Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

LncRNA CAI2 Contributes to Poor Prognosis of Glioma through the PI3K-Akt Signaling Pathway

Author(s): Yu Jiang, Jinhui Zhang, Shengjin Yu, Linlin Zheng, Yue Shen, Weiwei Ju and Lijuan Lin*

Volume 27, Issue 3, 2024

Published on: 21 June, 2023

Page: [420 - 427] Pages: 8

DOI: 10.2174/1386207326666230519115845

Price: $65

Abstract

Aims: We aim to explore new potential therapeutic targets and markers in human glioma.

Background: Gliomas are the most common malignant primary tumor in the brain.

Objective: In the present research, we evaluated the effect of CAI2, a long non-coding RNA, on the biological behaviors of glioma and explored the related molecular mechanism.

Methods: The expression of CAI2 was analyzed using qRT-PCR in 65 cases of glioma patients. The cell proliferation was determined with MTT and colony formation assays, and the PI3K-AKt signaling pathway was analyzed using western blot.

Results: CAI2 was upregulated in human glioma tissue compared with the matched, adjacent nontumor tissue and was correlated with WHO grade. Survival analyses proved that the overall survival of patients with high CAI2 expression was poor compared to that of patients with low CAI2 expression. High CAI2 expression was an independent prognostic factor in glioma. The absorbance values in the MTT assay after 96 h were .712 ± .031 for the si-control and .465 ± .018 for the si- CAI2-transfected cells, and si-CAI2 inhibited colony formation in U251 cells by approximately 80%. The levels of PI3K, p-AKt, and AKt in si-CAI2-treated cells were decreased.

Conclusion: CAI2 may promote glioma growth through the PI3K-AKt signaling pathway. This research provided a novel potential diagnostic marker for human glioma.

Graphical Abstract

[1]
Yan, Y.; Xu, Z.; Li, Z.; Sun, L.; Gong, Z. An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front. Mol. Neurosci., 2017, 10, 53.
[http://dx.doi.org/10.3389/fnmol.2017.00053] [PMID: 28293170]
[2]
Dahlin, A.M.; Wibom, C.; Ghasimi, S.; Brännström, T.; Andersson, U.; Melin, B. Relation between established glioma risk variants and DNA methylation in the tumor. PLoS One, 2016, 11(10), e0163067.
[http://dx.doi.org/10.1371/journal.pone.0163067] [PMID: 27780202]
[3]
Guo, Q.; Guan, G.F.; Cheng, W.; Zou, C.Y.; Zhu, C.; Cheng, P.; Wu, A.H. Integrated profiling identifies caveolae‐associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci. Ther., 2019, 25(3), 343-354.
[http://dx.doi.org/10.1111/cns.13072] [PMID: 30311408]
[4]
Liang, M.; Gao, C.; Wang, Y.; Gong, W.; Fu, S.; Cui, L.; Zhou, Z.; Chu, X.; Zhang, Y.; Liu, Q.; Zhao, X.; Zhao, B.; Yang, M.; Li, Z.; Yang, C.; Xie, X.; Yang, Y.; Gao, C. Enhanced blood–brain barrier penetration and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles. Drug Deliv., 2018, 25(1), 1652-1663.
[http://dx.doi.org/10.1080/10717544.2018.1494223] [PMID: 30394123]
[5]
Wang, F.; Zheng, Z.; Guan, J.; Qi, D.; Zhou, S.; Shen, X.; Wang, F.; Wenkert, D.; Kirmani, B.; Solouki, T.; Fonkem, E.; Wong, E.T.; Huang, J.H.; Wu, E. Identification of a panel of genes as a prognostic biomarker for glioblastoma. E Bio. Med., 2018, 37, 68-77.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.024] [PMID: 30341039]
[6]
Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol., 2019, 112, 82-92.
[http://dx.doi.org/10.1016/j.molimm.2019.04.011] [PMID: 31079005]
[7]
Wang, L.; Yu, Z.; Sun, S.; Peng, J.; Xiao, R.; Chen, S.; Zuo, X.; Cheng, Q.; Xia, Y. Long non-coding RNAs: potential molecular biomarkers for gliomas diagnosis and prognosis. Rev. Neurosci., 2017, 28(4), 375-380.
[http://dx.doi.org/10.1515/revneuro-2016-0066] [PMID: 28107175]
[8]
Zhang, R.; Jin, H.; Lou, F. The long non-coding RNA TP73-AS1 interacted with miR-142 to modulate brain glioma growth through HMGB1/RAGE pathway. J. Cell. Biochem., 2018, 119(4), 3007-3016.
[http://dx.doi.org/10.1002/jcb.26021] [PMID: 28379612]
[9]
He, Z.; Wang, Y.; Huang, G.; Wang, Q.; Zhao, D.; Chen, L. The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch. Biochem. Biophys., 2017, 623-624, 1-8.
[http://dx.doi.org/10.1016/j.abb.2017.01.013] [PMID: 28137422]
[10]
Barnhill, L.M.; Williams, R.T.; Cohen, O.; Kim, Y.; Batova, A.; Mielke, J.A.; Messer, K.; Pu, M.; Bao, L.; Yu, A.L.; Diccianni, M.B. High expression of CAI2, a 9p21-embedded long noncoding RNA, contributes to advanced-stage neuroblastoma. Cancer Res., 2014, 74(14), 3753-3763.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3447] [PMID: 25028366]
[11]
Mohamed, E.; Kumar, A.; Zhang, Y.; Wang, A.S.; Chen, K.; Lim, Y.; Shai, A.; Taylor, J.W.; Clarke, J.; Hilz, S.; Berger, M.S.; Solomon, D.A.; Costello, J.F.; Molinaro, A.M.; Phillips, J.J. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro-oncol., 2022, 24(9), 1471-1481.
[http://dx.doi.org/10.1093/neuonc/noac064] [PMID: 35287169]
[12]
Johnson, B.E.; Mazor, T.; Hong, C.; Barnes, M.; Aihara, K.; McLean, C.Y.; Fouse, S.D.; Yamamoto, S.; Ueda, H.; Tatsuno, K.; Asthana, S.; Jalbert, L.E.; Nelson, S.J.; Bollen, A.W.; Gustafson, W.C.; Charron, E.; Weiss, W.A.; Smirnov, I.V.; Song, J.S.; Olshen, A.B.; Cha, S.; Zhao, Y.; Moore, R.A.; Mungall, A.J.; Jones, S.J.M.; Hirst, M.; Marra, M.A.; Saito, N.; Aburatani, H.; Mukasa, A.; Berger, M.S.; Chang, S.M.; Taylor, B.S.; Costello, J.F. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science, 2014, 343(6167), 189-193.
[http://dx.doi.org/10.1126/science.1239947] [PMID: 24336570]
[13]
Zhang, Y.; Kwok-Shing Ng, P.; Kucherlapati, M.; Chen, F.; Liu, Y.; Tsang, Y.H.; de Velasco, G.; Jeong, K.J.; Akbani, R.; Hadjipanayis, A.; Pantazi, A.; Bristow, C.A.; Lee, E.; Mahadeshwar, H.S.; Tang, J.; Zhang, J.; Yang, L.; Seth, S.; Lee, S.; Ren, X.; Song, X.; Sun, H.; Seidman, J.; Luquette, L.J.; Xi, R.; Chin, L.; Protopopov, A.; Westbrook, T.F.; Shelley, C.S.; Choueiri, T.K.; Ittmann, M.; Van Waes, C.; Weinstein, J.N.; Liang, H.; Henske, E.P.; Godwin, A.K.; Park, P.J.; Kucherlapati, R.; Scott, K.L.; Mills, G.B.; Kwiatkowski, D.J.; Creighton, C.J. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31(6), 820-832.e3.
[http://dx.doi.org/10.1016/j.ccell.2017.04.013] [PMID: 28528867]
[14]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[http://dx.doi.org/10.1038/nature07385] [PMID: 18772890]
[15]
Pollack, I.F.; Hamilton, R.L.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Murdoch, G.H.; Nikiforova, M.N.; Holmes, E.J.; Zhou, T.; Cohen, K.J.; Jakacki, R.I. Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: A report from the Children’s Oncology Group. J. Neurooncol., 2010, 99(2), 155-163.
[http://dx.doi.org/10.1007/s11060-010-0297-3] [PMID: 20607350]
[16]
Liu, C.; Wu, H.; Li, Y.; Shen, L.; Yu, R.; Yin, H.; Sun, T.; Sun, C.; Zhou, Y.; Du, Z. SALL4 suppresses PTEN expression to promote glioma cell proliferation viaPI3K/AKT signaling pathway. J. Neurooncol., 2017, 135(2), 263-272.
[http://dx.doi.org/10.1007/s11060-017-2589-3] [PMID: 28887597]
[17]
Zhang, Z.Q.; Wang, X.; Xue, B.H.; Zhao, Y.; Xie, F.; Wang, S.D.; Xue, C.; Wang, Y.; Zhang, Y.S.; Qian, L.J. Chronic stress promotes glioma cell proliferation via the PI3K/Akt signaling pathway. Oncol. Rep., 2021, 46(3), 202.
[http://dx.doi.org/10.3892/or.2021.8153] [PMID: 34296295]
[18]
Zhu, Y.; Liu, X.; Zhao, P.; Zhao, H.; Gao, W.; Wang, L. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway. Front. Pharmacol., 2020, 11, 25.
[http://dx.doi.org/10.3389/fphar.2020.00025] [PMID: 32116702]
[19]
Gu, Y.; Chen, T.; Li, G.; Yu, X.; Lu, Y.; Wang, H.; Teng, L. LncRNAs: emerging biomarkers in gastric cancer. Future Oncol., 2015, 11(17), 2427-2441.
[http://dx.doi.org/10.2217/fon.15.175] [PMID: 26289363]
[20]
Mitra, S.A.; Mitra, A.P.; Triche, T.J. A central role for long non-coding RNA in cancer. Front. Genet., 2012, 3, 17.
[http://dx.doi.org/10.3389/fgene.2012.00017] [PMID: 22363342]
[21]
Ellis, B.C.; Molloy, P.L.; Graham, L.D. CRNDE: A long non-coding RNA involved in cancer, neurobiology, and development. Front. Genet., 2012, 3, 270.
[http://dx.doi.org/10.3389/fgene.2012.00270] [PMID: 23226159]
[22]
Diccianni, M.B.; Omura-Minamisawa, M.; Batova, A.; Le, T.; Bridgeman, L.; Yu, A.L. Frequent deregulation ofp16 and thep16/G1 cell cycle-regulatory pathway in neuroblastoma. Int. J. Cancer, 1999, 80(1), 145-154.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990105)80:1<145:AID-IJC26>3.0.CO;2-G] [PMID: 9935245]
[23]
Diccianni, M.B.; Chau, L.S.; Batova, A.; Vu, T.Q.; Yu, A.L. The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance. Cancer Lett., 1996, 104(2), 183-192.
[http://dx.doi.org/10.1016/0304-3835(96)04250-4] [PMID: 8665486]
[24]
Williams, R.T.; Barnhill, L.M.; Kuo, H.H.; Lin, W.D.; Batova, A.; Yu, A.L.; Diccianni, M.B. Chimeras of p14ARF and p16: functional hybrids with the ability to arrest growth. PLoS One, 2014, 9(2), e88219.
[http://dx.doi.org/10.1371/journal.pone.0088219] [PMID: 24505435]
[25]
Yang, Y.; Ren, M.; Song, C.; Li, D.; Soomro, S.H.; Xiong, Y.; Zhang, H.; Fu, H. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget, 2017, 8(48), 84123-84139.
[http://dx.doi.org/10.18632/oncotarget.20340] [PMID: 29137410]
[26]
Li, F.; Jin, D.; Tang, C.; Gao, D. CEP55 promotes cell proliferation and inhibits apoptosis via the PI3K/Akt/p21 signaling pathway in human glioma U251 cells. Oncol. Lett., 2018, 15(4), 4789-4796.
[http://dx.doi.org/10.3892/ol.2018.7934] [PMID: 29552118]
[27]
Song, Y.; Zheng, S.; Wang, J.; Long, H.; Fang, L.; Wang, G.; Li, Z.; Que, T.; Liu, Y.; Li, Y.; Zhang, X.; Fang, W.; Qi, S. Hypoxia induced PLOD2 promotes proliferation, migration and in vasion via PI3K/Akt signaling in glioma. Oncotarget, 2017, 8(26), 41947-41962.
[http://dx.doi.org/10.18632/oncotarget.16710] [PMID: 28410212]
[28]
Chen, H.; Gao, J.; Du, Z.; Zhang, X.; Yang, F.; Gao, W. Expression of factors and key components associated with the PI3K signaling pathway in colon cancer. Oncol. Lett., 2018, 15(4), 5465-5472.
[http://dx.doi.org/10.3892/ol.2018.8044] [PMID: 29552187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy