Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Development and Advancement in Quantum Dots in Pharmaceutical and Biomedical Fields for the Delivery of Drugs

Author(s): Pranjal Kumar Singh*, Smita Singh, Kapil Sachan, Vikrant Verma and Sakshi Garg

Volume 20, Issue 4, 2024

Published on: 05 June, 2023

Page: [425 - 435] Pages: 11

DOI: 10.2174/1573413719666230517111856

Price: $65

conference banner
Abstract

Nanoscale semiconductors known as quantum dots (QDs) are essential for drug testing because they bridge the gap between nanotechnology and the testing of drugs. QDs are a valuable tool in theranostics and treatment because of their unique physicochemical features. Due to their photoluminescence and electronic properties, including broad and continuous absorption spectra, narrow emission spectra from visible to near-infrared wavelengths, and long-lasting and high brightness, they are suitable probe materials for use in (bio)sensing (immunological) platforms. Several studies use QDs due to their optical, magnetic, electrical, photochemical, and biological features that allow them to be employed in various scientific domains. When utilized in drug delivery systems, fluorescent markers, such as QDs, can track the metabolism of drugs in the human body. Many medicinal applications, such as disease diagnosis and medication research, can benefit from these fluorescent tests. In this review article, the application of QD in drug delivery and immunoassay sensing has been described in detail.

Graphical Abstract

[1]
Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[2]
Lovergine, N.; Cingolani, R.; Mancini, A.M.; Ferrara, M. Photoluminescence of CVD grown CdS epilayers on CdTe substrates. J. Cryst. Growth, 1992, 118(3-4), 304-308.
[http://dx.doi.org/10.1016/0022-0248(92)90076-U]
[3]
Fernández, M.; Prete, P.; Lovergine, N.; Mancini, A.M.; Cingolani, R.; Vasanelli, L.; Perrone, M.R. Optical properties of MOVPE-grown ZnS epilayers on (100) GaAs. Phys. Rev. B Condens. Matter, 1997, 55(12), 7660-7666.
[http://dx.doi.org/10.1103/PhysRevB.55.7660]
[4]
Cingolani, R.; Di Dio, M.; Lomascolo, M.; Rinaldi, R.; Prete, P.; Vasanelli, L.; Vanzetti, L.; Bassani, F.; Bonanni, A.; Sorba, L.; Franciosi, A. Photocurrent spectroscopy of Zn 1 − x Cd x Se/ZnSe quantum wells in p-i-n heterostructures. Phys. Rev. B Condens. Matter, 1994, 50(16), 12179-12182.
[http://dx.doi.org/10.1103/PhysRevB.50.12179] [PMID: 9975364]
[5]
Zhao, M.X.; Zeng, E.Z. Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res. Lett., 2015, 10(1), 171.
[http://dx.doi.org/10.1186/s11671-015-0873-8] [PMID: 25897311]
[6]
Liu, Y.; Zhang, X.; Zhang, W.; Ge, X.; Wang, Y.; Zou, X.; Zhou, X.; Zheng, W. MXENE ‐based quantum dots optimize hydrogen production via spontaneous evolution of Cl‐ to O‐terminated surface groups. Energy Environ. Mater., 2022, 12438, 1-8.
[http://dx.doi.org/10.1002/eem2.12438]
[7]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[8]
Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B, 2019, 9(6), 1145-1162.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[9]
Bruschi, M.L. Modification of Drug Release. In: Strategies to modify the drug release from pharmaceutical system; Woodhead Publishing: Sawston, UK, 2015; pp. 15-28.
[10]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[11]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[12]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[13]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[14]
Sharma, H.; Mondal, S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: A promising material in nanomedicine. Int. J. Mol. Sci., 2020, 21(17), 6280.
[http://dx.doi.org/10.3390/ijms21176280] [PMID: 32872646]
[15]
McCallion, C.; Burthem, J.; Rees-Unwin, K.; Golovanov, A.; Pluen, A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur. J. Pharm. Biopharm., 2016, 104, 235-250.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.015] [PMID: 27113141]
[16]
Jeong, S.; Pinals, R.L.; Dharmadhikari, B.; Song, H.; Kalluri, A.; Debnath, D.; Wu, Q.; Ham, M.H.; Patra, P.; Landry, M.P. Graphene quantum dot oxidation governs noncovalent biopolymer adsorption. Sci. Rep., 2020, 10(1), 7074.
[http://dx.doi.org/10.1038/s41598-020-63769-z] [PMID: 32341425]
[17]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[http://dx.doi.org/10.1021/acs.chemrev.5b00620] [PMID: 27033639]
[18]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol., 2019, 9, 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[19]
Siafaka, P.I.; Okur, N.Ü.; Karantas, I.D.; Okur, M.E. Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm., 2021, 16(1), 24-46.
[http://dx.doi.org/10.1016/j.ajps.2020.03.003] [PMID: 33613728]
[20]
El-Sayed, A.; Kamel, M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19200-19213.
[http://dx.doi.org/10.1007/s11356-019-06459-2] [PMID: 31529348]
[21]
Zayed, D.G. AbdElhamid, A.S.; Freag, M.S.; Elzoghby, A.O. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine, 2019, 14(3), 225-228.
[http://dx.doi.org/10.2217/nnm-2018-0414] [PMID: 30652951]
[22]
Pamidimarri, S.D.V.N.; Velramar, B.; Madavi, T.; Pandey, S.; Ratre, Y.K.; Sharma, P.K. Quantum dots: Characteristics and prospects from diagnosis to treatment BT - Engineered nanomaterials for innovative therapies and biomedicine; Springer International Publishing: Cham, 2022, pp. 175-204.
[23]
Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[24]
Wang, M.; Wang, J.; Sun, H.; Han, S.; Feng, S.; Shi, L.; Meng, P.; Li, J.; Huang, P.; Sun, Z. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. Int. J. Nanomedicine, 2016, 11, 2319-2328.
[PMID: 27307732]
[25]
Zheng, B.; Guo, M.; Song, X.; Miao, Y.; Pang, M.; Ming, D. Reversing the systemic biotoxicity of nanomaterials by downregulating ROS-related signaling pathways in the multi-organs of Zebrafish embryos. Mater. Chem. Front., 2021, 5(11), 4231-4243.
[http://dx.doi.org/10.1039/D1QM00193K]
[26]
Lee, J.Y.; Kim, J.S.; Park, J.C.; Nam, Y.S. Protein–quantum dot nanohybrids for bioanalytical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 178-190.
[http://dx.doi.org/10.1002/wnan.1345] [PMID: 25854126]
[27]
Chu, M.; Wu, F.; Zhang, Q.; Liu, T.; Yu, Y.; Ji, A.; Xu, K.; Feng, Z.; Zhu, J. A novel method for preparing quantum dot nanospheres with narrow size distribution. Nanoscale, 2010, 2(4), 542-547.
[http://dx.doi.org/10.1039/b9nr00323a] [PMID: 20644757]
[28]
Nie, X.; Xu, J.; Cui, J.; Yang, B.; Jiang, W. Encapsulation of semiconductor quantum dots into the central cores of block copolymer cylindrical and toroidal micelles. RSC Advances, 2013, 3(46), 24625.
[http://dx.doi.org/10.1039/c3ra44403a]
[29]
Narlikar, A.V.; Fu, Y.Y. Oxford Handbook of Nanoscience and Technology; Applications. OUP Oxford: Oxford, England, 2010, 3, p. 625-635.
[30]
Weng, K.C.; Hashizume, R.; Noble, C.O.; Serwer, L.P.; Drummond, D.C.; Kirpotin, D.B.; Kuwabara, A.M.; Chao, L.X.; Chen, F.F.; James, C.D.; Park, J.W. Convection-enhanced delivery of targeted quantum dot–immunoliposome hybrid nanoparticles to intracranial brain tumor models. Nanomedicine, 2013, 8(12), 1913-1925.
[http://dx.doi.org/10.2217/nnm.12.209] [PMID: 23631502]
[31]
Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of nanotechnology in cancer diagnosis and therapy - A Mini-Review. Int. J. Med. Sci., 2020, 17(18), 2964-2973.
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[32]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[33]
Tian, P.; Tang, L.; Teng, K.S.; Lau, S.P. Graphene quantum dots from chemistry to applications. Mater. Today Chem., 2018, 10, 221-258.
[http://dx.doi.org/10.1016/j.mtchem.2018.09.007]
[34]
Borovaya, M.; Horiunova, I.; Plokhovska, S.; Pushkarova, N.; Blume, Y.; Yemets, A. Synthesis, properties and bioimaging applications of silver-based quantum dots. Int. J. Mol. Sci., 2021, 22(22), 12202.
[http://dx.doi.org/10.3390/ijms222212202] [PMID: 34830084]
[35]
Kara, H.E. Quantum dots for pharmaceutical and biomedical analysis. In: Spectroscopic Analyses; IntechOpen: Rijeka, 2017.
[http://dx.doi.org/10.5772/intechopen.70034]
[36]
Wychodnik, K.; Rogowska, J.; Wolska, L.; Treder, N.; Plenis, A. The influence of ionic liquids on the effectiveness of analytical methods used in the monitoring of human environmental samples — trends and perspectives. Molecules, 2020, 25, 1-57.
[37]
Li, H.; Zhao, T.; Sun, Z. Analytical techniques and methods for study of drug-lipid membrane interactions. Rev. Anal. Chem., 2018, 37(1), 20170012.
[http://dx.doi.org/10.1515/revac-2017-0012]
[38]
Ozcelikay, G.; Kurbanoglu, S.; Bozal-Palabiyik, B.; Uslu, B.; Ozkan, S.A. MWCNT/CdSe quantum dot modified glassy carbon electrode for the determination of clopidogrel bisulfate in tablet dosage form and serum samples. J. Electroanal. Chem., 2018, 827, 51-57.
[http://dx.doi.org/10.1016/j.jelechem.2018.09.005]
[39]
Ashrafi, H.; Hassanpour, S.; Saadati, A.; Hasanzadeh, M.; Ansarin, K.; Ozkan, S.A.; Shadjou, N.; Jouyban, A. Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchem. J., 2019, 145, 1050-1057.
[http://dx.doi.org/10.1016/j.microc.2018.12.017]
[40]
Banerjee, A.; Pons, T.; Lequeux, N.; Dubertret, B. Quantum dots–DNA bioconjugates: Synthesis to applications. Interface Focus, 2016, 6(6), 20160064.
[http://dx.doi.org/10.1098/rsfs.2016.0064] [PMID: 27920898]
[41]
Muthusankar, G.; Devi, R.K.; Gopu, G. Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosens. Bioelectron., 2020, 150, 111947.
[http://dx.doi.org/10.1016/j.bios.2019.111947] [PMID: 31818763]
[42]
Huang, K.J.; Li, J.; Wu, Y.Y.; Liu, Y.M. Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform. Bioelectrochemistry, 2013, 90, 18-23.
[http://dx.doi.org/10.1016/j.bioelechem.2012.10.005] [PMID: 23165290]
[43]
Ganganboina, A.B.; Doong, R.A. Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoembryonic antigen. Sci. Rep., 2019, 9(1), 7214.
[http://dx.doi.org/10.1038/s41598-019-43740-3] [PMID: 31076624]
[44]
Yang, X.; Zhang, W.; Zhao, Z.; Li, N.; Mou, Z.; Sun, D.; Cai, Y.; Wang, W.; Lin, Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem., 2017, 167, 36-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.023]
[45]
Nie, G.; Wang, Y.; Tang, Y.; Zhao, D.; Guo, Q. A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosens. Bioelectron., 2018, 101, 123-128.
[http://dx.doi.org/10.1016/j.bios.2017.10.021] [PMID: 29055194]
[46]
Liu, H.; Ding, J.; Zhang, K.; Ding, L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. Trends Analyt. Chem., 2019, 118, 315-337.
[http://dx.doi.org/10.1016/j.trac.2019.05.051]
[47]
Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. Trends Analyt. Chem., 2019, 115, 83-99.
[http://dx.doi.org/10.1016/j.trac.2019.04.003]
[48]
Hunt, N.J.; Lockwood, G.P.; Le Couteur, F.H.; McCourt, P.A.G.; Singla, N.; Kang, S.W.S.; Burgess, A.; Kuncic, Z.; Le Couteur, D.G.; Cogger, V.C. Rapid intestinal uptake and targeted delivery to the liver endothelium using orally administered silver sulfide quantum dots. ACS Nano, 2020, 14(2), 1492-1507.
[http://dx.doi.org/10.1021/acsnano.9b06071] [PMID: 31976646]
[49]
Zhou, T.; Huang, Z.; Wan, F.; Sun, Y. Carbon quantum dots-stabilized Pickering emulsion to prepare NIR light-responsive PLGA drug delivery system. Mater. Today Commun., 2020, 23, 100951.
[http://dx.doi.org/10.1016/j.mtcomm.2020.100951]
[50]
Wei, Z.; Yin, X.; Cai, Y.; Xu, W.; Song, C.; Wang, Y.; Zhang, J.; Kang, A.; Wang, Z.; Han, W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomedicine, 2018, 13, 1505-1524.
[http://dx.doi.org/10.2147/IJN.S156984] [PMID: 29559779]
[51]
Javanbakht, S.; Namazi, H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C, 2018, 87, 50-59.
[http://dx.doi.org/10.1016/j.msec.2018.02.010] [PMID: 29549949]
[52]
Abdelhamid, H.N.; El-Bery, H.M.; Metwally, A.A.; Elshazly, M.; Hathout, R.M. Synthesis of CdS-modified chitosan quantum dots for the drug delivery of Sesamol. Carbohydr. Polym., 2019, 214, 90-99.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.024] [PMID: 30926012]
[53]
Kulkarni, N.S.; Parvathaneni, V.; Shukla, S.K.; Barasa, L.; Perron, J.C.; Yoganathan, S.; Muth, A.; Gupta, V. Tyrosine kinase inhibitor conjugated quantum dots for non-small cell lung cancer (NSCLC) treatment. Eur. J. Pharm. Sci., 2019, 133, 145-159.
[http://dx.doi.org/10.1016/j.ejps.2019.03.026] [PMID: 30946965]
[54]
Ye, F.; Barrefelt, Å.; Asem, H.; Abedi-Valugerdi, M.; El-Serafi, I.; Saghafian, M.; Abu-Salah, K.; Alrokayan, S.; Muhammed, M.; Hassan, M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials, 2014, 35(12), 3885-3894.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.041] [PMID: 24495486]
[55]
Zhang, Z.Y.; Xu, Y.D.; Ma, Y.Y.; Qiu, L.L.; Wang, Y.; Kong, J.L.; Xiong, H.M. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew. Chem. Int. Ed., 2013, 52(15), 4127-4131.
[http://dx.doi.org/10.1002/anie.201300431] [PMID: 23463695]
[56]
Tan, L.; Huang, R.; Li, X.; Liu, S.; Shen, Y.M.; Shao, Z. Chitosan-based core-shell nanomaterials for pH-triggered release of anticancer drug and near-infrared bioimaging. Carbohydr. Polym., 2017, 157, 325-334.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.092] [PMID: 27987935]
[57]
Zhao, T.; Liu, X.; Li, Y.; Zhang, M.; He, J.; Zhang, X.; Liu, H.; Wang, X.; Gu, H. Fluorescence and drug loading properties of ZnSe:Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles. J. Colloid Interface Sci., 2017, 490, 436-443.
[http://dx.doi.org/10.1016/j.jcis.2016.11.079] [PMID: 27914343]
[58]
Cai, X.; Luo, Y.; Zhang, W.; Du, D.; Lin, Y. pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(34), 22442-22450.
[http://dx.doi.org/10.1021/acsami.6b04933] [PMID: 27463610]
[59]
Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y. A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens. Bioelectron., 2017, 90, 31-38.
[http://dx.doi.org/10.1016/j.bios.2016.11.029] [PMID: 27871047]
[60]
Bwatanglang, I.B.; Mohammad, F.; Yusof, N.A.; Abdullah, J.; Alitheen, N.B.; Hussein, M.Z.; Abu, N.; Mohammed, N.E.; Nordin, N.; Zamberi, N.R.; Yeap, S.K. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J. Colloid Interface Sci., 2016, 480, 146-158.
[http://dx.doi.org/10.1016/j.jcis.2016.07.011] [PMID: 27428851]
[61]
Han, H.; Valdepérez, D.; Jin, Q.; Yang, B.; Li, Z.; Wu, Y.; Pelaz, B.; Parak, W.J.; Ji, J. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano, 2017, 11(2), 1281-1291.
[http://dx.doi.org/10.1021/acsnano.6b05541] [PMID: 28071891]
[62]
Chiu, S.H.; Gedda, G.; Girma, W.M.; Chen, J.K.; Ling, Y.C.; Ghule, A.V.; Ou, K.L.; Chang, J.Y. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater., 2016, 46M, 151-164.
[http://dx.doi.org/10.1016/j.actbio.2016.09.027]
[63]
Sui, X.; Luo, C.; Wang, C.; Zhang, F.; Zhang, J.; Guo, S. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine, 2016, 12(7), 1997-2006.
[http://dx.doi.org/10.1016/j.nano.2016.03.010] [PMID: 27085903]
[64]
Xiao, S.; Zhou, D.; Luan, P.; Gu, B.; Feng, L.; Fan, S.; Liao, W.; Fang, W.; Yang, L.; Tao, E.; Guo, R.; Liu, J. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials, 2016, 106, 98-110.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.021] [PMID: 27552320]
[65]
Miele, E.; Spinelli, G.P.; Miele, E.; Di Fabrizio, E.; Ferretti, E.; Tomao, S.; Gulino, A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomedicine, 2012, 7, 3637-3657.
[PMID: 22915840]
[66]
Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A.; Mehmandoost, N.; Moazzen, F.; Mazraeh, A.; Marmari, V.; Ebrahimi, M.; Rashno, M.M.; Abadi, S.J.; Gharagouzlo, E. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci., 2017, 13(2), 48-57.
[PMID: 28824341]
[67]
Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151.
[http://dx.doi.org/10.3389/fmicb.2018.02151] [PMID: 30254624]
[68]
Zhao, M.X.; Zhu, B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11(1), 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[69]
Won, E.J.; Park, H.; Yoon, T.J.; Cho, Y.S. Gene therapy using nanocarriers for pancreatic ductal adenocarcinoma: Applications and challenges in cancer therapeutics. Pharmaceutics, 2022, 14(1), 137.
[http://dx.doi.org/10.3390/pharmaceutics14010137] [PMID: 35057033]
[70]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[71]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[72]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[73]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[74]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[75]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[76]
Gupta, S.; Kumar, P. Drug Delivery Using Nanocarriers: Indian Perspective. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2012, 82(S1), 167-206.
[http://dx.doi.org/10.1007/s40011-012-0080-7]
[77]
Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., 2019, 23(1), 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[78]
Yadollahi, R.; Vasilev, K.; Simovic, S. Nanosuspension Technologies for delivery of poorly soluble drugs. J. Nanomater., 2015, 1-1.
[79]
Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res., 2020, 24(1), 3.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[80]
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[81]
Smith, A.M.; Nie, S. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res., 2010, 43(2), 190-200.
[http://dx.doi.org/10.1021/ar9001069] [PMID: 19827808]
[82]
Mansur, H.S. Quantum dots and nanocomposites. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(2), 113-129.
[http://dx.doi.org/10.1002/wnan.78] [PMID: 20104596]
[83]
Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano, 2010, 4(5), 2531-2538.
[http://dx.doi.org/10.1021/nn901421v] [PMID: 20387796]
[84]
Sun, H.; Gao, N.; Wu, L.; Ren, J.; Wei, W.; Qu, X. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chemistry, 2013, 19(40), 13362-13368.
[http://dx.doi.org/10.1002/chem.201302268] [PMID: 23939943]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy