Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Investigation of Developmental Toxicity Profile of Edible Lablab (Lablab purpureus (l.) Sweet Purpurea) bean Extract using Brine Shrimp and Zebrafish

Author(s): Rakesh Ghosh, Arghya Pramanick, Nilanjan Sarkar, Swarupananda Mukherjee, Amrita Kumari, Kalyan Roy, Gauthaman Karunakaran, Mainak Mal and Mainak Chakraborty*

Volume 1, 2023

Published on: 13 July, 2023

Article ID: e150523216896 Pages: 7

DOI: 10.2174/2210299X01666230515090815

Price: $

Abstract

Background: Developmental toxicology deals with the effects of compounds on fertility and with birth defects that could occur at any stage of the reproductive cycle. In this study, we evaluated the teratogenic effects of Lablab purpureus (L.) Sweet beans on zebrafish embryo.

Objectives: The developmental toxicity study was carried out to evaluate the toxicity induced by Lablab purpureus (L.) Sweet beans on zebrafish embryo. We also studied the cytotoxicity of Lablab purpureus (L.) Sweet beans.

Methods: Zebrafish embryos were exposed to a methanolic extract of Lablab purpureus (L.) Sweet beans at concentrations of 10,25,50, and 100 μg/ml starting from 24 hours post fertilization (HPF) to 72 HPF. Developmental defects, if any, were observed under a microscope. Cytotoxicity of Lablab purpureus (L.) Sweet beans were also evaluated by using brine shrimp and the corresponding LC50 value of the methanolic extract of Lablab purpureus (L.) Sweet beans were also calculated.

Results: The LC50 value of the methanolic extract of Lablab purpureus (L.) Sweet beans were found to be 77 μg/ml. However, some forms of developmental toxicity were observed in zebrafish embryos when treated with different concentrations of Lablab purpureus (L.) Sweet beans extract.

Conclusion: The methanolic extract of Lablab purpureus (L.) Sweet beans were found to be cytotoxic in brine shrimp, and the LC50 value was found to be 77 μg/ml. However, there was some level of developmental toxicity in the Zebrafish embryo model at different concentrations of Lablab purpureus (L.) Sweet beans extract.

[1]
Haldar, S.; Karmakar, I.; Chakraborty, M.; Das, A.; Haldar, P.K. Preclinical assessment of Cascabela thevetia fruits on developmental toxicity and behavioral safety in zebrafish embryos. Orient. Pharm. Exp. Med., 2015, 15(4), 371-377.
[http://dx.doi.org/10.1007/s13596-015-0207-5]
[2]
Peters, A.K.; Steemans, M.; Hansen, E.; Mesens, N.; Verheyen, G.R.; Vanparys, P. Evaluation of the embryotoxic potency of compounds in a newly revised high throughput embryonic stem cell test. Toxicol. Sci., 2008, 105(2), 342-350.
[http://dx.doi.org/10.1093/toxsci/kfn126] [PMID: 18593728]
[3]
Beressa, T.B.; Annu, A.; Mtewa, A.G. Toxicity protocols for natural products in the drug development process. Poiso Plants Phytochem Drug Discov, 2020, 12, 189-212.
[http://dx.doi.org/10.1002/9781119650034.ch9]
[4]
Ames, B.N.; Profet, M.; Gold, L.S. Nature’s chemicals and synthetic chemicals: Comparative toxicology. Proc. Natl. Acad. Sci., 1990, 87(19), 7782-7786.
[http://dx.doi.org/10.1073/pnas.87.19.7782] [PMID: 2217211]
[5]
Modarresi, C.A.; Arsad, H.; Lim, V. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants, 2020, 9(10), 1345.
[http://dx.doi.org/10.3390/plants9101345] [PMID: 33053800]
[6]
Alafiatayo, A.A.; Lai, K.S.; Syahida, A.; Mahmood, M.; Shaharuddin, N.A. Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/3807207] [PMID: 30949217]
[7]
Ismail, H.F.; Hashim, Z.; Soon, W.T.; Rahman, N.S.A.; Zainudin, A.N.; Majid, F.A.A. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J. Tradit. Complement. Med., 2017, 7(4), 452-465.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.006] [PMID: 29034193]
[8]
Falcão, M.A.P.; de Souza, L.S.; Dolabella, S.S.; Guimarães, A.G.; Walker, C.I.B. Zebrafish as an alternative method for determining the embryo toxicity of plant products: A systematic review. Environ. Sci. Pollut. Res. Int., 2018, 25(35), 35015-35026.
[http://dx.doi.org/10.1007/s11356-018-3399-7] [PMID: 30357668]
[9]
Yumnamcha, T.; Nongthomba, U.; Devi, M.D. Phytochemical screening and evaluation of genotoxicity and acute toxicity of aqueous extract of Croton tiglium L. Int. J. Sci. Res. Publ., 2014, 4(1), 2250-3153.
[10]
Bambino, K.; Chu, J. Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol., 2017, 124, 331-367.
[http://dx.doi.org/10.1016/bs.ctdb.2016.10.007] [PMID: 28335863]
[11]
Al-Snafi, A.E. The pharmacology and medical importance of Lablab purpureus (L.) Sweet lablab (Lablab purpureus)-A review. IOSR J. Pharm., 2017, 7(2), 22-30.
[http://dx.doi.org/10.9790/3013-0702012230]
[12]
Narender, B.R.; Rajkumari, M.; Khan, S.; Suknya, B.; Harish, S. Antimicrobial activity of Lablab purpureus (L.) Sweet bean (Dolichus Lablab) flower. J. Sci. Res. Pharm., 2017, 6(12), 153-156.
[13]
Ramamani, S.; Subramanian, N.; Parpia, H.A. Toxic and antigrowth effects of raw and processed field bean (Lablab purpureus (L.) Sweet lablab) on albino rats. J. Biosci., 1979, 1(2), 241-253.
[http://dx.doi.org/10.1007/BF02706336]
[14]
Mizgirev, I.V.; Revskoy, S. A new zebrafish model for experimental leukemia therapy. Cancer Biol. Ther., 2010, 9(11), 895-902.
[http://dx.doi.org/10.4161/cbt.9.11.11667] [PMID: 20339318]
[15]
Han, H.S.; Jang, G.H.; Jun, I.; Seo, H.; Park, J.; Glyn-Jones, S.; Seok, H.K.; Lee, K.H.; Mantovani, D.; Kim, Y.C.; Edwards, J.R. Transgenic zebrafish model for quantification and visualization of tissue toxicity caused by alloying elements in newly developed biodegradable metal. Sci. Rep., 2018, 8(1), 13818.
[http://dx.doi.org/10.1038/s41598-018-32313-5] [PMID: 30218086]
[16]
Hermsen, S.A.B.; van den Brandhof, E.J.; van der Ven, L.T.M.; Piersma, A.H. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol. In Vitro, 2011, 25(3), 745-753.
[http://dx.doi.org/10.1016/j.tiv.2011.01.005] [PMID: 21238576]
[17]
Hill, A.J.; Teraoka, H.; Heideman, W.; Peterson, R.E. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci., 2005, 86(1), 6-19.
[http://dx.doi.org/10.1093/toxsci/kfi110] [PMID: 15703261]
[18]
Dimopoulou, M. Alternative developmental toxicity models for assessing the in vivo embryotoxicity of azoles Doctoral dissertation, Wageningen University and Research, 2018.
[http://dx.doi.org/10.18174/430573]
[19]
Nieoczym, D.; Socała, K.; Gawel, K.; Esguerra, C.V.; Wyska, E.; Wlaź, P. Anticonvulsant activity of pterostilbene in zebrafish and mouse acute seizure tests. Neurochem. Res., 2019, 44(5), 1043-1055.
[http://dx.doi.org/10.1007/s11064-019-02735-2] [PMID: 30689162]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy