Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Based on mRNA Sequencing Techniques to Explore the Molecular Mechanism of Buzhong Yiqi Decoction for Autoimmune Thyroiditis

Author(s): Ziyu Liu, Nan Song, Mingshan Li, Zhimin Wang, Huimin Cao, Tianshu Gao and Xiao Yang*

Volume 27, Issue 3, 2024

Published on: 22 May, 2023

Page: [408 - 419] Pages: 12

DOI: 10.2174/1386207326666230417120421

Price: $65

Abstract

Objective: Autoimmune diseases (AD) account for a high percentage of the population. One of the most prevalent is autoimmune thyroiditis (AIT). However, the therapeutic effects of Buzhong Yiqi (BZYQ) decoction on AIT have not been studied yet. The majority of the present study was conducted on NOD.H-2h4 mice in an attempt to ascertain the therapeutic effects of BZYQ decoction on AIT.

Methods: The 0.05% sodium iodide water (NaI)-induced AIT mice model was established. A total of nine NOD.H-2h4 mice were randomly divided into three groups: the normal group provided with regular water, the model group drinking freely 0.05% NaI, and the treatment group treated with BZYQ decoction (9.56 g/kg) after NaI supplementation (NaI + BZYQ). BZYQ decoction was administered orally once daily for eight weeks. The thyroid histopathology test was used to measure the severity of lymphocytic infiltration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of anti-thyroglobulin antibody (TgAb), interleukin (IL)-1β, IL-6, and IL-17. The Illumina HiSeq X sequencing platform was utilized to analyze the thyroid tissue by mRNA expression profiles. Bioinformatics analysis was used to investigate the biological function of the differentially expressed mRNAs. In addition, the expression of Carbonyl Reductase 1 (CBR1), 6-Pyruvoyltetrahydropterin Synthase (PTS), Major Histocompatibility Complex, Class II (H2-EB1), Interleukin 23 Subunit Alpha (IL-23A), Interleukin 6 Receptor (IL-6RA), and Janus Kinase 1 (JAK1) was measured by quantitative real-time PCR (qRT-PCR).

Results: The treatment group exhibited significantly lower rates of thyroiditis and lymphocyte infiltration compared to the model group. Serum levels of TgAb, IL-1β, IL-6, and IL-17 were significantly higher in the model group, but they fell dramatically after BZYQ decoction administration. According to our results, 495 genes showed differential expression in the model group compared to the control group. Six hundred twenty-five genes were significantly deregulated in the treatment group compared to the model group. Bioinformatic analysis showed that most mRNAs were associated with immune-inflammatory responses and were involved in multiple signaling pathways, including folate biosynthesis and the Th17 cell differentiation pathway. CBR1, PTS, H2-EB1, IL- 23A, IL-6RA and JAK1 mRNA participated in folate biosynthesis and the Th17 cell differentiation pathway. The qRT-PCR analysis confirmed that the above mRNAs were regulated in the model group compared to the treatment group

Conclusion: The results of this investigation have revealed novel insights into the molecular mechanism of action of BZYQ decoction against AIT. The mechanism may be partially attributed to the regulation of mRNA expression and pathways.

Graphical Abstract

[1]
Bakalov, V.K.; Gutin, L.; Cheng, C.M.; Zhou, J.; Sheth, P.; Shah, K.; Arepalli, S.; Vanderhoof, V.; Nelson, L.M.; Bondy, C.A. Autoimmune disorders in women with turner syndrome and women with karyotypically normal primary ovarian insufficiency. J. Autoimmun., 2012, 38(4), 315-321.
[http://dx.doi.org/10.1016/j.jaut.2012.01.015] [PMID: 22342295]
[2]
Wu, Y.; Shi, X.; Tang, X.; Li, Y.; Tong, N.; Wang, G.; Zhang, J.; Wang, Y.; Ba, J.; Chen, B.; Du, J.; He, L.; Lai, X.; Li, Y.; Chi, H.; Liao, E.; Liu, C.; Liu, L.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Xue, Y.; Yan, L.; Yang, J.; Yang, L.; Yao, Y.; Ye, Z.; Zhang, Q.; Zhang, L.; Zhu, J.; Zhu, M.; Teng, W.; Shan, Z. The correlation between metabolic disorders and tpoab/tgab: A cross-sectional population-based study. Endocr. Pract., 2020, 26(8), 869-882.
[http://dx.doi.org/10.4158/EP-2020-0008] [PMID: 33471678]
[3]
Ehlers, M.; Jordan, A-L.; Feldkamp, J.; Fritzen, R.; Quadbeck, B.; Haase, M.; Allelein, S.; Schmid, C.; Schott, M. Anti-thyroperoxidase antibody levels >500 iu/ml indicate a moderately increased risk for developing hypothyroidism in autoimmune thyroiditis. Horm. Metab. Res., 2016, 48(10), 623-629.
[http://dx.doi.org/10.1055/s-0042-112815] [PMID: 27607246]
[4]
Lin, J.D.; Fang, W.F.; Tang, K.T.; Cheng, C.W. Effects of exogenous melatonin on clinical and pathological features of a human thyroglobulin-induced experimental autoimmune thyroiditis mouse model. Sci. Rep., 2019, 9(1), 5886-5898.
[http://dx.doi.org/10.1038/s41598-019-42442-0] [PMID: 30971749]
[5]
Lu, D.; Yao, J.; Yuan, G.; Gao, Y.; Zhang, J.; Guo, X. Immune checkpoint inhibitor-related new-onset thyroid dysfunction: A retrospective analysis using the US FDA adverse event reporting system. Oncologist, 2022, 27(2), e126-e132.
[http://dx.doi.org/10.1093/oncolo/oyab043] [PMID: 35641200]
[6]
Kwon, H.; Kim, W.G.; Jeon, M.J.; Han, M.; Kim, M.; Park, S.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Age-specific reference interval of serum TSH levels is high in adolescence in an iodine excess area: Korea national health and nutrition examination survey data. Endocrine, 2017, 57(3), 445-454.
[http://dx.doi.org/10.1007/s12020-017-1375-5] [PMID: 28762216]
[7]
Hu, S.; Rayman, M.P. Multiple nutritional factors and the risk of hashimoto’s thyroiditis. Thyroid, 2017, 27(5), 597-610.
[http://dx.doi.org/10.1089/thy.2016.0635] [PMID: 28290237]
[8]
Luo, Y.; Kawashima, A.; Ishido, Y.; Yoshihara, A.; Oda, K.; Hiroi, N.; Ito, T.; Ishii, N.; Suzuki, K. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int. J. Mol. Sci., 2014, 15(7), 12895-12912.
[http://dx.doi.org/10.3390/ijms150712895] [PMID: 25050783]
[9]
Liu, X.; Mao, J.; Han, C.; Peng, S.; Li, C.; Jin, T.; Fan, C.; Shan, Z.; Teng, W. CXCR4 antagonist AMD3100 ameliorates thyroid damage in autoimmune thyroiditis in NOD.H-2h4 mice. Mol. Med. Rep., 2016, 13(4), 3604-3612.
[http://dx.doi.org/10.3892/mmr.2016.4965] [PMID: 26935473]
[10]
Rasooly, L.; Burek, C.L.; Rose, N.R. Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin. Immunol. Immunopathol., 1996, 81(3), 287-292.
[http://dx.doi.org/10.1006/clin.1996.0191] [PMID: 8938107]
[11]
Braley-Mullen, H.; Yu, S. Early requirement for B cells for development of spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Immunol., 2000, 165(12), 7262-7269.
[http://dx.doi.org/10.4049/jimmunol.165.12.7262] [PMID: 11120860]
[12]
Rose, N.R.; Bonita, R.; Burek, C.L. Iodine: An environmental trigger of thyroiditis. Autoimmun. Rev., 2002, 1(1-2), 97-103.
[http://dx.doi.org/10.1016/S1568-9972(01)00016-7] [PMID: 12849065]
[13]
Yanyun, M.A.; Tang, H. Meta analysis of treatment of hashimoto thyroiditis from spleen. Acta Chin. Med., 2019, 34, 123-134.
[14]
Xiao, Y.; Nan, S.; Zhimin, W. BuzhongYiqi decoction ameliorate immune injury of autoimmune thyroiditis mice by regulating miR-155 on the Th17 cells. Zhonghua Zhongyiyao Xuekan, 2019, 5, 36-39.
[15]
Li, J.; Qi, G.; Liu, Y. Effect of Buzhong Yiqi decoction on anti-acetylcholine receptor antibody and clinical status in juvenile ocular myasthenia gravis. Medicine, 2021, 100(44), e27688.
[http://dx.doi.org/10.1097/MD.0000000000027688] [PMID: 34871253]
[16]
Mursyidah, A.K.; Hafizzudin-Fedeli, M.; Nor Muhammad, N.A.; Latiff, A.; Firdaus-Raih, M.; Wan, K.L. Dissecting the biology of rafflesia species: Current progress and future directions made possible with high-throughput sequencing data. Plant Cell Physiol., 2023, 64(4), 368-377.
[http://dx.doi.org/10.1093/pcp/pcad004] [PMID: 36611267]
[17]
Saben, J.; Kang, P.; Zhong, Y.; Thakali, K.M.; Gomez-Acevedo, H.; Borengasser, S.J.; Andres, A.; Badger, T.M.; Shankar, K. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling. Placenta, 2014, 35(12), 1013-1020.
[http://dx.doi.org/10.1016/j.placenta.2014.09.015] [PMID: 25449029]
[18]
Song, F.; Liu, J.; Zhao, W.; Huang, H.; Hu, D.; Chen, H.; Zhang, H.; Chen, W.; Gu, Z. Synergistic effect of eugenol and probiotic Lactobacillus plantarum zs2058 against salmonella infection in c57bl/6 mice. Nutrients, 2020, 12(6), 1611-1627.
[http://dx.doi.org/10.3390/nu12061611] [PMID: 32486242]
[19]
Xiao, Y.; Nan, S.; Ning, C. Effect of Buzhong Yiqi decoction on the expression of miR-125a-3p and IL-23R in thyroid tissue of AIT mice. Lishizhen Med. Materia. Med. Res., 2021, 32, 2865-2868.
[20]
Bagchi, N.; Brown, T.R.; Sundick, R.S. Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology, 1995, 136(11), 5054-5060.
[http://dx.doi.org/10.1210/endo.136.11.7588241] [PMID: 7588241]
[21]
Jayasena, U.L.H.R.; Gribble, S.K.; Mckenzie, A.; Beyreuther, K.; Masters, C.L.; Underwood, J.R. Identification of structural variations in the carboxyl terminus of Alzheimer’s disease-associated β A4[1–42] amyloid using a monoclonal antibody. Clin. Exp. Immunol., 2002, 124(2), 297-305.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01209.x] [PMID: 11422208]
[22]
Kowalski, E.N.; Qian, G.; Vanni, K.M.M.; Sparks, J.A. A roadmap for investigating preclinical autoimmunity using patient-oriented and epidemiologic study designs: Example of rheumatoid arthritis. Front. Immunol., 2022, 13, 890996-891016.
[http://dx.doi.org/10.3389/fimmu.2022.890996] [PMID: 35693829]
[23]
Liu, D.; Ruan, M.; Tong, C.; Huang, R. Effect of Shugan Jianpi recipe combined with cross moxibustion on biochemical examination indexes and total score of TCM symptoms in patients with spleen-stomach damp-heat diarrhea irritable bowel syndrome. Comput. Math. Methods Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/8286146] [PMID: 35502412]
[24]
Ma, P.; Peng, Y.; Zhao, L.; Liu, F.; Li, X. Differential effect of polysaccharide and nonpolysaccharide components in Sijunzi decoction on spleen deficiency syndrome and their mechanisms. Phytomedicine, 2021, 93, 153790-153801.
[http://dx.doi.org/10.1016/j.phymed.2021.153790] [PMID: 34710756]
[25]
Sun, L.; Mao, J.J.; Yan, Y.; Xu, Y.; Yang, Y. Patient reported Traditional Chinese Medicine Spleen Deficiency Syndrome (TCMSDS) Scale for colorectal cancer: Development and validation in China. Integr. Cancer Ther., 2021, 20, 15347354211020105.
[http://dx.doi.org/10.1177/15347354211020105] [PMID: 34116615]
[26]
Gao, C.; Qu, J.; Zhou, X.; Gao, T. Iodine-rich herbs and potassium iodate have different effects on the oxidative stress and differentiation of th17 cells in iodine-deficient NOD.H-2h4 Mice. Biol. Trace Elem. Res., 2018, 183(1), 114-122.
[http://dx.doi.org/10.1007/s12011-017-1115-y] [PMID: 28803408]
[27]
Gao, T.; Shi, R.; Qi, T.; Yin, H.; Mei, L.; Han, X.; Cui, P. A comparative study on the effects of excess iodine and herbs with excess iodine on thyroid oxidative stress in iodine-deficient rats. Biol. Trace Elem. Res., 2014, 157(2), 130-137.
[http://dx.doi.org/10.1007/s12011-013-9873-7] [PMID: 24338445]
[28]
He, Q.; Dong, H.; Gong, M.; Guo, Y.; Xia, Q.; Gong, J.; Lu, F. New therapeutic horizon of Graves’ hyperthyroidism: Treatment regimens based on immunology and ingredients from traditional Chinese medicine. Front. Pharmacol., 2022, 13, 862831-862844.
[http://dx.doi.org/10.3389/fphar.2022.862831] [PMID: 35462920]
[29]
Weng, S.; Li, J.; Chen, B.; He, L.; Zhong, Z.; Huang, L.; Zhang, S.; Liu, F.; Jiang, Q. Effectiveness of modified Buzhong Yiqi decoction in treating myasthenia gravis: Study protocol for a series of N of-1 trials. Trials, 2022, 23(1), 365-374.
[http://dx.doi.org/10.1186/s13063-022-06287-9] [PMID: 35477531]
[30]
Kang, X.; Jia, M.; Zhao, L.; Zhang, S. Bu-Zhong-Yi-Qi granule enhances colonic tight junction integrity via TLR4/NF-κB/MLCK signaling pathway in ulcerative colitis rats. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6657141] [PMID: 33763148]
[31]
Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 365-381.
[http://dx.doi.org/10.1038/s41580-018-0001-6] [PMID: 29626215]
[32]
Spencer, B.; Potkar, R.; Trejo, M.; Rockenstein, E.; Patrick, C.; Gindi, R.; Adame, A.; Wyss-Coray, T.; Masliah, E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci., 2009, 29(43), 13578-13588.
[http://dx.doi.org/10.1523/JNEUROSCI.4390-09.2009] [PMID: 19864570]
[33]
Li, P.; Ji, M.; Park, J.; Bunting, K.D.; Ji, C.; Tse, W. Th17 related cytokines in acute myeloid leukemia. Front. Biosci., 2012, 17(7), 2284-2294.
[http://dx.doi.org/10.2741/4052] [PMID: 22652779]
[34]
Heidari, Z.; Salimi, S.; Rokni, M.; Rezaei, M.; Khalafi, N.; Shahroudi, M.J.; Dehghan, A.; Saravani, M. Association of IL-1β NLRP3, and COX-2 gene polymorphisms with autoimmune thyroid disease risk and clinical features in the iranian population. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/7729238] [PMID: 34790822]
[35]
Chen, R.H.; Chen, W.C.; Wang, T.Y.; Tsai, C.H.; Tsai, F.J. Lack of association between pro-inflammatory cytokine (IL-6, IL-8 and TNF-alpha) gene polymorphisms and Graves’ disease. Int. J. Immunogenet., 2005, 32(6), 343-347.
[http://dx.doi.org/10.1111/j.1744-313X.2005.00536.x] [PMID: 16313297]
[36]
Zake, T.; Skuja, S.; Kalere, I.; Konrade, I.; Groma, V. Heterogeneity of tissue IL-17 and tight junction proteins expression demonstrated in patients with autoimmune thyroid diseases. Medicine (Baltimore), 2018, 97(25), e11211-e11217.
[http://dx.doi.org/10.1097/MD.0000000000011211] [PMID: 29924048]
[37]
Sun, X.; Guan, H.; Peng, S.; Zhao, Y.; Zhang, L.; Wang, X.; Li, C.; Shan, Z.; Teng, W. Growth arrest-specific protein 6 (Gas6) attenuates inflammatory injury and apoptosis in iodine-induced NOD.H-2h4 mice. Int. Immunopharmacol., 2019, 73, 333-342.
[http://dx.doi.org/10.1016/j.intimp.2019.04.038] [PMID: 31129420]
[38]
Ruggeri, R.M.; Cristani, M.T.; Crupi, F. Evaluation of paraoxonase activity and association with serum advanced glycation end products as reliable markers of oxidative stress in Hashimoto’s thyroiditis. Minerva Endocrinol., 2022, 184-195.
[39]
Bianchini Höfling, D.; Marui, S.; Buchpiguel, C.A.; Cerri, G.G.; Chammas, M.C. The end-diastolic velocity of thyroid arteries is strongly correlated with the peak systolic velocity and gland volume in patients with autoimmune thyroiditis. J. Thyroid Res., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/1924974] [PMID: 29062583]
[40]
Duntas, L.H.; Alexandraki, K.I. On the centennial of Vitamin D Vitamin D, inflammation, and autoimmune thyroiditis: A web of links and implications. Nutrients, 2022, 14(23), 5032.
[http://dx.doi.org/10.3390/nu14235032] [PMID: 36501065]
[41]
Liu, H.; Li, Y.; Zhu, Y.; Ma, L.; Xue, H. Notch Signaling Pathway Promotes Th17 cell differentiation and participates in thyroid autoimmune injury in experimental autoimmune thyroiditis mice. Mediators Inflamm., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/1195149] [PMID: 36643586]
[42]
Yang, X.; Gao, T.; Shi, R.; Zhou, X.; Qu, J.; Xu, J.; Shan, Z.; Teng, W. Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the thyroid of NOD.H-2h4 mice. Biol. Trace Elem. Res., 2014, 159(1-3), 288-296.
[http://dx.doi.org/10.1007/s12011-014-9958-y] [PMID: 24740393]
[43]
Szeliga, A.; Calik-Ksepka, A.; Maciejewska-Jeske, M.; Grymowicz, M.; Smolarczyk, K.; Kostrzak, A.; Smolarczyk, R.; Rudnicka, E.; Meczekalski, B. Autoimmune diseases in patients with premature ovarian insufficiency-our current state of knowledge. Int. J. Mol. Sci., 2021, 22(5), 2594.
[http://dx.doi.org/10.3390/ijms22052594] [PMID: 33807517]
[44]
Wang, W.; Teng, W.; Shan, Z.; Wang, S.; Li, J.; Zhu, L.; Zhou, J.; Mao, J.; Yu, X.; Li, J.; Chen, Y.; Xue, H.; Fan, C.; Wang, H.; Zhang, H.; Li, C.; Zhou, W.; Gao, B.; Shang, T.; Zhou, J.; Ding, B.; Ma, Y.; Wu, Y.; Xu, H.; Liu, W. The prevalence of thyroid disorders during early pregnancy in China: The benefits of universal screening in the first trimester of pregnancy. Eur. J. Endocrinol., 2011, 164(2), 263-268.
[http://dx.doi.org/10.1530/EJE-10-0660] [PMID: 21059864]
[45]
Luo, J.; Wang, X.; Yuan, L.; Guo, L. Association of thyroid disorders with gestational diabetes mellitus: A meta-analysis. Endocrine, 2021, 73(3), 550-560.
[http://dx.doi.org/10.1007/s12020-021-02712-2] [PMID: 33983493]
[46]
Malhotra, H.; Garg, V.; Singh, G. Biomarker approach towards rheumatoid arthritis treatment. Curr. Rheumatol. Rev., 2021, 17(2), 162-175.
[http://dx.doi.org/10.2174/1573397116666201216164013] [PMID: 33327920]
[47]
Sandal, I.; Karydis, A.; Luo, J.; Prislovsky, A.; Whittington, K.B.; Rosloniec, E.F.; Dong, C.; Novack, D.V.; Mydel, P.; Zheng, S.G.; Radic, M.Z.; Brand, D.D. Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis. Arthritis Res. Ther., 2016, 18(1), 249-253.
[http://dx.doi.org/10.1186/s13075-016-1143-6] [PMID: 27784339]
[48]
Zheng, L.; Ye, P.; Liu, C. The role of the IL-23/IL-17 axis in the pathogenesis of Graves’ disease. Endocr. J., 2013, 60(5), 591-597.
[http://dx.doi.org/10.1507/endocrj.EJ12-0264] [PMID: 23327801]
[49]
Kościuszko, M.; Popławska-Kita, A.; Pawłowski, P.; Lipińska, D.; Hryniewicka, J.; Jankowska, D.; Górska, M.; Krętowski, A.; Myśliwiec, J. Clinical relevance of estimating circulating interleukin-17 and interleukin-23 during methylprednisolone therapy in Graves’ orbitopathy: A preliminary study. Adv. Med. Sci., 2021, 66(2), 315-320.
[http://dx.doi.org/10.1016/j.advms.2021.07.002] [PMID: 34256242]
[50]
Lee, J.Y.; Hall, J.A.; Kroehling, L.; Wu, L.; Najar, T.; Nguyen, H.H.; Lin, W.Y.; Yeung, S.T.; Silva, H.M.; Li, D.; Hine, A.; Loke, P.; Hudesman, D.; Martin, J.C.; Kenigsberg, E.; Merad, M.; Khanna, K.M.; Littman, D.R. Serum amyloid a protein induce pathogenic Th17 cells and promote inflammatory disease. Cell, 2020, 183(7), 2036-2039.
[http://dx.doi.org/10.1016/j.cell.2020.12.008] [PMID: 33357400]
[51]
Voo, K.S.; Wang, Y.H.; Santori, F.R.; Boggiano, C.; Wang, Y.H.; Arima, K.; Bover, L.; Hanabuchi, S.; Khalili, J.; Marinova, E.; Zheng, B.; Littman, D.R.; Liu, Y.J. Identification of IL-17-producing FOXP3 + regulatory T cells in humans. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4793-4798.
[http://dx.doi.org/10.1073/pnas.0900408106] [PMID: 19273860]
[52]
Igarashi, K.; Garotta, G.; Ozmen, L.; Ziemiecki, A.; Wilks, A.F.; Harpur, A.G.; Larner, A.C.; Finbloom, D.S. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J. Biol. Chem., 1994, 269(20), 14333-14336.
[http://dx.doi.org/10.1016/S0021-9258(17)36621-8] [PMID: 7514165]
[53]
El-Hawari, Y.; Favia, A.D.; Pilka, E.S.; Kisiela, M.; Oppermann, U.; Martin, H.J.; Maser, E. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis. Chem. Biol. Interact., 2009, 178(1-3), 234-241.
[http://dx.doi.org/10.1016/j.cbi.2008.11.004] [PMID: 19061875]
[54]
Hara, S.; Fukumura, S.; Ichinose, H. Reversible S-glutathionylation of human 6-pyruvoyl tetrahydropterin synthase protects its enzymatic activity. J. Biol. Chem., 2019, 294(4), 1420-1427.
[http://dx.doi.org/10.1074/jbc.RA118.005280] [PMID: 30514762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy