Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Mini Review on the Potential of Algal Biosensors in Wastewater Monitoring

Author(s): Sharma M., Sujata S., Bansal D. and Kaushik P.*

Volume 13, Issue 4, 2023

Published on: 21 June, 2023

Article ID: e170523217012 Pages: 4

DOI: 10.2174/2210681213666230517123150

Price: $65

Abstract

For biomass production and bioremediation, Algae have been extensively exploited for biosensing in wastewater monitoring. Their advantages include the coupling of suitable bioreceptor for monitoring photosynthesis oxygen, their potential to be integrated into dual transduction miniaturized devices and detect the effect due to pollutants present in water with continuous monitoring of the environment. Microalgae are photosynthetic microorganisms that are very sensitive and reactive toward any change in the environment. And also able to detect any trace amount of pollutants. The performance of algal biosensors towards pollutants represents a good alternative to other developing sensors. In the algal biosensor, the algal cell is entrapped in galling material (Alginate, Carrageenan) and immobilized cells for stabilization with ions (Ca2+, K+). Genetically modified biosensor overcomes the limitation of natural biosensor. Whole-cell biosensors are highly sensitive to herbicides in wastewater, and many other bioreceptor of algal cells those sensitive to different types of pollutants. The present algal sensor is much smaller, valid support in smart agriculture, environmentally friendly and less expensive, the easily accessible.

Graphical Abstract

[1]
Gevera, P.K.; Cave, M.; Dowling, K.; Gikuma-Njuru, P.; Mouri, H. A review on the occurrence of some potentially harmful elements in natural environment and their health implications: Examples of fluoride, iron and salinity in the South-Eastern Kenya region. Practical Applications of Medical Geology; Springer: Cham, 2021, pp. 637-670.
[2]
Revised Guidelines for Continuous Effluent Monitoring Systems. (CPCB). 2018. Available From: http://www.indiaenvironmentportal.org.in/content/457224/revised-guidelines-for-continuous-effluent-monitoring-systems/
[3]
Verma, M.L.; Rani, V. Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: A review. Environ. Chem. Lett., 2021, 19(2), 1657-1666.
[http://dx.doi.org/10.1007/s10311-020-01116-4]
[4]
Campaña, A.; Florez, S.; Noguera, M.; Fuentes, O.; Ruiz Puentes, P.; Cruz, J.; Osma, J. Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors, 2019, 9(1), 41.
[http://dx.doi.org/10.3390/bios9010041] [PMID: 30875946]
[5]
Bertani, P.; Lu, W. Cyanobacterial toxin biosensors for environmental monitoring and protection. Medicine Novel Techn. and Devices, 2021, 10, 2590-0935.
[6]
Antonacci, A. Biotechnological advances in the design of algae-based biosensors. Trends Biotechnol., 2020, 38(3), 334-347.
[7]
Mona, S.; Sujata, A.; Yadav, B. Role of Algal Biosensors in water pollution monitoring. Int. J. Eng. Res. Appl., 2020, 10, 13-16.
[8]
Eom, H.; Park, M.; Jang, A.; Kim, S.; Oh, S.E. A simple and rapid algal assay kit to assess toxicity of heavy metal-contaminated water. Environ. Pollut., 2021, 269, 116135.
[http://dx.doi.org/10.1016/j.envpol.2020.116135] [PMID: 33290954]
[9]
Mallick, N. Immobilization of microalgae. Methods Mol. Biol., 2020, 2100, 453-471.
[10]
Al-Hasawi, Z.M.; Abdel-Hamid, M.I.; Almutairi, A.W.; Touliabah, H.E. Response of Pseudokirchneriella subcapitata in free and alginate immobilized cells to heavy metals toxicity. Molecules, 2020, 25(12), 2847.
[http://dx.doi.org/10.3390/molecules25122847] [PMID: 32575616]
[11]
Kashem, M.A.; Kimoto, K.; Iribe, Y.; Suzuki, M. Development of microalgae biosensor chip by incorporating microarray oxygen sensor for pesticides sensing. Biosensors, 2019, 9(4), 133.
[http://dx.doi.org/10.3390/bios9040133] [PMID: 31726653]
[12]
Tucci, M.; Grattieri, M.; Schievano, A.; Cristiani, P.; Minteer, S.D. Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. Electrochim. Acta, 2019, 302, 102-108.
[http://dx.doi.org/10.1016/j.electacta.2019.02.007]
[13]
Caldwell, G.S.; In-na, P.; Hart, R.; Sharp, E.; Stefanova, A.; Pickersgill, M.; Walker, M.; Unthank, M.; Perry, J.; Lee, J.G.M. Immobilising microalgae and cyanobacteria as biocomposites: New opportunities to intensify algae biotechnology and bioprocessing. Energies, 2021, 14(9), 2566.
[http://dx.doi.org/10.3390/en14092566]
[14]
Prudkin-Silva, C.; Lanzarotti, E.; Álvarez, L.; Vallerga, M.B.; Factorovich, M.; Morzan, U.N.; Gómez, M.P.; González, N.P.; Acosta, Y.M.; Carrizo, F.; Carrizo, E.; Galeano, S.; Lagorio, M.G.; Juárez, Á.B.; Ithuralde, R.E.; Romero, J.M.; Urdampilleta, C.M. A cost-effective algae-based biosensor for water quality analysis: Development and testing in collaboration with peasant communities. Environ. Technol. Innov., 2021, 22, 101479.
[http://dx.doi.org/10.1016/j.eti.2021.101479]
[15]
Gupta, N.; Renugopalakrishnan, V.; Liepmann, D.; Paulmurugan, R.; Malhotra, B.D. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron., 2019, 141, 111435.
[http://dx.doi.org/10.1016/j.bios.2019.111435] [PMID: 31238280]
[16]
Gosset, A.; Oestreicher, V.; Perullini, M.; Bilmes, S.A.; Jobbágy, M.; Dulhoste, S.; Bayard, R.; Durrieu, C. Optimization of sensors based on encapsulated algae for pesticide detection in water. Anal. Methods, 2019, 11(48), 6193-6203.
[http://dx.doi.org/10.1039/C9AY02145K]
[17]
Antonacci, A.; Attaallah, R.; Arduini, F.; Amine, A.; Giardi, M.T.; Scognamiglio, V. A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. J. Nanobiotechnology, 2021, 19(1), 145.
[http://dx.doi.org/10.1186/s12951-021-00887-4] [PMID: 34001124]
[18]
Durrieu, C.; Tran-Minh, C.; Chovelon, J.M.; Barthet, L.; Chouteau, C.; Védrine, C. Algal biosensors for aquatic ecosystems monitoring., EPJ Applied Physics, 2006, 36(2), 205-209.
[http://dx.doi.org/10.1051/epjap:2006112]
[19]
Scognamiglio, V.; Antonacci, A.; Arduini, F.; Moscone, D.; Campos, E.V.R.; Fraceto, L.F.; Palleschi, G. An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. J. Hazard. Mater., 2019, 373, 483-492.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.082] [PMID: 30947038]
[20]
Brayner, R.; Couté, A.; Livage, J.; Perrette, C.; Sicard, C. Microalgal biosensors. Anal. Bioanal. Chem., 2011, 401(2), 581-597.
[http://dx.doi.org/10.1007/s00216-011-5107-z] [PMID: 21626188]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy