Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

A Parametric View of Hubble Parameter for Scalar Field Dark Energy Model

Author(s): Sangita Goswami and Sudipta Das*

Volume 1, 2023

Published on: 13 July, 2023

Article ID: e180523217033 Pages: 10

DOI: 10.2174/2210299X01666230518085714

Price: $

Abstract

Purpose of the study: In our present work, we have considered a simple parametric form of the Hubble parameter (H) for a canonical scalar field model described within a spatially flat FRW spacetime framework. Here we have considered a well-behaved parametrization scheme of the normalized Hubble parameter to explain the expansion history of the universe.

Methods: Under this scenario, we have obtained the analytic solutions for various relevant cosmological parameters. We have also reconstructed the potential function V(φ) for the scalar field φ.

Results: It has been found that the deceleration parameter (q) shows exactly the nature which is well expected, i.e., an accelerated expansion for low z limit and deceleration for high z limit, which is essential for the structure formation of the Universe. Detailed data analysis has been carried out to check the viability of the proposed theoretical model by using combined dataset SNIa+H(z)+BAO/CMB and put constraints on the cosmological parameters, viz. the present value of the Hubble parameter H0.

Conclusion: As it has been observed that the deceleration parameter undergoes a smooth transition from an accelerating phase to decelerating expansion, this result supports the structure formation at the early time and the late time cosmic acceleration measurements. The results are found to be closer to the value obtained by the PLANCK collaboration.

[1]
Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; Leibundgut, B.; Phillips, M.M.; Reiss, D.; Schmidt, B.P.; Schommer, R.A.; Smith, R.C.; Spyromilio, J.; Stubbs, C.; Suntzeff, N.B.; Tonry, J. Observational evidencefrom supernovae for an accelerating universe and a cosmological constant. Astron. J., 1998, 116(3), 1009-1038.
[http://dx.doi.org/10.1086/300499]
[2]
Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J.; Project, T.S.C. Measurements of ω and λfrom 42 high-redshift supernovae. Astrophys. J., 1999, 517(2), 565-586.
[http://dx.doi.org/10.1086/307221]
[3]
Meszaros, A. On the reality of the accelerating universe. Astrophys. J., 2002, 580(1), 12-15.
[http://dx.doi.org/10.1086/343071]
[4]
Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Brogan, C.L.; Burigana, C.; Cardoso, J-F.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Colombi, S.; Colombo, L.P.L.; Crill, B.P.; Curto, A.; Cuttaia, F.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F-X.; Dickinson, C.; Diego, J.M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Harrison, D.L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hobson, M.; Holmes, W.A.; Huffenberger, K.M.; Jaffe, A.H.; Jaffe, T.R.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J-M.; Lasenby, A.; Lawrence, C.R.; Leonardi, R.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Maino, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C.A.; Pagano, L.; Pajot, F.; Paladini, R.; Pasian, F.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Puget, J-L.; Rachen, J.P.; Reach, W.T.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.; Rho, J.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A-S.; Sygnet, J-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Yvon, D.; Zacchei, A.; Zonca, A. Planck intermediate results. Astron. Astrophys., 2016, 586, A134.
[http://dx.doi.org/10.1051/0004-6361/201425022]
[5]
Ahn, C.P.; Alexandroff, R.; Allende Prieto, C.; Anderson, S.F.; Anderton, T.; Andrews, B.H.; Aubourg, É.; Bailey, S.; Balbinot, E.; Barnes, R.; Bautista, J.; Beers, T.C.; Beifiori, A.; Berlind, A.A.; Bhardwaj, V.; Bizyaev, D.; Blake, C.H.; Blanton, M.R.; Blomqvist, M.; Bochanski, J.J.; Bolton, A.S.; Borde, A.; Bovy, J.; Brandt, W.N.; Brinkmann, J.; Brown, P.J.; Brownstein, J.R.; Bundy, K.; Busca, N.G.; Carithers, W.; Carnero, A.R.; Carr, M.A.; Casetti-Dinescu, D.I.; Chen, Y.; Chiappini, C.; Comparat, J.; Connolly, N.; Crepp, J.R.; Cristiani, S.; Croft, R.A.C.; Cuesta, A.J.; da Costa, L.N.; Davenport, J.R.A.; Dawson, K.S.; de Putter, R.; De Lee, N.; Delubac, T.; Dhital, S.; Ealet, A.; Ebelke, G.L.; Edmondson, E.M.; Eisenstein, D.J.; Escoffier, S.; Esposito, M.; Evans, M.L.; Fan, X.; Femenía Castellá, B.; Fernández Alvar, E.; Ferreira, L.D.; Filiz Ak, N.; Finley, H.; Fleming, S.W.; Font-Ribera, A.; Frinchaboy, P.M.; García-Hernández, D.A.; Pérez, A.E.G.; Ge, J.; Génova-Santos, R.; Gillespie, B.A.; Girardi, L.; González Hernández, J.I.; Grebel, E.K.; Gunn, J.E.; Guo, H.; Haggard, D.; Hamilton, J-C.; Harris, D.W.; Hawley, S.L.; Hearty, F.R.; Ho, S.; Hogg, D.W.; Holtzman, J.A.; Honscheid, K.; Huehnerhoff, J.; Ivans, I.I.; Ivezić, Ž.; Jacobson, H.R.; Jiang, L.; Johansson, J.; Johnson, J.A.; Kauffmann, G.; Kirkby, D.; Kirkpatrick, J.A.; Klaene, M.A.; Knapp, G.R.; Kneib, J-P.; Le Goff, J-M.; Leauthaud, A.; Lee, K-G.; Lee, Y.S.; Long, D.C.; Loomis, C.P.; Lucatello, S.; Lundgren, B.; Lupton, R.H.; Ma, B.; Ma, Z.; MacDonald, N.; Mack, C.E., III; Mahadevan, S.; Maia, M.A.G.; Majewski, S.R.; Makler, M.; Malanushenko, E.; Malanushenko, V.; Manchado, A.; Mandelbaum, R.; Manera, M.; Maraston, C.; Margala, D.; Martell, S.L.; McBride, C.K.; McGreer, I.D.; McMahon, R.G.; Ménard, B.; Meszaros, S.; Miralda-Escudé, J.; Montero-Dorta, A.D.; Montesano, F.; Morrison, H.L.; Muna, D.; Munn, J.A.; Murayama, H.; Myers, A.D.; Neto, A.F.; Nguyen, D.C.; Nichol, R.C.; Nidever, D.L.; Noterdaeme, P.; Nuza, S.E.; Ogando, R.L.C.; Olmstead, M.D.; Oravetz, D.J.; Owen, R.; Padmanabhan, N.; Palanque-Delabrouille, N.; Pan, K.; Parejko, J.K.; Parihar, P.; Pâris, I.; Pattarakijwanich, P.; Pepper, J.; Percival, W.J.; Pérez-Fournon, I.; Pérez-Ràfols, I.; Petitjean, P.; Pforr, J.; Pieri, M.M.; Pinsonneault, M.H.; Porto de Mello, G.F.; Prada, F.; Price-Whelan, A.M.; Raddick, M.J.; Rebolo, R.; Rich, J.; Richards, G.T.; Robin, A.C.; Rocha-Pinto, H.J.; Rockosi, C.M.; Roe, N.A.; Ross, A.J.; Ross, N.P.; Rossi, G.; Rubiño-Martin, J.A.; Samushia, L.; Sanchez Almeida, J.; Sánchez, A.G.; Santiago, B.; Sayres, C.; Schlegel, D.J.; Schlesinger, K.J.; Schmidt, S.J.; Schneider, D.P.; Schultheis, M.; Schwope, A.D.; Scóccola, C.G.; Seljak, U.; Sheldon, E.; Shen, Y.; Shu, Y.; Simmerer, J.; Simmons, A.E.; Skibba, R.A.; Skrutskie, M.F.; Slosar, A.; Sobreira, F.; Sobeck, J.S.; Stassun, K.G.; Steele, O.; Steinmetz, M.; Strauss, M.A.; Streblyanska, A.; Suzuki, N.; Swanson, M.E.C.; Tal, T.; Thakar, A.R.; Thomas, D.; Thompson, B.A.; Tinker, J.L.; Tojeiro, R.; Tremonti, C.A.; Vargas Magaña, M.; Verde, L.; Viel, M.; Vikas, S.K.; Vogt, N.P.; Wake, D.A.; Wang, J.; Weaver, B.A.; Weinberg, D.H.; Weiner, B.J.; West, A.A.; White, M.; Wilson, J.C.; Wisniewski, J.P.; Wood-Vasey, W.M.; Yanny, B.; Yèche, C.; York, D.G.; Zamora, O.; Zasowski, G.; Zehavi, I.; Zhao, G-B.; Zheng, Z.; Zhu, G.; Zinn, J.C. The ninth data release of the sloan digital sky survey: First spectroscopic data from the sdss-iii baryon oscillation spectroscopic survey. Astrophys. J. Suppl. Ser., 2012, 203(2), 21.
[http://dx.doi.org/10.1088/0067-0049/203/2/21]
[6]
Riess, A.G.; Nugent, P.E.; Gilliland, R.L.; Schmidt, B.P.; Tonry, J.; Dickinson, M.; Thompson, R.I.; Budavari, T.; Casertano, S.; Evans, A.S.; Filippenko, A.V.; Livio, M.; Sanders, D.B.; Shapley, A.E.; Spinrad, H.; Steidel, C.C.; Stern, D.; Surace, J.; Veilleux, S. The farthestknown supernova: Support for an accelerating universe and a glimpse of the epochof deceleration. Astrophys. J., 2001, 560(1), 49-71.
[http://dx.doi.org/10.1086/322348]
[7]
Amendola, L. Acceleration at z > 1? Mon. Not. R. Astron. Soc., 2003, 342(1), 221-226.
[http://dx.doi.org/10.1046/j.1365-8711.2003.06540.x]
[8]
Padmanabhan, T. Dark energy: Mystery of the millennium. AIP Conference Proceedings, 8612006, , 179-196.
[9]
Sahni, V.; Starobinsky, A. Reconstructing dark energy. Int. J. Mod. Phys. D, 2006, 15(12), 2105-2132.
[http://dx.doi.org/10.1142/S0218271806009704]
[10]
Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci., 2012, 342(1), 155-228.
[http://dx.doi.org/10.1007/s10509-012-1181-8]
[11]
Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Essentials of k -essence. Phys. Rev. D Part. Fields, 2001, 63(10), 103510.
[http://dx.doi.org/10.1103/PhysRevD.63.103510]
[12]
Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B, 2002, 545(1-2), 23-29.
[http://dx.doi.org/10.1016/S0370-2693(02)02589-3]
[13]
Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than − 1? Phys. Rev. D Part. Fields, 2003, 68(2), 023509.
[http://dx.doi.org/10.1103/PhysRevD.68.023509]
[14]
Kamenshchik, A.; Moschella, U.; Pasquier, V. An alternative to quintessence. PhysicsLetters B, 2001, 511(2-4), 265-268.
[15]
Sen, A. Tachyon matter. Journal of High Energy Physics, 2002, 2002(07), 065.
[http://dx.doi.org/10.1088/1126-6708/2002/07/065]
[16]
Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D Part. Fields, 2002, 66(2), 021301.
[http://dx.doi.org/10.1103/PhysRevD.66.021301]
[17]
Amendola, L.; Tsujikawa, S. Dark energy: Theory and observations; Cambridge University Press, 2010.
[http://dx.doi.org/10.1017/CBO9780511750823]
[18]
Banerjee, N.; Das, S.; Ganguly, K. Chameleon field and the late time acceleration of the Universe. Pramana, 2010, 74(3), 481-489.
[http://dx.doi.org/10.1007/s12043-010-0044-5]
[19]
Pacif, S.K.J.; Myrzakulov, R.; Myrzakul, S. Reconstruction of cosmic history from a simple parametrization of H. Int. J. Geom. Methods Mod. Phys., 2017, 14(7), 1750111.
[http://dx.doi.org/10.1142/S0219887817501110]
[20]
Roy, N.; Goswami, S.; Das, S. Quintessence or phantom: Study of scalar field dark energy models through a general parametrization of the Hubble parameter. Phys. Dark Univ., 2022, 36, 101037.
[21]
Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H ( z ) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys., 2014, 14(10), 1221-1233.
[http://dx.doi.org/10.1088/1674-4527/14/10/002]
[22]
Mamon, A.A.; Das, S. Study of non-canonical scalar field model using various parametrizations of dark energy equation of state. Eur. Phys. J. C, 2015, 75(6), 244.
[http://dx.doi.org/10.1140/epjc/s10052-015-3467-9]
[23]
Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D Part. Fields Gravit. Cosmol., 2005, 71(12), 123001.
[http://dx.doi.org/10.1103/PhysRevD.71.123001]
[24]
Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; Dawson, K.S.; Dey, A.; Doi, M.; Donahue, M.; Deustua, S.; Eisenhardt, P.; Ellingson, E.; Faccioli, L.; Fadeyev, V.; Fakhouri, H.K.; Fruchter, A.S.; Gilbank, D.G.; Gladders, M.D.; Goldhaber, G.; Gonzalez, A.H.; Goobar, A.; Gude, A.; Hattori, T.; Hoekstra, H.; Hsiao, E.; Huang, X.; Ihara, Y.; Jee, M.J.; Johnston, D.; Kashikawa, N.; Koester, B.; Konishi, K.; Kowalski, M.; Linder, E.V.; Lubin, L.; Melbourne, J.; Meyers, J.; Morokuma, T.; Munshi, F.; Mullis, C.; Oda, T.; Panagia, N.; Perlmutter, S.; Postman, M.; Pritchard, T.; Rhodes, J.; Ripoche, P.; Rosati, P.; Schlegel, D.J.; Spadafora, A.; Stanford, S.A.; Stanishev, V.; Stern, D.; Strovink, M.; Takanashi, N.; Tokita, K.; Wagner, M.; Wang, L.; Yasuda, N.; Yee, H.K.C. The hubble space telescope cluster supernova survey. v. improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys. J., 2012, 746(1), 85.
[http://dx.doi.org/10.1088/0004-637X/746/1/85]
[25]
Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant. Mon. Not. R. Astron. Soc., 2011, 416(4), 3017-3032.
[http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x]
[26]
Jarosik, N.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Halpern, M.; Hill, R.S.; Hinshaw, G.; Kogut, A.; Komatsu, E.; Larson, D.; Limon, M.; Meyer, S.S.; Nolta, M.R.; Odegard, N.; Page, L.; Smith, K.M.; Spergel, D.N.; Tucker, G.S.; Weiland, J.L.; Wollack, E.; Wright, E.L. Seven-year wilkinson microwave anisotropy probe (wmap*) observations: Sky maps, systematic errors, and basic results. Astrophys. J. Suppl. Ser., 2011, 192(2), 14.
[http://dx.doi.org/10.1088/0067-0049/192/2/14]
[27]
Parkinson, D.; Riemer-Sørensen, S.; Blake, C.; Poole, G.B.; Davis, T.M.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; Croton, D.; Drinkwater, M.J.; Forster, K.; Gilbank, D.; Gladders, M.; Glazebrook, K.; Jelliffe, B.; Jurek, R.J.; Li, I.; Madore, B.; Martin, D.C.; Pimbblet, K.; Pracy, M.; Sharp, R.; Wisnioski, E.; Woods, D.; Wyder, T.K.; Yee, H.K.C. The WiggleZ Dark Energy Survey: Final data release and cosmological results. Phys. Rev. D Part. Fields Gravit. Cosmol., 2012, 86(10), 103518.
[http://dx.doi.org/10.1103/PhysRevD.86.103518]
[28]
Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezi’c, Z.; Knapp, G.R. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Monthly Notices of the Royal Astronomical Society, 2010, 401(4), 2148-2168.
[29]
Al Mamon, A.; Das, S. A divergence-free parametrization of deceleration parameter for scalar field dark energy. Int. J. Mod. Phys. D, 2016, 25(3), 1650032.
[http://dx.doi.org/10.1142/S0218271816500322]
[30]
Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N. Planck 2018 results. VI. Cosmological parameters. arXiv, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy