40]
Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013; 368(15): 1388-97.
[http://dx.doi.org/10.1056/NEJMoa1204471] [PMID: 23574118]
[41]
Woo CW, Schmidt L, Krishnan A, et al. Quantifying cerebral contributions to pain beyond nociception. Nat Commun 2017; 8(1): 14211.
[http://dx.doi.org/10.1038/ncomms14211] [PMID: 28195170]
[42]
Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J Neurophysiol 2013; 109(1): 5-12.
[http://dx.doi.org/10.1152/jn.00457.2012] [PMID: 23034364]
[43]
Chen J. History of pain theories. Neurosci Bull 2011; 27(5): 343-50.
[http://dx.doi.org/10.1007/s12264-011-0139-0] [PMID: 21934730]
[44]
Taylor VA, Roy M, Chang L, Gill LN, Mueller C, Rainville P. Reduced fear-conditioned pain modulation in experienced meditators: A preliminary study. Psychosom Med 2018; 80(9): 799-806.
[http://dx.doi.org/10.1097/PSY.0000000000000634] [PMID: 30134359]
[45]
Hartmann GC, George SZ. Can a power law improve prediction of pain recovery trajectory? Pain Rep 2018; 3(4): e657.
[http://dx.doi.org/10.1097/PR9.0000000000000657] [PMID: 30123854]
[46]
Adhikary SD, Gray K, Janicki P. Pharmacogenomics of analgesics in anesthesia practice: A current update of literature. J Anaesthesiol Clin Pharmacol 2018; 34(2): 155-60.
[http://dx.doi.org/10.4103/joacp.JOACP_319_17] [PMID: 30104820]
[47]
Khalid S, Tubbs RS. Neuroanatomy and neuropsychology of pain. Cureus 2017; 9(10): e1754.
[PMID: 29226044]
[48]
Woolf CJ, Salter MW. Neuronal plasticity: Increasing the gain in pain. Science 2000; 288(5472): 1765-8.
[http://dx.doi.org/10.1126/science.288.5472.1765] [PMID: 10846153]
[49]
Peng YB, Lin Q, Willis WD. Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Res 1996; 736(1-2): 189-201.
[http://dx.doi.org/10.1016/0006-8993(96)00668-3] [PMID: 8930324]
[50]
Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O. The locus coeruleus is a complex and differentiated neuromodulatory system. Neuron 2018; 99(5): 1055-1068.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.07.037] [PMID: 30122373]
[51]
Pomorska D, Gach K, Janecka A. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors. Mini Rev Med Chem 2015; 14(14): 1148-55.
[http://dx.doi.org/10.2174/1389557515666150101095237] [PMID: 25553430]
[52]
Widerström EG, Åslund PG, Gustafsson LE, Mannheimer C, Carlsson SG, Andersson SA. Relations between experimentally induced tooth pain threshold changes, psychometrics and clinical pain relief following TENS. A retrospective study in patients with long-lasting pain. Pain 1992; 51(3): 281-7.
[http://dx.doi.org/10.1016/0304-3959(92)90211-S] [PMID: 1491855]
[53]
García-Larrea L, Peyron R, Mertens P, et al. Electrical stimulation of motor cortex for pain control: A combined PET-scan and electrophysiological study. Pain 1999; 83(2): 259-73.
[http://dx.doi.org/10.1016/S0304-3959(99)00114-1] [PMID: 10534598]
[54]
Nguyen JP, Pollin B, Fève A, Geny C, Cesaro P. Improvement of action tremor by chronic cortical stimulation. Mov Disord 1998; 13(1): 84-8.
[http://dx.doi.org/10.1002/mds.870130118] [PMID: 9452331]
[55]
Fletcher D, Martinez V. Opioid-induced hyperalgesia in patients after surgery: A systematic review and a meta-analysis. Br J Anaesth 2014; 112(6): 991-1004.
[http://dx.doi.org/10.1093/bja/aeu137] [PMID: 24829420]
[56]
Angst MS, Clark JD. Opioid-induced Hyperalgesia: A qualitative systematic review. Anesthesiology 2006; 104(3): 570-87.
[http://dx.doi.org/10.1097/00000542-200603000-00025] [PMID: 16508405]
[57]
Bannister K. Opioid-induced hyperalgesia: Where are we now? Curr Opin Support Palliat Care 2015; 9(2): 116-21.
[http://dx.doi.org/10.1097/SPC.0000000000000137] [PMID: 25872113]
[58]
Tognoli E, Proto PL, Motta G, Galeone C, Mariani L, Valenza F. Methadone for postoperative analgesia: Contribution of N-methyl-d-aspartate receptor antagonism. Eur J Anaesthesiol 2020; 37(10): 934-43.
[http://dx.doi.org/10.1097/EJA.0000000000001217] [PMID: 32516227]
[59]
Malfliet A, Coppieters I, Van Wilgen P, et al. Brain changes associated with cognitive and emotional factors in chronic pain: A systematic review. Eur J Pain 2017; 21(5): 769-86.
[http://dx.doi.org/10.1002/ejp.1003] [PMID: 28146315]
[60]
Davis KD, Moayedi M. Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol 2013; 8(3): 518-34.
[http://dx.doi.org/10.1007/s11481-012-9386-8] [PMID: 22825710]
[61]
Kaptchuk TJ, Friedlander E, Kelley JM, et al. Placebos without deception: A randomized controlled trial in irritable bowel syndrome. PLoS One 2010; 5(12): e15591.
[http://dx.doi.org/10.1371/journal.pone.0015591] [PMID: 21203519]
[62]
Gatzinsky K, Bergh C, Liljegren A, et al. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: A systematic review. Scand J Pain 2021; 21(1): 8-21.
[http://dx.doi.org/10.1515/sjpain-2020-0054] [PMID: 32892189]
[63]
Zeng Y, Ren H, Wan J, Lu J, Zhong F, Deng S. Cervical disc herniation causing Brown-Sequard syndrome. Medicine (Baltimore) 2018; 97(37): e12377.
[http://dx.doi.org/10.1097/MD.0000000000012377] [PMID: 30213001]
[64]
Li ZZ, Hou SX, Shang WL, Song KR, Wu WW. Evaluation of endoscopic dorsal ramus rhizotomy in managing facetogenic chronic low back pain. Clin Neurol Neurosurg 2014; 126: 11-7.
[http://dx.doi.org/10.1016/j.clineuro.2014.08.014] [PMID: 25194305]
[65]
Gadgil N, Viswanathan A. DREZotomy in the treatment of cancer pain: A review. Stereotact Funct Neurosurg 2012; 90(6): 356-60.
[http://dx.doi.org/10.1159/000341072] [PMID: 22922361]
[66]
Javed S, Viswanathan A, Abdi S. Cordotomy for intractable cancer pain: A narrative review. Pain Physician 2020; 23(3): 283-92.
[PMID: 32517394]
[67]
Hong D, Andrén-Sandberg Å. Punctate midline myelotomy: A minimally invasive procedure for the treatment of pain in inextirpable abdominal and pelvic cancer. J Pain Symptom Manage 2007; 33(1): 99-109.
[http://dx.doi.org/10.1016/j.jpainsymman.2006.06.012] [PMID: 17196911]
[68]
Franzini A, Rossini Z, Moosa S, et al. Medial thalamotomy using stereotactic radiosurgery for intractable pain: a systematic review. Neurosurg Rev 2022; 45(1): 71-80.
[http://dx.doi.org/10.1007/s10143-021-01561-x] [PMID: 33978923]
[69]
Sharim J, Pouratian N. Anterior cingulotomy for the treatment of chronic intractable pain: A systematic review. Pain Physician 2016; 19(8): 537-50.
[PMID: 27906933]
[70]
Larkin MB, Karas PJ, McGinnis JP, McCutcheon IE, Viswanathan A. Stereotactic radiosurgery hypophysectomy for palliative treatment of refractory cancer pain: A historical review and update. Front Oncol 2020; 10: 572557.
[http://dx.doi.org/10.3389/fonc.2020.572557] [PMID: 33392075]
[71]
Gaul C. Classic trigeminal neuralgia and neurovascular contact: Diagnostic value of magnetic resonance imaging findings. Pain 2014; 155(8): 1423.
[http://dx.doi.org/10.1016/j.pain.2014.05.012] [PMID: 24837846]
[72]
Cruccu G. Trigeminal neuralgia. Continuum (Minneap Minn) 2017; 23(2): 396-420.
[http://dx.doi.org/10.1212/CON.0000000000000451] [PMID: 28375911]
[73]
Maarbjerg S, Di Stefano G, Bendtsen L, Cruccu G. Trigeminal neuralgia-Diagnosis and treatment. Cephalalgia 2017; 37(7): 648-57.
[http://dx.doi.org/10.1177/0333102416687280] [PMID: 28076964]
[74]
Hung PSP, Chen DQ, Davis KD, Zhong J, Hodaie M. Predicting pain relief: Use of pre-surgical trigeminal nerve diffusion metrics in trigeminal neuralgia. Neuroimage Clin 2017; 15: 710-8.
[http://dx.doi.org/10.1016/j.nicl.2017.06.017] [PMID: 28702348]
[75]
Nijensohn DE, Goodrich I. Psychosurgery: Past, present, and future, including prefrontal lobotomy and Connecticut’s contribution. Conn Med 2014; 78(8): 453-63.
[PMID: 25314884]
[76]
Houra K, Ledić D, Kvesić D, Perović D, Radoš I, Kapural L. First guidelines of Croatian interest group in diagnosing and treating pain conditions of cervical and thoracic spine using minimally invasive procedures. Lijec Vjesn 2014; 136(9-10): 245-52.
[PMID: 25632768]
[77]
Dubin AE, Patapoutian A. Nociceptors: The sensors of the pain pathway. J Clin Invest 2010; 120(11): 3760-72.
[http://dx.doi.org/10.1172/JCI42843] [PMID: 21041958]
[78]
Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biol 2022; 19(1): 594-608.
[http://dx.doi.org/10.1080/15476286.2022.2066334] [PMID: 35482908]
[79]
Roldan-Valadez E, Rios C, Suarez-May MA, Favila R, Aguilar-Castañeda E. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data. Anat Rec (Hoboken) 2013; 296(12): 1913-22.
[http://dx.doi.org/10.1002/ar.22817] [PMID: 24136790]
[80]
Roldan-Valadez E, Suarez-May MA, Favila R, Aguilar-Castañeda E, Rios C. Selected gray matter volumes and gender but not basal ganglia nor cerebellum gyri discriminate left versus right cerebral hemispheres: Multivariate analyses in human brains at 3T. Anat Rec (Hoboken) 2015; 298(7): 1336-46.
[http://dx.doi.org/10.1002/ar.23165] [PMID: 25902919]
[81]
Ternovoy S, Ustyuzhanin D, Morozova Y, Shariya M, Roldan-Valadez E, Smirnov V. Functional MRI evince the safety and efficacy of umbilical cord blood cells therapy in patients with schizophrenia. Schizophr Res 2020; 224: 175-7.
[http://dx.doi.org/10.1016/j.schres.2020.09.028] [PMID: 33046337]
[82]
Ternovoy S, Ustyuzhanin D, Shariya M, et al. Recognition of facial emotion expressions in patients with depressive disorders: A functional MRI study. Tomography 2023; 9(2): 529-40.
[http://dx.doi.org/10.3390/tomography9020043] [PMID: 36961002]
[83]
Velasco-Campos F, Esqueda-Liquidano M, Roldan-Valadez E, Carrillo-Ruiz JD, Navarro-Olvera JL, Aguado-Carrillo G. Prelemniscal radiations as a target for the treatment of parkinson disease – individual variations in the stereotactic location of fiber components: A probabilistic tractography study. World Neurosurg 2022; 166: e345-52.
[http://dx.doi.org/10.1016/j.wneu.2022.07.008] [PMID: 35817353]
[84]
Mogil JS. Pain genetics: Past, present and future. Trends Genet 2012; 28(6): 258-66.
[http://dx.doi.org/10.1016/j.tig.2012.02.004] [PMID: 22464640]
[85]
Dib-Hajj SD, Yang Y, Waxman SG. Genetics and molecular pathophysiology of Na(v)1.7-related pain syndromes. Adv Genet 2008; 63: 85-110.
[http://dx.doi.org/10.1016/S0065-2660(08)01004-3] [PMID: 19185186]
[86]
Chen Q, Chen E, Qian X. A narrative review on perioperative pain management strategies in enhanced recovery pathways—The past, present and future. J Clin Med 2021; 10(12): 2568.
[http://dx.doi.org/10.3390/jcm10122568] [PMID: 34200695]
[87]
Gebhart GF, Schmidt RF, Eds. Rexed’s Laminae.Encyclopedia of Pain Springer Berlin Heidelberg, Berlin. Heidelberg 2013; pp. 3416-7.
[88]
Browne TJ, Hughes DI, Dayas CV, Callister RJ, Graham BA. Projection neuron axon collaterals in the dorsal horn: Placing a new player in spinal cord pain processing. Front Physiol 2020; 11: 560802.
[http://dx.doi.org/10.3389/fphys.2020.560802] [PMID: 33408637]
[89]
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2022; 69(1): 110-23.
[http://dx.doi.org/10.1002/bab.2086] [PMID: 33316085]
[90]
Das V. An introduction to pain pathways and pain “targets”. Prog Mol Biol Transl Sci 2015; 131: 1-30.
[http://dx.doi.org/10.1016/bs.pmbts.2015.01.003] [PMID: 25744668]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy