Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Current Avenues in Nutraceuticals and Pharmaceuticals from Algae

Author(s): Probir Kumar Ghosh* and Chandrama Ghosh

Volume 4, 2023

Published on: 19 July, 2023

Article ID: e180523217061 Pages: 20

DOI: 10.2174/2665978604666230518150209

Price: $65

Abstract

Background: Alga (comprising of many varieties of algae) are our wealth from nature. They are abundant, and do not require any special sustenance measure; in fact, they sustain the fauna on Earth. Alga provide ‘nutritive’ and ‘ceutic’ functionalities, simultaneously. Their insignificant demand for sustenance, but the plethora of useful products they produce is intriguing. It’s also true that the impact of algae on our nutrition and pharmaceuticals is tremendous.

Objective: Despite their utility, a coherent overview and an in-depth discussion on the various facets of alga as a source of nutraceuticals and pharmaceuticals is awaited. Currently, focus on specializationwise utilization of algae is practiced by researchers, which could be owing to the lack of a review article that presents a comprehensive discussion on algal utilization in medicine and nutraceuticals. To know more about them functionally as a nutraceutical and pharmaceutical, a review article could provide a holistic understanding of algal utilization.

Methods: A narrative review for collation of findings, and developing an interlink among various findings has been adopted in the present article. This method was envisaged to better aid in understanding the lacunae in existing research, and formulate the way forward. The present disquisition focusses on discussing nutraceuticals and pharmaceuticals used or derived from alga that have significant utility.

Results: The exposition provides an in-depth understanding on the developments that have been made, and attempts to apprise on the future scope available in the research for processes as well as products development, for the optimum utilization of this valuable bioresource. Compiling the article revealed that algal research has provided evidence-based insight into their utility spectra that establishes this botanical as a reliable bioresource for supplementation of food and medical care in the times to come.

Conclusion: Interdisciplinary studies comprising botany, applied science, and product development should be envisaged as a futuristic strategy for algal product development, utilization, and commercialization. This is because standalone approaches could not realize the complete potential of this bioresource. Future research could benefit from using various applications of algal products. Algal products' relevance is more realizable since the said botanical is both affordable and available in plenty (or at least be conveniently harvested). More inclusion of algae-based food products in our regular diet for functional attributes could be also considered as one of the useful outcomes of this review. Natural medicines based on algae could also be more consumed in the near future.

[1]
Chapman, R.L. Algae: The world’s most important “plants”-an introduction. Mitig. Adapt. Strategies Glob. Change, 2013, 18(1), 5-12.
[http://dx.doi.org/10.1007/s11027-010-9255-9]
[2]
Behrens, P.; Delente, J. Microalgae in the pharmacetuical industry Biopharm - The Applied Technologies of Biopharmacetuical Development. 1991, 4(6), 54-58.
[3]
Wijffels, R.H. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol., 2008, 26(1), 26-31.
[http://dx.doi.org/10.1016/j.tibtech.2007.10.002] [PMID: 18037175]
[4]
Miyashita, K.; Nishikawa, S.; Beppu, F.; Tsukui, T.; Abe, M.; Hosokawa, M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J. Sci. Food Agric., 2011, 91(7), 1166-1174.
[http://dx.doi.org/10.1002/jsfa.4353] [PMID: 21433011]
[5]
Bocanegra, A.; Bastida, S.; Benedí, J.; Ródenas, S.; Sánchez-Muniz, F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food, 2009, 12(2), 236-258.
[http://dx.doi.org/10.1089/jmf.2008.0151] [PMID: 19459725]
[6]
Norton, T.A.; Melkonian, M.; Andersen, R.A. Algal biodiversity. Phycologia, 1996, 35(4), 308-326.
[http://dx.doi.org/10.2216/i0031-8884-35-4-308.1]
[7]
Udayan, A.; Arumugam, M.; Pandey, A. Nutraceuticals from algae and cyanobacteriaAlgal Green Chemistry: Recent Progess in Biotechnology; Rastogi, R.P.; Madamwar, D.; Pandey, A., Eds.; Elsevier, 2017, pp. 65-89.
[http://dx.doi.org/10.1016/B978-0-444-63784-0.00004-7]
[8]
Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol., 2017, 29(2), 949-982.
[http://dx.doi.org/10.1007/s10811-016-0974-5] [PMID: 28458464]
[9]
Anand, N.; Rachel, D.; Thangaraju, N.; Anantharaman, P. Potential of marine algae (sea weeds) as source of medicinally important compounds. Plant Genet. Resour., 2016, 14(4), 303-313.
[http://dx.doi.org/10.1017/S1479262116000381]
[10]
Singh, A.K.; Ganguly, R.; Kumar, S.; Pandey, A.K. Microalgae: A source of nutraceuticals and industrial product. Molecular Biology and Pharmacognosy of Beneficial Plant; Mahdi, A.A.; Abid, M., Eds.; Lenin Media Private Limited: Delhi, India, 2017.
[11]
Suleria, H.; Osborne, S.; Masci, P.; Gobe, G. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar. Drugs, 2015, 13(10), 6336-6351.
[http://dx.doi.org/10.3390/md13106336] [PMID: 26473889]
[12]
Hoppe, H.A. Marine algae and their products and constituents in pharmacy. Mar. Algae Pharm. Sci; Heinz, A.; Hoppe, T.L., Eds.; , 1979.
[13]
García, J.L.; de Vicente, M.; Galán, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol., 2017, 10(5), 1017-1024.
[http://dx.doi.org/10.1111/1751-7915.12800] [PMID: 28809450]
[14]
Hasan, M.M.; Ahmed, S.; Hasan, M. Algae as nutrition, medicine and cosmetic: The forgotten history, present status and future trends. World J. Pharm. Pharm. Sci., 2017, 6(6), 1934-1959.
[http://dx.doi.org/10.20959/wjpps20176-9447]
[15]
Kolanjinathan, K.; Ganesh, P.; Saranraj, P. Pharmacological importance of seaweeds: A review. World J. Fish Mar. Sci., 2014, 6(1), 1-15.
[http://dx.doi.org/10.5829/idosi.wjfms.2014.06.01.76195]
[16]
Pal, A.; Kamthania, M.C.; Kumar, A. Bioactive compounds and properties of seaweeds-A review. OAlib, 2014, 1(4), 1-17.
[http://dx.doi.org/10.4236/oalib.1100752]
[17]
El Gamal, A.A. Biological importance of marine algae. Saudi Pharm. J., 2010, 18(1), 1-25.
[http://dx.doi.org/10.1016/j.jsps.2009.12.001] [PMID: 23960716]
[18]
Murakami, K.; Yamaguchi, Y.; Noda, K.; Fujii, T.; Shinohara, N.; Ushirokawa, T.; Sugawa-Katayama, Y.; Katayama, M. Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (Turner) C. Agardh. J. Food Compos. Anal., 2011, 24(2), 231-236.
[http://dx.doi.org/10.1016/j.jfca.2010.08.004]
[19]
Jiménez-Escrig, A.; Gómez-Ordóñez, E.; Rupérez, P. Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J. Appl. Phycol., 2012, 24(5), 1123-1132.
[http://dx.doi.org/10.1007/s10811-011-9742-8]
[20]
O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.P.; O’Brien, N.M. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem., 2011, 126(3), 1064-1070.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.127]
[21]
Devi, G.K.; Manivannan, K.; Thirumaran, G.; Rajathi, F.A.A.; Anantharaman, P. In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pac. J. Trop. Med., 2011, 4(3), 205-211.
[http://dx.doi.org/10.1016/S1995-7645(11)60070-9] [PMID: 21771454]
[22]
Xiaojun, Y.; Xiancui, L.; Chengxu, Z.; Xiao, F. Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. J. Appl. Phycol., 1996, 8(3), 201-203.
[http://dx.doi.org/10.1007/BF02184972]
[23]
Yan, X.; Chuda, Y.; Suzuki, M.; Nagata, T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem., 1999, 63(3), 605-607.
[http://dx.doi.org/10.1271/bbb.63.605] [PMID: 10227153]
[24]
Kang, S.M.; Heo, S.J.; Kim, K.N.; Lee, S.H.; Jeon, Y.J. Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J. Funct. Foods, 2012, 4(1), 158-166.
[http://dx.doi.org/10.1016/j.jff.2011.10.001]
[25]
Kang, S.M.; Lee, S.H.; Heo, S.J.; Kim, K.N.; Jeon, Y.J. Evaluation of antioxidant properties of a new compound, pyrogallol-phloroglucinol-6,6′-bieckol isolated from brown algae, Ecklonia cava. Nutr. Res. Pract., 2011, 5(6), 495-502.
[http://dx.doi.org/10.4162/nrp.2011.5.6.495] [PMID: 22259673]
[26]
Kang, K.A.; Lee, K.H.; Chae, S.; Zhang, R.; Jung, M.S.; Ham, Y.M.; Baik, J.S.; Lee, N.H.; Hyun, J.W. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J. Cell. Biochem., 2006, 97(3), 609-620.
[http://dx.doi.org/10.1002/jcb.20668] [PMID: 16215988]
[27]
Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol., 2013, 59, 199-206.
[http://dx.doi.org/10.1016/j.fct.2013.05.061] [PMID: 23774261]
[28]
Wei, Y.; Liu, Q.; Xu, C.; Yu, J.; Zhao, L.; Guo, Q. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii. J. Aquat. Food Prod. Technol., 2016, 25(3), 323-333.
[http://dx.doi.org/10.1080/10498850.2013.851757]
[29]
Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Australas. J. Anim. Sci., 2009, 22(2), 238-245.
[http://dx.doi.org/10.5713/ajas.2009.80213]
[30]
Glombitza, K.W.; Große-Damhues, J. Antibiotics from algae XXXIII: Phlorotannins of the brown alga Himanthalia elongata. Planta Med., 1985, 51(1), 42-46.
[http://dx.doi.org/10.1055/s-2007-969389] [PMID: 17340399]
[31]
Grina, F.; Ullah, Z.; Kaplaner, E.; Moujahid, A.; Eddoha, R.; Nasser, B.; Terzioğlu, P.; Yilmaz, M.A.; Ertaş, A.; Öztürk, M.; Essamadi, A. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds. S. Afr. J. Bot., 2020, 128, 152-160.
[http://dx.doi.org/10.1016/j.sajb.2019.10.021]
[32]
Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev., 1989, 53(1), 85-108.
[http://dx.doi.org/10.1128/mr.53.1.85-108.1989] [PMID: 2651866]
[33]
Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol., 2011, 23(3), 543-597.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[34]
Murata, M.; Nakazoe, J. Production and use of marine aIgae in Japan. Jpn. Agric. Res. Q., 2001, 35(4), 281-290.
[http://dx.doi.org/10.6090/jarq.35.281]
[35]
Wijesekara, I.; Kim, S.K. Angiotensin-I-Converting Enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs, 2010, 8(4), 1080-1093.
[http://dx.doi.org/10.3390/md8041080] [PMID: 20479968]
[36]
El-Baroty, G.; Moussa, M.; Shallan, M.; Ali, M.; Sabh, A.; Shalaby, E. Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga: Asparagopsis taxiformis (Delile). Trevisan. Res. J. Appl. Sci., 2007, 3(12), 1825-1834.
[37]
Eluvakkal, T.; Sivakumar, S.R.; Arunkumar, K. Fucoidan in some Indian brown seaweeds found along the Coast Gulf of Mannar. Int. J. Bot., 2010, 6(2), 176-181.
[http://dx.doi.org/10.3923/ijb.2010.176.181]
[38]
Sangeetha, K.S.; Umamaheswari, S.; Reddy, C.U.M.; Kalkura, S.N. Flavonoids: Therapeutic potential of natural pharmacological agents. Int. J. Pharm. Sci. Res., 2016, 7(10), 3924-3930.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(10).3924-30]
[39]
Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids health benefits and their molecular mechanism. Mini Rev. Med. Chem., 2011, 11(2), 169-177.
[http://dx.doi.org/10.2174/138955711794519546] [PMID: 21222576]
[40]
Hamidi, M.; Kozani, P.S.; Kozani, P.S.; Pierre, G.; Michaud, P.; Delattre, C. Marine bacteria versus microalgae: Who is the best for bio-technological production of bioactive compounds with antioxidant properties and other biological applications? Mar. Drugs, 2019, 18(1), 28.
[http://dx.doi.org/10.3390/md18010028] [PMID: 31905716]
[41]
Deng, R.; Chow, T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc. Ther., 2010, 28(4), e33-e45.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00200.x] [PMID: 20633020]
[42]
Kim, K.N.; Heo, S.J.; Song, C.B.; Lee, J.; Heo, M.S.; Yeo, I.K.; Kang, K.A.; Hyun, J.W.; Jeon, Y.J. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochem., 2006, 41(12), 2393-2401.
[http://dx.doi.org/10.1016/j.procbio.2006.06.028]
[43]
Karawita, R.; Senevirathne, M.; Athukorala, Y.; Affan, A.; Lee, Y.J.; Kim, S.K.; Lee, J.B.; Jeon, Y.J. Protective effect of enzymatic extracts from microalgae against DNA damage induced by H2O2. Mar. Biotechnol., 2007, 9(4), 479-490.
[http://dx.doi.org/10.1007/s10126-007-9007-3] [PMID: 17520314]
[44]
Galland-Irmouli, A.V.; Fleurence, J.; Lamghari, R.; Luçon, M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J.P.; Villaume, C.; Guéant, J.L. Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). J. Nutr. Biochem., 1999, 10(6), 353-359.
[http://dx.doi.org/10.1016/S0955-2863(99)00014-5] [PMID: 15539310]
[45]
Wong, K.H.; Cheung, P.C.K. Nutritional evaluation of some subtropical red and green seaweeds. Food Chem., 2000, 71(4), 475-482.
[http://dx.doi.org/10.1016/S0308-8146(00)00175-8]
[46]
Batista, A.P.; Gouveia, L.; Bandarra, N.M.; Franco, J.M.; Raymundo, A. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res., 2013, 2(2), 164-173.
[http://dx.doi.org/10.1016/j.algal.2013.01.004]
[47]
Lee, C.M.; Barrow, C.J.; Kim, S-K.; Miyashita, K.; Shahidi, F. Global trends in marine nutraceuticals. Food Technol., 2011, 65(12), 22-31.
[48]
Chu, W-L. Potential applications of antioxidant compounds derived from algae. Curr. Top. Nutraceutical Res., 2011, 9(3), 83-98.
[49]
Ryan, A.S.; Zeller, S.; Nelson, E.B. Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients.Single Cell Oils: Microbal and Algal Oils; Zvi Cohen, C.R., Ed.; AOCS Press, 2010, pp. 317-350.
[http://dx.doi.org/10.1016/B978-1-893997-73-8.50019-0]
[50]
Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol., 2011, 113(5), 539-547.
[http://dx.doi.org/10.1002/ejlt.201000455]
[51]
Larkum, A.W.D.; Kühl, M. Chlorophyll d: The puzzle resolved. Trends Plant Sci., 2005, 10(8), 355-357.
[http://dx.doi.org/10.1016/j.tplants.2005.06.005] [PMID: 16019251]
[52]
Becker, E.W. Microalgae: Biotechnology and Microbiology; Cambridge University Press, 1994, Vol. 10, .
[53]
Matsuno, T. Aquatic animal carotenoids. Fish. Sci., 2001, 67(5), 771-783.
[http://dx.doi.org/10.1046/j.1444-2906.2001.00323.x]
[54]
Terasaki, M.; Hirose, A.; Narayan, B.; Baba, Y.; Kawagoe, C.; Yasui, H.; Saga, N.; Hosokawa, M.; Miyashita, K. Evaluation of recoverable functional lipid components of several brown seaweeds (phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. J. Phycol., 2009, 45(4), 974-980.
[http://dx.doi.org/10.1111/j.1529-8817.2009.00706.x] [PMID: 27034228]
[55]
Le Tutour, B.; Benslimane, F.; Gouleau, M.P.; Gouygou, J.P.; Saadan, B.; Quemeneur, F. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J. Appl. Phycol., 1998, 10(2), 121-129.
[http://dx.doi.org/10.1023/A:1008007313731]
[56]
Brännback, M.; Wiklund, P. A new dominant logic and its implications for knowledge management: A study of the Finnish food industry. Knowl. Process Manage., 2001, 8(4), 197-206.
[http://dx.doi.org/10.1002/kpm.123]
[57]
Sánchez-Machado, D.I.; López-Hernández, J.; Paseiro-Losada, P.; López-Cervantes, J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed. Chromatogr., 2004, 18(3), 183-190.
[http://dx.doi.org/10.1002/bmc.316] [PMID: 15103705]
[58]
Cho, T.J.; Rhee, M.S. Health functionality and quality conrol of Laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed. Mar. Drugs, 2019, 18(1), 14.
[http://dx.doi.org/10.3390/md18010014] [PMID: 31877971]
[59]
García-Casal, M.N.; Pereira, A.C.; Leets, I.; Ramírez, J.; Quiroga, M.F. High iron content and bioavailability in humans from four species of marine algae. J. Nutr., 2007, 137(12), 2691-2695.
[http://dx.doi.org/10.1093/jn/137.12.2691] [PMID: 18029485]
[60]
Watanabe, F.; Takenaka, S.; Katsura, H.; Masumder, S.A.M.Z.H.; Abe, K.; Tamura, Y.; Nakano, Y. Dried green and purple lavers (Nori) contain substantial amounts of biologically active vitamin B(12) but less of dietary iodine relative to other edible seaweeds. J. Agric. Food Chem., 1999, 47(6), 2341-2343.
[http://dx.doi.org/10.1021/jf981065c] [PMID: 10794633]
[61]
Klein, B.; Buchholz, R. Microalgae as sources of food ingredients and nutraceuticals. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals; McNeil, B.; Giavasis, I.; Harvey, L., Eds.; Woodhead Publishing Series, 2013, pp. 559-570.
[http://dx.doi.org/10.1533/9780857093547.2.559]
[62]
Katiyar, R.; Arora, A. Health promoting functional lipids from microalgae pool: A review. Algal Res., 2020, 46, 101800.
[http://dx.doi.org/10.1016/j.algal.2020.101800]
[63]
Ansorena, D.; Astiasarán, I. Development of nutraceuticals containing marine algae oils. Functional Ingredients from Algae for Foods and Nutraceuticals; Woodhead Publishing, 2013, pp. 634-657.
[http://dx.doi.org/10.1533/9780857098689.4.634]
[64]
Huang, T.L.; Wen, Y.T.; Ho, Y.C.; Wang, J.K.; Lin, K.H.; Tsai, R.K. Algae oil treatment protects retinal ganglion cells (RGCS) via ERK signaling pathway in experimental optic nerve ischemia. Mar. Drugs, 2020, 18(2), 83.
[http://dx.doi.org/10.3390/md18020083] [PMID: 32012745]
[65]
Vizetto-Duarte, C.; Pereira, H.; Bruno de Sousa, C.; Pilar Rauter, A.; Albericio, F.; Custódio, L.; Barreira, L.; Varela, J. Fatty acid profile of different species of algae of the Cystoseira genus: A nutraceutical perspective. Nat. Prod. Res., 2015, 29(13), 1264-1270.
[http://dx.doi.org/10.1080/14786419.2014.992343] [PMID: 25554366]
[66]
Yang, T.H.; Yao, H.T.; Chiang, M.T. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. J. Food Drug Anal., 2017, 25(4), 931-938.
[http://dx.doi.org/10.1016/j.jfda.2016.12.008] [PMID: 28987370]
[67]
Pangestuti, R.; Kim, S.K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods, 2011, 3(4), 255-266.
[http://dx.doi.org/10.1016/j.jff.2011.07.001]
[68]
Durmaz, Y.; Kilicli, M.; Toker, O.S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res., 2020, 47, 101811.
[http://dx.doi.org/10.1016/j.algal.2020.101811]
[69]
Marsham, S.; Scott, G.W.; Tobin, M.L. Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem., 2007, 100(4), 1331-1336.
[http://dx.doi.org/10.1016/j.foodchem.2005.11.029]
[70]
Černá, M. Seaweed proteins and amino acids as nutraceuticals. Advances in Food and Nutrition Research; Kim, S.K., Ed.; Elsevier, 2011, pp. 297-312.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00024-7]
[71]
Sui, Y.; Vlaeminck, S.E. Dunaliella microalgae for nutritional protein: An undervalued asset. Trends Biotechnol., 2020, 38(1), 10-12.
[http://dx.doi.org/10.1016/j.tibtech.2019.07.011] [PMID: 31451287]
[72]
Jiménez-Escrig, A.; Gómez-Ordóñez, E.; Rupérez, P. Seaweed as a source of novel nutraceuticals: Sulfated polysaccharides and peptides. Adv. Food Nutr. Res; Kim, S.K., Ed.; Elsevier, 2011, pp. 325-337.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00026-0]
[73]
Rajapakse, N.; Kim, S-K. Nutritional and digestive health benefits of seaweed. Adv. Food Nutr. Res; Kim, S.K., Ed.; Elsevier, 2011, pp. 17-28.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00002-8]
[74]
Samarakoon, K.; Jeon, Y.J. Bio-functionalities of proteins derived from marine algae — A review. Food Res. Int., 2012, 48(2), 948-960.
[http://dx.doi.org/10.1016/j.foodres.2012.03.013]
[75]
Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric., 2013, 93(1), 5-11.
[http://dx.doi.org/10.1002/jsfa.5902] [PMID: 23044813]
[76]
Delaney, A.; Frangoudes, K.; Ii, S-A. Society and seaweed: understanding the past and present. Seaweed Health Dis. Prev; Levine, J.F., Ed.; Academic Press, 2016, pp. 7-40.
[http://dx.doi.org/10.1016/B978-0-12-802772-1.00002-6]
[77]
Pereira, L. Characterization of bioactive components in edible algae. Mar. Drugs, 2020, 18(1), 65.
[http://dx.doi.org/10.3390/md18010065] [PMID: 31963775]
[78]
Plaza, M.; Cifuentes, A.; Ibáñez, E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol., 2008, 19(1), 31-39.
[http://dx.doi.org/10.1016/j.tifs.2007.07.012]
[79]
Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric., 2016, 96(6), 1856-1866.
[http://dx.doi.org/10.1002/jsfa.7489] [PMID: 26455344]
[80]
Nwosu, F.; Morris, J.; Lund, V.A.; Stewart, D.; Ross, H.A.; McDougall, G.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem., 2011, 126(3), 1006-1012.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.111]
[81]
Suzuki, A.; Saeki, T.; Ikuji, H.; Uchida, C.; Uchida, T. Brown algae polyphenol, a prolyl isomerase Pin1 inhibitor, prevents obesity by inhibiting the differentiation of stem cells into adipocytes. PLoS One, 2016, 11(12), e0168830.
[http://dx.doi.org/10.1371/journal.pone.0168830] [PMID: 28036348]
[82]
Miyai, K.; Tokushige, T.; Kondo, M.; Group, I.R. Suppression of thyroid function during ingestion of seaweed “Kombu” (Laminaria japonoca) in normal Japanese adults. Endocr. J., 2008, 55(6), 1103-1108.
[http://dx.doi.org/10.1507/endocrj.K08E-125] [PMID: 18689954]
[83]
Nitschke, U.; Stengel, D.B. Quantification of iodine loss in edible Irish seaweeds during processing. J. Appl. Phycol., 2016, 28(6), 3527-3533.
[http://dx.doi.org/10.1007/s10811-016-0868-6]
[84]
García-Casal, M.N.; Ramírez, J.; Leets, I.; Pereira, A.C.; Quiroga, M.F. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. Br. J. Nutr., 2009, 101(1), 79-85.
[http://dx.doi.org/10.1017/S0007114508994757] [PMID: 18634709]
[85]
Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol., 2014, 26, 14-18.
[http://dx.doi.org/10.1016/j.copbio.2013.08.003] [PMID: 24607804]
[86]
Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem., 2010, 120(3), 749-757.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.006]
[87]
Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs, 2011, 9(6), 1056-1100.
[http://dx.doi.org/10.3390/md9061056] [PMID: 21747748]
[88]
Parr, R.M.; Aras, N.K.; Iyengar, G.V. Dietary intakes of essential trace elements: Results from total diet studies supported by the IAEA. J. Radioanal. Nucl. Chem., 2006, 270(1), 155-161.
[http://dx.doi.org/10.1007/s10967-006-0323-2]
[89]
Salvador, N.; Gómez Garreta, A.; Lavelli, L.; Ribera, M.A. Antimicrobial activity of Iberian macroalgae. Sci. Mar., 2007, 71(1), 101-114.
[http://dx.doi.org/10.3989/scimar.2007.71n1101]
[90]
Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2011, 28(2), 196-268.
[http://dx.doi.org/10.1039/C005001F] [PMID: 21152619]
[91]
Shanmughapriya, S.; Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G.S.; Natarajaseenivasan, K. Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Ann. Microbiol., 2008, 58(3), 535-541.
[http://dx.doi.org/10.1007/BF03175554]
[92]
Seghal Kiran, G.; Manilal, A.; Sujith, S.; Selvin, J.; Shakir, C.; Premnath Lipton, A. Antimicrobial potential of marine organisms collected from the southwest coast of India against multiresistant human and shrimp pathogens. Sci. Mar., 2010, 74(2), 287-296.
[http://dx.doi.org/10.3989/scimar.2010.74n2287]
[93]
Pooja, S. Algae used as medicine and food-A short review. J. Pharm. Sci. Res., 2014, 6(1), 33-35.
[94]
Domínguez, H. Algae as a source of biologically active ingredients for the formulation of functional foods and nutraceuticals. Func. In-gredients Algae Foods Nutraceuticals; Domínguez, H., Ed.; , 2013, pp. 1-19.
[http://dx.doi.org/10.1533/9780857098689.1]
[95]
Sousa, I.; Gouveia, L.; Batista, A.P.; Raymundo, A.; Bandarra, N.M. Microalgae in novel food products. Food Chem. Res. Dev; Papa-doupoulos, K., Ed.; Nova Science Publishers: New York, 2008, pp. 75-112.
[96]
Raja, A.; Vipin, C.; Aiyappan, A. Biological importance of marine algae-An overview. Int. J. Curr. Microbiol., 2013, 2(5), 222-227.
[97]
Herry Cahyana, A.; Shuto, Y.; Kinoshita, Y. Pyropheophytin a as an antioxidative substance from the marine alga, Arame (Eisenia bicyclis). Biosci. Biotechnol. Biochem., 1992, 56(10), 1533-1535.
[http://dx.doi.org/10.1271/bbb.56.1533]
[98]
Kharkwal, H.; Joshi, D.; Panthari, P.; Pant, M.K.; Kharkwal, A.C. Algae as future drugs. Asian J. Pharm. Clin. Res., 2012, 5(4), 1-4.
[99]
Mišurcová, L.; Kráčmar, S.; Klejdus, B.; Vacek, J. Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J. Food Sci., 2010, 28(1), 27-35.
[http://dx.doi.org/10.17221/111/2009-CJFS]
[100]
Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res., 2020, 45, 101743.
[http://dx.doi.org/10.1016/j.algal.2019.101743]
[101]
Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J. Sci. Food Agric., 2010, 90(10), 1656-1664.
[http://dx.doi.org/10.1002/jsfa.3999] [PMID: 20564448]
[102]
Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res., 2017, 26, 161-171.
[http://dx.doi.org/10.1016/j.algal.2017.07.017]
[103]
Hongsthong, A.; Bunnag, B. Overview of Spirulina: Biotechnological, biochemical and molecular biological aspects. Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications; Nova Science Publishers: New York, USA, 2009, pp. 51-103.
[104]
Barakat, E.; El-Kewaisny, N.; Salama, A. Chemical and nutritional evaluation of fortified biscuits with dried spirulina algae. J. Food and Dairy Sci., 2016, 7(3), 167-177.
[http://dx.doi.org/10.21608/jfds.2016.42960]
[105]
Sharma, V.; Dunkwal, V. Development of Spirulina based “biscuits”: A potential method of value addition. Stud. Ethno-Med., 2012, 6(1), 31-34.
[http://dx.doi.org/10.1080/09735070.2012.11886417]
[106]
Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. Lebensm. Wiss. Technol., 2014, 58(1), 102-108.
[http://dx.doi.org/10.1016/j.lwt.2014.02.054]
[107]
Teas, J.; Hurley, T.G.; Hebert, J.R.; Franke, A.A.; Sepkovic, D.W.; Kurzer, M.S. Dietary seaweed modifies estrogen and phytoestrogen metabolism in healthy postmenopausal women. J. Nutr., 2009, 139(5), 939-944.
[http://dx.doi.org/10.3945/jn.108.100834] [PMID: 19321575]
[108]
Taboada, M.C.; Millán, R.; Miguez, M.I. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. J. Appl. Phycol., 2013, 25(5), 1271-1276.
[http://dx.doi.org/10.1007/s10811-012-9951-9]
[109]
Zhang, C.; Li, X.; Kim, S. Application of marine biomaterials for nutraceuticals and functional foods. Food Sci. Biotechnol., 2012, 21(3), 625-631.
[http://dx.doi.org/10.1007/s10068-012-0081-6]
[110]
Mehta, P.; Singh, D.; Saxena, R.; Rani, R.; Gupta, R.P.; Puri, S.K.; Mathur, A.S. High-value coproducts from algae—An innovational way to deal with advance algal industry. Waste to Wealth; Kumar, P.; Sukumaran, R., Eds.; Springer: Singapore, 2018.
[http://dx.doi.org/10.1007/978-981-10-7431-8_15]
[111]
Ortega-Calvo, J.J.; Mazuelos, C.; Hermosin, B.; Sáiz-Jiménez, C. Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain. J. Appl. Phycol., 1993, 5(4), 425-435.
[http://dx.doi.org/10.1007/BF02182735]
[112]
Herber-McNeill, S.M.; Van Elswyk, M.E. Dietary marine algae maintains egg consumer acceptability while enhancing yolk color. Poult. Sci., 1998, 77(3), 493-496.
[http://dx.doi.org/10.1093/ps/77.3.493] [PMID: 9521466]
[113]
Machů, L.; Mišurcová, L.; Samek, D.; Hrabě, J.; Fišera, M. In vitro digestibility of different commercial edible algae products. J. Aquat. Food Prod. Technol., 2014, 23(5), 423-435.
[http://dx.doi.org/10.1080/10498850.2012.721873]
[114]
Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 1986, 3(1), 1-33.
[http://dx.doi.org/10.1039/np9860300001] [PMID: 2872636]
[115]
Frankmölle, W.P.; Knübel, G.; Moore, R.; Patterson, G.M.L.; Knubel, G.; Levine, I.A.; Moore, R.E. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II. Structures of laxaphycins A, B, D and E. J. Antibiot., 1992, 45(9), 1458-1466.
[http://dx.doi.org/10.7164/antibiotics.45.1458] [PMID: 1429232]
[116]
Perez G, R.M.; Avila A, J.G.; Perez G, S.; Martinez C, A.; Martinez C, G. Antimicrobial activity of some american algae. J. Ethnopharmacol., 1990, 29(1), 111-116.
[http://dx.doi.org/10.1016/0378-8741(90)90104-2] [PMID: 2345456]
[117]
Rasala, B.A.; Muto, M.; Lee, P.A.; Jager, M.; Cardoso, R.M.F.; Behnke, C.A.; Kirk, P.; Hokanson, C.A.; Crea, R.; Mendez, M.; Mayfield, S.P. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol. J., 2010, 8(6), 719-733.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00503.x] [PMID: 20230484]
[118]
Fernando, I.P.S.; Nah, J.W.; Jeon, Y.J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol., 2016, 48, 22-30.
[http://dx.doi.org/10.1016/j.etap.2016.09.023] [PMID: 27716532]
[119]
Barchi, J.J., Jr; Norton, T.R.; Furusawa, E.; Patterson, G.M.L.; Moore, R.E. Identification of a cytotoxin from Tolypothrix byssoidea as tubercidin. Phytochemistry, 1983, 22(12), 2851-2852.
[http://dx.doi.org/10.1016/S0031-9422(00)97712-4]
[120]
Patterson, G.M.L.; Baldwin, C.L.; Bolis, C.M.; Caplan, F.R.; Karuso, H.; Larsen, L.K.; Levine, I.A.; Moore, R.E.; Nelson, C.S.; Tschappat, K.D.; Tuang, G.D.; Furusawa, E.; Furusawa, S.; Norton, T.R.; Raybourne, R.B. Antineoplastic activity of cultured blue-green algae (cyanophyta) 1. J. Phycol., 1991, 27(4), 530-536.
[http://dx.doi.org/10.1111/j.0022-3646.1991.00530.x]
[121]
Patterson, G.M.L.; Bolis, C.M. Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. II. Nutrient requirements. Appl. Microbiol. Biotechnol., 1995, 43(4), 692-700.
[http://dx.doi.org/10.1007/BF00164775] [PMID: 7546607]
[122]
Schwartz, R.E.; Hirsch, C.F.; Sesin, D.F.; Flor, J.E.; Chartrain, M.; Fromtling, R.E.; Harris, G.H.; Salvatore, M.J.; Liesch, J.M.; Yudin, K. Pharmaceuticals from cultured algae. J. Ind. Microbiol., 1990, 5(2-3), 113-123.
[http://dx.doi.org/10.1007/BF01573860]
[123]
Riad, N.; Zahi, M.R.; Trovato, E.; Bouzidi, N.; Daghbouche, Y.; Utczás, M.; Mondello, L.; El Hattab, M. Chemical screening and antibacterial activity of essential oil and volatile fraction of Dictyopteris polypodioides. Microchem. J., 2020, 152, 104415.
[http://dx.doi.org/10.1016/j.microc.2019.104415]
[124]
Kamenarska, Z.; Gasic, M.J.; Zlatovic, M.; Rasovic, A.; Sladic, D.; Kljajic, Z.; Stefanov, K.; Seizova, K.; Najdenski, H.; Kujumgiev, A.; Tsvetkova, I.; Popov, S. Chemical composition of the brown alga Padina pavonia (L.) Gaill. from the Adriatic Sea. Bot. Mar., 2002, 45(4), 339-345.
[http://dx.doi.org/10.1515/BOT.2002.034]
[125]
Sultana, V.; Ehteshamul-Haque, S.; Ara, J.; Athar, M. Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int. J. Environ. Sci. Technol., 2005, 2(2), 129-132.
[http://dx.doi.org/10.1007/BF03325866]
[126]
Algae Essential Oils: Chemistry, Ecology, and Biological Activities. El Hattab, M., Ed.; Essential Oils—Bioactive Compounds, New Perspectives and Applications, 2020, pp. 1-20.
[127]
Bonjouklian, R.; Smitka, T.A.; Doolin, L.E.; Molloy, R.M.; Debono, M.; Shaffer, S.A.; Moore, R.E.; Stewart, J.B.; Patterson, G.M.L. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron, 1991, 47(37), 7739-7750.
[http://dx.doi.org/10.1016/S0040-4020(01)81932-3]
[128]
Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs, 2016, 14(4), 81.
[http://dx.doi.org/10.3390/md14040081] [PMID: 27110798]
[129]
Bhattacharjee, M. Pharmaceutically valuable bioactive compounds of algae. Asian J. Pharm. Clin. Res., 2016, 9(6), 43-47.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i6.14507]
[130]
Gleason, F.K. Cyanobacterin herbicide. Patent US4626271A, 1986.
[131]
Vo, T.S.; Kim, S.K. Potential anti-HIV agents from marine resources: An overview. Mar. Drugs, 2010, 8(12), 2871-2892.
[http://dx.doi.org/10.3390/md8122871] [PMID: 21339954]
[132]
Cannell, R.J.P. Algae as a source of biologically active products. Pestic. Sci., 1993, 39(2), 147-153.
[http://dx.doi.org/10.1002/ps.2780390208]
[133]
Baker, J.T. Seaweeds in pharmaceutical studies and applications. Eleventh International Seaweed Symposium, Vol 22., Springer, Dordrecht1984
[http://dx.doi.org/10.1007/978-94-009-6560-7_4]
[134]
Lincoln, R.A.; Strupinski, K.; Walker, J. Bioactive compounds from algae. Life Chem. Rep., 1991, 8, 97-183.
[135]
Borowitzka, M.A. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol., 1995, 7(1), 3-15.
[http://dx.doi.org/10.1007/BF00003544]
[136]
Keith, M. Overview of drug therapy for spondyloarthritis. Rheumatol Curr Res, 2013, 3, 2.
[http://dx.doi.org/10.4172/2161-1149.1000119]
[137]
Mccarty, M. Low-glycotoxin diets and Spirulina may have potential for slowing the growth and spread of rage-expressing cancers. J. Interv. Oncol., 2015, 4(1), 1-4.
[138]
Manikandan, M.K.; Kumar, M.; Manikandan, S.; Chandrasekaran, N.; Mukherjee, A.; Kumaraguru, A. Drug delivery system for controlled cancer therapy using physico-chemically stabilized bioconjugated gold nanoparticles synthesized from marine macroalgae, Padina gymnospora. J. Nanomed. Nanotechnol., 2011, s5(1), 1.
[http://dx.doi.org/10.4172/2157-7439.S5-009]
[139]
Waters, A.L.; Hill, R.T.; Place, A.R.; Hamann, M.T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol., 2010, 21(6), 780-786.
[http://dx.doi.org/10.1016/j.copbio.2010.09.013] [PMID: 20956080]
[140]
Torres, F.A.E.; Passalacqua, T.G.; Velásquez, A.M.A.; de Souza, R.A.; Colepicolo, P.; Graminha, M.A.S. New drugs with antiprotozoal activity from marine algae: A review. Rev. Bras. Farmacogn., 2014, 24(3), 265-276.
[http://dx.doi.org/10.1016/j.bjp.2014.07.001]
[141]
Rinehart, K.L.; Namikoshi, M.; Choi, B.W. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol., 1994, 6(2), 159-176.
[http://dx.doi.org/10.1007/BF02186070]
[142]
Gustafson, K.R.; Cardellina, J.H., II; Fuller, R.W.; Weislow, O.S.; Kiser, R.F.; Snader, K.M.; Patterson, G.M.L.; Boyd, M.R. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J. Natl. Cancer Inst., 1989, 81(16), 1254-1258.
[http://dx.doi.org/10.1093/jnci/81.16.1254] [PMID: 2502635]
[143]
Patterson, G.M.L.; Baker, K.K.; Baldwin, C.L.; Bolis, C.M.; Caplan, F.R.; Larsen, L.K.; Lavine, I.A.; Moore, R.E.; Nelson, C.S.; Tschappat, K.D.; Tuang, G.D.; Boyd, M.R.; Cardellina, J.H.; Collins, R.P.; Gustafson, K.R.; Snader, K.M.; Weisloi, O.S.; Lewin, R.A. Antiviral activity of cultured blue-green algae (cyanophyta) 1. J. Phycol., 1993, 29(1), 125-130.
[http://dx.doi.org/10.1111/j.1529-8817.1993.tb00290.x]
[144]
Sutapa, B.M.; Dhruti, A.; Gopa, R.B. Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria. Afr. J. Pharm. Pharmacol., 2017, 11(5), 68-77.
[http://dx.doi.org/10.5897/AJPP2016.4695]
[145]
Sithranga Boopathy, N.; Kathiresan, K. Anticancer drugs from marine flora: An overview. J. Oncol., 2010, 2010, 1-18.
[http://dx.doi.org/10.1155/2010/214186] [PMID: 21461373]
[146]
Ige, O.O.; Umoru, L.E.; Aribo, S. Natural products: A minefield of biomaterials. ISRN Mater. Sci., 2012, 2012, 1-20.
[http://dx.doi.org/10.5402/2012/983062]
[147]
Fink, J.K. Marine, Waterborne, and Water-resistant Polymers: Chemistry and Applications; John Wiley & Sons, 2015.
[http://dx.doi.org/10.1002/9781119185000]
[148]
Findlay, J.A.; Patil, A.D. Antibacterial constituents of the diatom Navicula delognei. J. Nat. Prod., 1984, 47(5), 815-818.
[http://dx.doi.org/10.1021/np50035a010] [PMID: 6512534]
[149]
Trick, C.G.; Andersen, R.J.; Harrison, P.J. Environmental factors influencing the production of an antibacterial metabolite from a marine dinoflagellate, Prorocentrum minimum. Can. J. Fish. Aquat. Sci., 1984, 41(3), 423-432.
[http://dx.doi.org/10.1139/f84-050]
[150]
de Cano, M.M.S.; de Mulé, M.C.; de Caire, G.Z.; de Halperin, D.R. Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J. Appl. Phycol., 1990, 2(1), 79-81.
[http://dx.doi.org/10.1007/BF02179772]
[151]
Pedersén, M.; Dasilva, E.J. Simple brominated phenols in the bluegreen alga Calothrix brevissima West. Planta, 1973, 115(1), 83-86.
[http://dx.doi.org/10.1007/BF00388608] [PMID: 24458820]
[152]
Silva, T.H.; Alves, A.; Popa, E.G.; Reys, L.L.; Gomes, M.E.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Marine algae sulfated poly-saccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2(4), 278-289.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[153]
Berthon, J.Y.; Nachat-Kappes, R.; Bey, M.; Cadoret, J.P.; Renimel, I.; Filaire, E. Marine algae as attractive source to skin care. Free Radic. Res., 2017, 51(6), 555-567.
[http://dx.doi.org/10.1080/10715762.2017.1355550] [PMID: 28770671]
[154]
Proteau, P.J.; Gerwick, W.H.; Garcia-Pichel, F.; Castenholz, R. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia, 1993, 49(9), 825-829.
[http://dx.doi.org/10.1007/BF01923559] [PMID: 8405307]
[155]
Yoshioka, H.; Ishida, M.; Nishi, K.; Oda, H.; Toyohara, H.; Sugahara, T. Studies on anti-allergic activity of Sargassum horneri extract. J. Funct. Foods, 2014, 10, 154-160.
[http://dx.doi.org/10.1016/j.jff.2014.06.002]
[156]
Sugiura, Y.; Matsuda, K.; Yamada, Y.; Nishikawa, M.; Shioya, K.; Katsuzaki, H.; Imai, K.; Amano, H. Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci. Biotechnol. Biochem., 2006, 70(11), 2807-2811.
[http://dx.doi.org/10.1271/bbb.60417] [PMID: 17090915]
[157]
Palanisamy, S.K.; Arumugam, V.; Rajendran, S.; Ramadoss, A.; Nachimuthu, S.; Peter D, M.; Sundaresan, U. Chemical diversity and anti-proliferative activity of marine algae. Nat. Prod. Res., 2019, 33(14), 2120-2124.
[http://dx.doi.org/10.1080/14786419.2018.1488701] [PMID: 30253657]
[158]
Manzoor, Z.; Mathema, V.B.; Chae, D.; Kang, H.K.; Yoo, E.S.; Jeon, Y.J.; Koh, Y.S. Octaphlorethol A inhibits the CpG-induced inflammatory response by attenuating the mitogen-activated protein kinase and NF-κB pathways. Biosci. Biotechnol. Biochem., 2013, 77(9), 1970-1972.
[http://dx.doi.org/10.1271/bbb.130299] [PMID: 24018681]
[159]
Lee, M.S.; Kwon, M.S.; Choi, J.W.; Shin, T.; No, H.K.; Choi, J.S.; Byun, D.S.; Kim, J.I.; Kim, H.R. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J. Agric. Food Chem., 2012, 60(36), 9120-9129.
[http://dx.doi.org/10.1021/jf3022018] [PMID: 22897701]
[160]
Jung, W.K.; Heo, S.J.; Jeon, Y.J.; Lee, C.M.; Park, Y.M.; Byun, H.G.; Choi, Y.H.; Park, S.G.; Choi, I.W. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agric. Food Chem., 2009, 57(10), 4439-4446.
[http://dx.doi.org/10.1021/jf9003913] [PMID: 19408937]
[161]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2012, 29(2), 144-222.
[http://dx.doi.org/10.1039/C2NP00090C] [PMID: 22193773]
[162]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2013, 30(2), 237-323.
[http://dx.doi.org/10.1039/C2NP20112G] [PMID: 23263727]
[163]
Santos, A.O.; Britta, E.A.; Bianco, E.M.; Ueda-Nakamura, T.; Filho, B.P.D.; Pereira, R.C.; Nakamura, C.V. 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent. Mar. Drugs, 2011, 9(11), 2369-2383.
[http://dx.doi.org/10.3390/md9112369] [PMID: 22163190]
[164]
Santos, A.O.; Veiga-Santos, P.; Ueda-Nakamura, T.; Filho, B.P.D.; Sudatti, D.B.; Bianco, É.M.; Pereira, R.C.; Nakamura, C.V. Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar. Drugs, 2010, 8(11), 2733-2743.
[http://dx.doi.org/10.3390/md8112733] [PMID: 21139841]
[165]
Kang, J. Illustrated Encyclopedia of Fauna and Flora of Korea: Marine algae. J. Ethnopharmacol., 2008, 116, 187-190.
[http://dx.doi.org/10.1016/j.jep.2007.10.032] [PMID: 18079077]
[166]
Moo-Puc, R.; Robledo, D.; Freile-Pelegrin, Y. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. J. Ethnopharmacol., 2008, 120(1), 92-97.
[http://dx.doi.org/10.1016/j.jep.2008.07.035] [PMID: 18725281]
[167]
Mashjoor, S.; Yousefzadi, M.; Esmaeili, M.A.; Rafiee, R. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology, 2016, 68(5), 1717-1726.
[http://dx.doi.org/10.1007/s10616-015-9921-6] [PMID: 26507649]
[168]
Boujaber, N.; Oumaskour, K.; Hassou, N.; Lakhdar, F.; Assobhei, O.; Etahiri, S. Antimicrobial effect of two marine algae Gelidium ses-quipedale and Laminaria ochroleuca collected from the coast of El Jadida-Morocco. J. Innov. Biol., 2016, 5(1), 16-23.
[169]
Bhagavathy, S.; Sumathi, P.; Jancy Sherene Bell, I. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, 1(1), S1-S7.
[http://dx.doi.org/10.1016/S2221-1691(11)60111-1]
[170]
Čermák, L.; Pražáková, Š.; Marounek, M.; Skřivan, M.; Skřivanová, E. Effect of green alga Planktochlorella nurekis on selected bacteria revealed antibacterial activity in vitro. Czech J. Anim. Sci., 2015, 60(10), 427-435.
[http://dx.doi.org/10.17221/8522-CJAS]
[171]
Pugazhendhi, A.; Prabakar, D.; Jacob, J.M.; Karuppusamy, I.; Saratale, R.G. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb. Pathog., 2018, 114, 41-45.
[http://dx.doi.org/10.1016/j.micpath.2017.11.013] [PMID: 29146498]
[172]
Arumugam, G.; Rajendran, R. Anti-candidal activity and synergetic interaction of antifungal drugs with differential extract of brown algae Stocheospermum marginatum. Biocatal. Agric. Biotechnol., 2019, 19, 101145.
[http://dx.doi.org/10.1016/j.bcab.2019.101145]
[173]
Fathy, S.; Mohamed, S.; Ghareeb, D.; Emam, M.; Megeed, D. In vitro screening of anticandidal activity of some marine algae extracts collected from Abo-Qir bay (Alexandria, Egypt). Egypt. J. Experim. Biol., 2017, 13(2), 1.
[http://dx.doi.org/10.5455/egyjebb.20170723055646]
[174]
Sun, Q.L.; Li, Y.; Ni, L.Q.; Li, Y.X.; Cui, Y.S.; Jiang, S.L.; Xie, E.Y.; Du, J.; Deng, F.; Dong, C.X. Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr. Polym., 2020, 229, 115487.
[http://dx.doi.org/10.1016/j.carbpol.2019.115487] [PMID: 31826428]
[175]
Saha, S.; Navid, M.H.; Bandyopadhyay, S.S.; Schnitzler, P.; Ray, B. Sulfated polysaccharides from Laminaria angustata: Structural features and in vitro antiviral activities. Carbohydr. Polym., 2012, 87(1), 123-130.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.026] [PMID: 34662940]
[176]
Cirne-Santos, C.C.; Barros, C.S.; Nogueira, C.C.R.; Azevedo, R.C.; Yamamoto, K.A.; Meira, G.L.S.; Vasconcelos, Z.F.M.; Ratcliffe, N.A.; Teixeira, V.L.; Schmidt-Chanasit, J.; Ferreira, D.F.; Paixão, I.C.N.P. Inhibition by marine algae of chikungunya virus isolated from patients in a recent disease outbreak in Rio de Janeiro. Front. Microbiol., 2019, 10, 2426.
[http://dx.doi.org/10.3389/fmicb.2019.02426] [PMID: 31708898]
[177]
Khalid, M. Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and biore-source management. Crit. Rev. Biotechnol., 2020, 40(1), 46-63.
[http://dx.doi.org/10.1080/07388551.2019.1680599] [PMID: 31645143]
[178]
Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci., 2011, 169(2), 59-79.
[http://dx.doi.org/10.1016/j.cis.2011.08.004] [PMID: 21981929]
[179]
Kannan, R.R.R.; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanosci., 2013, 3(3), 229-233.
[http://dx.doi.org/10.1007/s13204-012-0125-5]
[180]
Sudha, S.S.; Rajamanickam, K.; Rengaramanujam, J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J. Exp. Biol., 2013, 51(5), 393-399.
[PMID: 23821828]
[181]
Singaravelu, G.; Arockiamary, J.S.; Kumar, V.G.; Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces, 2007, 57(1), 97-101.
[http://dx.doi.org/10.1016/j.colsurfb.2007.01.010] [PMID: 17350236]
[182]
Yousefzadi, M.; Rahimi, Z.; Ghafori, V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater. Lett., 2014, 137, 1-4.
[http://dx.doi.org/10.1016/j.matlet.2014.08.110]
[183]
El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym., 2013, 96(2), 403-410.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.071] [PMID: 23768580]
[184]
MubarakAli, D.; Arunkumar, J.; Nag, K.H.; SheikSyedIshack, K.A.; Baldev, E.; Pandiaraj, D.; Thajuddin, N. Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling. Colloids Surf. B Biointerfaces, 2013, 103, 166-173.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.014] [PMID: 23201734]
[185]
Xie, J.; Lee, J.Y.; Wang, D.I.C.; Ting, Y.P. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nano-plates in algal solutions. Small, 2007, 3(4), 672-682.
[http://dx.doi.org/10.1002/smll.200600612] [PMID: 17299827]
[186]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[187]
Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/682749]
[188]
Kanchi, S.; Ahmed, S. Green Metal Nanoparticles: Synthesis, Characterization and their Applications; John Wiley & Sons, 2018.
[http://dx.doi.org/10.1002/9781119418900]
[189]
Namasivayam, S.; Jayakumar, D.; Kumar, V.R.; Bharani, R. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold tolerant strain of Spirulina platensis. Res. J. Pharm. Technol., 2014, 7(12), 1404-1412.
[190]
Dar, M.A.; Ingle, A.; Rai, M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine, 2013, 9(1), 105-110.
[http://dx.doi.org/10.1016/j.nano.2012.04.007] [PMID: 22633901]
[191]
Merin, D.D.; Prakash, S.; Bhimba, B.V. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac. J. Trop. Med., 2010, 3(10), 797-799.
[http://dx.doi.org/10.1016/S1995-7645(10)60191-5]
[192]
Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod., 2013, 45, 423-429.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.019]
[193]
Mie, R.; Samsudin, M.W.; Din, L.; Ahmad, A.; Ibrahim, N.; Adnan, N.A. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int. J. Nanomedicine, 2013, 9, 121-127.
[http://dx.doi.org/10.2147/IJN.S52306] [PMID: 24379670]
[194]
Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci., 2014, 4(5), 571-576.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[195]
Vivek, M.; Kumar, P.S.; Steffi, S.; Sudha, S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J. Med. Biotechnol., 2011, 3(3), 143-148.
[PMID: 23408653]
[196]
El-Sheekh, M.M.; El-Kassas, H.Y. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. J. Genet. Eng. Biotechnol., 2016, 14(2), 299-310.
[http://dx.doi.org/10.1016/j.jgeb.2016.09.008] [PMID: 30647628]
[197]
Sangiliyandi, G.; Kanth, S.B.M.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5, 753-762.
[http://dx.doi.org/10.2147/IJN.S11727] [PMID: 21042421]
[198]
Govindaraju, K.; Krishnamoorthy, K.; Alsagaby, S.A.; Singaravelu, G.; Premanathan, M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol., 2015, 9(6), 325-330.
[http://dx.doi.org/10.1049/iet-nbt.2015.0001] [PMID: 26647807]
[199]
Geetha, S.; Sathakkathul, Z.; Aarthi, R.; Heizline, B. Green synthesis of gold nanoparticle using marine cyanobacteria Gloeocapsa spp. and the antitumor potential. J. Chem. Pharm., 2014, 4, 172-174.
[200]
Gellenbeck, K.W. Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J. Appl. Phycol., 2012, 24(3), 309-313.
[http://dx.doi.org/10.1007/s10811-011-9722-z]
[201]
Fernandes, B.D.; Mota, A.; Teixeira, J.A.; Vicente, A.A. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends. Biotechnol. Adv., 2015, 33(6), 1228-1245.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.004] [PMID: 25777495]
[202]
Cerón García, M.C.; Sánchez Mirón, A.; Fernández Sevilla, J.M.; Molina Grima, E.; García Camacho, F. Mixotrophic growth of the microalga Phaeodactylum tricornutum. Process Biochem., 2005, 40(1), 297-305.
[http://dx.doi.org/10.1016/j.procbio.2004.01.016]
[203]
Jha, D.; Jain, V.; Sharma, B.; Kant, A.; Garlapati, V.K. Microalgae based pharmaceuticals and nutraceuticals: An emerging field with immense market potential. Chem. Bio. Eng. Rev., 2017, 4(4), 257-272.
[http://dx.doi.org/10.1002/cben.201600023]
[204]
Tang, D.Y.Y.; Khoo, K.S.; Chew, K.W.; Tao, Y.; Ho, S.H.; Show, P.L. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour. Technol., 2020, 304, 122997.
[http://dx.doi.org/10.1016/j.biortech.2020.122997] [PMID: 32094007]
[205]
Sankaran, J.K.; Mouly, V.S. Managing innovation in an emerging sector: The case of marine-based nutraceuticals. R & D Manag., 2007, 37(4), 329-344.
[http://dx.doi.org/10.1111/j.1467-9310.2007.00479.x]
[206]
Zakaria, S.M.; Kamal, S.M.M. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng. Rev., 2016, 8(1), 23-34.
[http://dx.doi.org/10.1007/s12393-015-9119-x]
[207]
Chatterjee, D.; Bhattacharjee, P. Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: Optimization of experimental process parameters. Algal Res., 2014, 3, 49-54.
[http://dx.doi.org/10.1016/j.algal.2013.11.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy