Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

An Insight into Enhanced Roles of Plant and Microbial Nanobionics

Author(s): Theivasanthi Thirugnanasambandan* and Subash C.B. Gopinath*

Volume 20, Issue 4, 2024

Published on: 09 June, 2023

Page: [436 - 446] Pages: 11

DOI: 10.2174/1573413719666230518123226

Price: $65

conference banner
Abstract

Plant nanobionics is an interdisciplinary field of science with the concepts of plant biology and nanotechnology applied. The field is in the developing stage with various applications, including photosynthesis enhancement, light-emitting plants, sensors, and energy harvesting from plant organelles. For instance, advanced nanomaterials like carbon nanotubes are inserted in plant tissues to achieve various functions. The photosynthesis process can be enhanced by improving light absorption using single-walled carbon nanotubes that are impregnated in the leaves of plants. Plants are able to emit light when various nanostructures are encapsulated inside. Plant fuel cells can be constructed by embedding nanomaterials in the plant organelles for energy generation. On the other hand, various sensing devices have been developed for agriculture using plant nanobionics, which detect pollutants, toxic chemicals, and soil moisture. These devices are expected to be superior to the conventional sensors used in agriculture. Apart from that, microorganisms can be used as catalysts for energy generation and wastewater treatment in microbial fuel cells. In this study, microbial nanobionics are discussed for the nanomaterials coated on the electrodes of a microbial fuel cell to improve electron transfer and biofilm formation.

Graphical Abstract

[1]
Ranjan, A.; Rajput, V.D.; Kumari, A.; Mandzhieva, S.S.; Sushkova, S.; Prazdnova, E.V.; Zargar, S.M.; Raza, A.; Minkina, T.; Chung, G. Nanobionics in crop production: An emerging approach to modulate plant functionalities. Plants, 2022, 11(5), 692.
[http://dx.doi.org/10.3390/plants11050692] [PMID: 35270162]
[2]
Gangwar, J.; Kadanthottu, S.J.; Puthukulangara, J.J.; Kurian, J.T. Nano-technological interventions in crop production—a review. Physiol. Mol. Biol. Plants, 2023, 29(1), 93-107.
[http://dx.doi.org/10.1007/s12298-022-01274-5] [PMID: 36733843]
[3]
Kwak, S.Y.; Giraldo, J.P.; Wong, M.H.; Koman, V.B.; Lew, T.T.S.; Ell, J.; Weidman, M.C.; Sinclair, R.M.; Landry, M.P.; Tisdale, W.A.; Strano, M.S. A nanobionic light-emitting Plant. Nano Lett., 2017, 17(12), 7951-7961.
[http://dx.doi.org/10.1021/acs.nanolett.7b04369] [PMID: 29148804]
[4]
Kaith, B.S.; Singh, A.; Sharma, A.K.; Sud, D. Hydrogels: Synthesis, classification, properties and potential applications—a brief review. J. Polym. Environ., 2021, 29(12), 3827-3841.
[http://dx.doi.org/10.1007/s10924-021-02184-5]
[5]
Dhiman, A.; Sharma, A.K.; Agrawal, G. Polymer based engineered materials for sustainable agriculture. J. Agric. Sci., 2022, 2(4), 693-711.
[http://dx.doi.org/10.1021/acsagscitech.1c00278]
[6]
Sears, M.E. Chelation: Harnessing and enhancing heavy metal detoxification-a review. ScientificWorldJournal, 2013, 2013, 219840.
[http://dx.doi.org/10.1155/2013/219840] [PMID: 23690738]
[7]
Khatri, K.; Rathore, M.S. Plant nanobionics and its applications for developing plants with improved photosynthetic capacity. Photosynthesis: From Its Evolution to Future Improvements in Photosynthetic Efficiency Using Nanomaterials; Intech Open, 2018, p. 95.
[8]
Di Giacomo, R.; Daraio, C.; Maresca, B. Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. Proc. Natl. Acad. Sci., 2015, 112(15), 4541-4545.
[http://dx.doi.org/10.1073/pnas.1421020112] [PMID: 25825744]
[9]
Yasri, N.; Roberts, E.P.L.; Gunasekaran, S. The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Rep., 2019, 5, 1116-1136.
[http://dx.doi.org/10.1016/j.egyr.2019.08.007]
[10]
Giraldo, J.P.; Landry, M.P.; Faltermeier, S.M.; McNicholas, T.P.; Iverson, N.M.; Boghossian, A.A.; Reuel, N.F.; Hilmer, A.J.; Sen, F.; Brew, J.A.; Strano, M.S. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater., 2014, 13(4), 400-408.
[http://dx.doi.org/10.1038/nmat3890] [PMID: 24633343]
[11]
Mumin, M.A.; Xu, W.Z.; Charpentier, P.A. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties. Nanotechnology, 2015, 26(31), 315702.
[http://dx.doi.org/10.1088/0957-4484/26/31/315702] [PMID: 26177824]
[12]
Schmidt-Rohr, K. O2 and other high-energy molecules in photosynthesis: Why plants need two photosystems. Life, 2021, 11(11), 1191.
[http://dx.doi.org/10.3390/life11111191] [PMID: 34833066]
[13]
Lew, T.T.S.; Koman, V.B.; Silmore, K.S.; Seo, J.S.; Gordiichuk, P.; Kwak, S.Y.; Park, M.; Ang, M.C.Y.; Khong, D.T.; Lee, M.A.; Chan-Park, M.B.; Chua, N.H.; Strano, M.S. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat. Plants, 2020, 6(4), 404-415.
[http://dx.doi.org/10.1038/s41477-020-0632-4] [PMID: 32296141]
[14]
Meier, J.; Stapleton, J.; Hofferber, E.; Haworth, A.; Kachman, S.; Iverson, N.M. Quantification of nitric oxide concentration using single-walled carbon nanotube sensors. Nanomaterials, 2021, 11(1), 243.
[http://dx.doi.org/10.3390/nano11010243] [PMID: 33477618]
[15]
Kang, B.C.; Jeon, J.Y.; Byun, Y.T.; Ha, T.J. Functionalized carbon nanotube sensors for the detection of sub-ppm nitric oxide gas. J. Nanosci. Nanotechnol., 2018, 18(9), 6562-6564.
[http://dx.doi.org/10.1166/jnn.2018.15695] [PMID: 29677834]
[16]
Lew, T.T.S.; Park, M.; Cui, J.; Strano, M.S. Plant nanobionic sensors for arsenic detection. Adv. Mater., 2021, 33(1), 2005683.
[http://dx.doi.org/10.1002/adma.202005683] [PMID: 33241636]
[17]
Mao, K.; Zhang, H.; Wang, Z.; Cao, H.; Zhang, K.; Li, X.; Yang, Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens. Bioelectron., 2020, 148, 111785.
[http://dx.doi.org/10.1016/j.bios.2019.111785] [PMID: 31689596]
[18]
Ben-Shimon, Y.; Ya’akobovitz, A. Flexible and bio-compatible temperature sensors based on carbon nanotube composites. Measurement, 2021, 172, 108889.
[http://dx.doi.org/10.1016/j.measurement.2020.108889]
[19]
Abdulhameed, A.; Halin, I.A.; Mohtar, M.N.; Hamidon, M.N. Airflow-assisted dielectrophoresis to reduce the resistance mismatch in carbon nanotube-based temperature sensors. RSC Advances, 2021, 11(62), 39311-39318.
[http://dx.doi.org/10.1039/D1RA08250G] [PMID: 35492445]
[20]
Kaur, B.B. Carbon nanotubes and its potential application in sensing. Chem. Select, 2021, 6, 9571-9590.
[21]
Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res., 2019, 52(3), 523-533.
[http://dx.doi.org/10.1021/acs.accounts.8b00500] [PMID: 30767497]
[22]
Takahashi, M.; Ishiji, T.; Kawashima, N. Handmade oxygen and carbon dioxide sensors for monitoring the photosynthesis process as instruction material for science education. Sen. Actuat. B: Chem., 2001, 77(1-2), 237-243.
[23]
Swift, T.A.; Fagan, D.; Benito-Alifonso, D.; Hill, S.A.; Yallop, M.L.; Oliver, T.A.A.; Lawson, T.; Galan, M.C.; Whitney, H.M. Photosynthesis and crop productivity are enhanced by glucose‐functionalised carbon dots. New Phytol., 2021, 229(2), 783-790.
[http://dx.doi.org/10.1111/nph.16886] [PMID: 32813888]
[24]
Silvestri, A.; Wetzl, C.; Alegret, N.; Cardo, L.; Hou, H.L.; Criado, A.; Prato, M. The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv. Drug Deliv. Rev., 2022, 186, 114315.
[http://dx.doi.org/10.1016/j.addr.2022.114315] [PMID: 35513130]
[25]
Grillo, R.; Mattos, B.D.; Antunes, D.R.; Forini, M.M.L.; Monikh, F.A.; Rojas, O.J. Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 2021, 37, 101078.
[http://dx.doi.org/10.1016/j.nantod.2021.101078]
[26]
Joshi, S.; Cook, E.; Mannoor, M.S. Bacterial nanobionics via 3D printing. Nano Lett., 2018, 18(12), 7448-7456.
[http://dx.doi.org/10.1021/acs.nanolett.8b02642] [PMID: 30403141]
[27]
Hou, J.; Liu, Z.; Zhang, P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J. Power Sources, 2013, 224, 139-144.
[http://dx.doi.org/10.1016/j.jpowsour.2012.09.091]
[28]
Wen, Z.; Ci, S.; Mao, S.; Cui, S.; Lu, G.; Yu, K.; Luo, S.; He, Z.; Chen, J. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J. Power Sources, 2013, 234, 100-106.
[http://dx.doi.org/10.1016/j.jpowsour.2013.01.146]
[29]
Peng, X.; Yu, H.; Wang, X.; Gao, N.; Geng, L.; Ai, L. Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite. J. Power Sources, 2013, 223, 94-99.
[http://dx.doi.org/10.1016/j.jpowsour.2012.09.057]
[30]
Mehdinia, A.; Ziaei, E.; Jabbari, A. Multi-walled carbon nanotube/SnO2 nanocomposite: A novel anode material for microbial fuel cells. Electrochim. Acta, 2014, 130, 512-518.
[http://dx.doi.org/10.1016/j.electacta.2014.03.011]
[31]
Ci, S.; Wen, Z.; Chen, J.; He, Z. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem. Commun., 2012, 14(1), 71-74.
[http://dx.doi.org/10.1016/j.elecom.2011.11.006]
[32]
Qiao, Y.; Wu, X.S.; Li, C.M. Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells. J. Power Sources, 2014, 266, 226-231.
[http://dx.doi.org/10.1016/j.jpowsour.2014.05.015]
[33]
Pu, L.; Liu, D.; Li, K.; Wang, J.; Yang, T.; Ge, B.; Liu, Z. Carbon-supported binary transition metal chalcogenide used as cathode catalyst for oxygen reduction in microbial fuel cell. Int. J. Hydrogen Energy, 2017, 42(20), 14253-14263.
[http://dx.doi.org/10.1016/j.ijhydene.2017.04.074]
[34]
Liang, B.; Zhao, Y.; Zong, M.; Huo, S.; Khan, I.U.; Li, K.; Lv, C. Hierarchically porous N-doped carbon encapsulating CoO/MgO as superior cathode catalyst for microbial fuel cell. Chem. Eng. J., 2020, 385, 123861.
[http://dx.doi.org/10.1016/j.cej.2019.123861]
[35]
Safdar, M.; Kim, W.; Park, S.; Gwon, Y.; Kim, Y.O.; Kim, J. Engineering plants with carbon nanotubes: A sustainable agriculture approach. J. Nanobiotechnology, 2022, 20(1), 275.
[http://dx.doi.org/10.1186/s12951-022-01483-w] [PMID: 35701848]
[36]
Bhati, A.; Gunture, G.; Tripathi, K.M.; Singh, A.; Sarkar, S.; Sonkar, S.K. Exploration of nano carbons in relevance to plant systems. New J. Chem., 2018, 42(20), 16411-16427.
[http://dx.doi.org/10.1039/C8NJ03642J]
[37]
Dhiman, N.; Ghosh, S.; Mishra, Y.K.; Tripathi, K.M. Prospects of nano-carbons as emerging catalysts for enzyme-mimetic applications. Materials Advances, 2022, 3(7), 3101-3122.
[http://dx.doi.org/10.1039/D2MA00034B]
[38]
Bensalah, F.; Pézard, J.; Haddour, N.; Erouel, M.; Buret, F.; Khirouni, K. Carbon nano-fiber/PDMS composite used as corrosion-resistant coating for copper anodes in microbial fuel cells. Nanomaterials, 2021, 11(11), 3144.
[http://dx.doi.org/10.3390/nano11113144] [PMID: 34835905]
[39]
Kumbar, S.S.; Jadhav, D.A.; Jarali, C.S.; Talange, D.B.; Afzal, A.; Khan, S.A.; Asif, M.; Abdullah, M.Z. Enhancement in cathodic redox reactions of single-chambered microbial fuel cells with Castor oil-emitted powder as cathode material. Materials, 2021, 14(16), 4454.
[http://dx.doi.org/10.3390/ma14164454] [PMID: 34442980]
[40]
Attia, Y.A.; Samer, M.; Mohamed, M.S.M.; Moustafa, E.; Salah, M.; Abdelsalam, E.M. Nanocoating of microbial fuel cell electrodes for enhancing bioelectricity generation from wastewater. Biomass Convers. Biorefin., 2022, 2022, 02321-02327.
[http://dx.doi.org/10.1007/s13399-022-02321-7]
[41]
Zhang, X.; Wang, Q.; Tang, C.; Wang, H.F.; Liang, P.; Huang, X.; Zhang, Q. High‐power microbial fuel cells based on a carbon–carbon composite air cathode. Small, 2020, 16(15), 1905240.
[http://dx.doi.org/10.1002/smll.201905240] [PMID: 31755227]
[42]
Zhang, L.; He, W.; Yang, J.; Sun, J.; Li, H.; Han, B.; Zhao, S.; Shi, Y.; Feng, Y.; Tang, Z.; Liu, S. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosens. Bioelectron., 2018, 122, 217-223.
[http://dx.doi.org/10.1016/j.bios.2018.09.005] [PMID: 30265972]
[43]
Zeng, L.; Zhao, S.; Zhang, L.; He, M. A facile synthesis of molybdenum carbide nanoparticles-modified carbonized cotton textile as an anode material for high-performance microbial fuel cells. RSC Advances, 2018, 8(70), 40490-40497.
[http://dx.doi.org/10.1039/C8RA07502F] [PMID: 35558222]
[44]
Wang, R.; Yan, M.; Li, H.; Zhang, L.; Peng, B.; Sun, J.; Liu, D.; Liu, S. FeS2 nanoparticles decorated graphene as microbial‐fuel‐cell anode achieving high power density. Adv. Mater., 2018, 30(22), 1800618.
[http://dx.doi.org/10.1002/adma.201800618] [PMID: 29665169]
[45]
Mashkour, M.; Rahimnejad, M.; Pourali, S.M.; Ezoji, H.; ElMekawy, A.; Pant, D. Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Prog. Nat. Sci., 2017, 27(6), 647-651.
[http://dx.doi.org/10.1016/j.pnsc.2017.11.003]
[46]
Mahrokh, L.; Ghourchian, H.; Nealson, K.H.; Mahrokh, M. An efficient microbial fuel cell using a CNT–RTIL based nanocomposite. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(17), 7979-7991.
[http://dx.doi.org/10.1039/C6TA09766A]
[47]
Zhao, S.; Li, Y.; Yin, H.; Liu, Z.; Luan, E.; Zhao, F.; Tang, Z.; Liu, S. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv., 2015, 1(10), e1500372.
[http://dx.doi.org/10.1126/sciadv.1500372] [PMID: 26702430]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy