Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

A Segmentation Method of Serialized Human Body Slices based on Matting Strategy and Skeleton Extraction

Author(s): Bin Liu, Zhengyang Wu, Chenlu Wang, Shiyu Pang, Jingzhu Pei, Jianxin Zhang* and Liang Yang

Volume 20, 2024

Published on: 23 October, 2023

Article ID: e150523216895 Pages: 15

DOI: 10.2174/1573405620666230515090618

Price: $65

Abstract

Introduction: In this paper, a semiautomatic image segmentation method for the serialized body slices of the Visible Human Project (VHP) is proposed.

Methods: In our method, we first verified the effectiveness of the shared matting method for the VHP slices and utilized it to segment a single image. Then, to meet the need for the automatic segmentation of serialized slice images, a method based on the parallel refinement method and flood-fill method was designed. The ROI (region of interest) image of the next slice can be extracted by using the skeleton image of the ROI in the current slice.

Results: Utilizing this strategy, the color slice images of the Visible Human body can be continuously and serially segmented. This method is not complex but is rapid and automatic with less manual participation.

Conclusion: The experimental results show that the primary organs of the Visible Human body can be accurately extracted.

[1]
Ackerman MJ. The visible human project: A resource for anatomical visualization. Stud Health Technol Inform 1998; 52(Pt 2): 1030-2.
[PMID: 10384616]
[2]
Zhong S, Hua L, Lin Z, Luo S, Qin D. Digitized virtual human: Background and meaning. Chin Basic Science 2002; (6): 12-6.
[3]
Zhang SX, Heng PA, Liu ZJ. Chinese visible human project. Clin Anat 2006; 19(3): 204-15.
[http://dx.doi.org/10.1002/ca.20273] [PMID: 16506203]
[4]
Park JS, Chung MS, Hwang SB, Shin BS, Park HS. Visible korean human: Its techniques and applications. Clin Anat 2006; 19(3): 216-24.
[http://dx.doi.org/10.1002/ca.20275] [PMID: 16506204]
[5]
Spitzer VM, Ackerman MJ. The visible human at the university of colorado 15 years later. Virtual Real 2008; 12(4): 191-200.
[http://dx.doi.org/10.1007/s10055-008-0102-1]
[6]
Pommert A, Höhne KH, Pflesser B, et al. Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human. Med Image Anal 2001; 5(3): 221-8.
[http://dx.doi.org/10.1016/S1361-8415(01)00044-5] [PMID: 11524228]
[7]
Hung CC, Li YT, Chou YC, et al. Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture. Int Orthop 2019; 43(2): 425-31.
[http://dx.doi.org/10.1007/s00264-018-3963-2] [PMID: 29725736]
[8]
van Eijnatten M, van Dijk R, Dobbe J, Streekstra G, Koivisto J, Wolff J. CT image segmentation methods for bone used in medical additive manufacturing. Med Eng Phys 2018; 51: 6-16.
[http://dx.doi.org/10.1016/j.medengphy.2017.10.008] [PMID: 29096986]
[9]
Xiu F, Rong G, Zhang T. Construction of a computer-aided analysis system for orthopedic diseases based on high-frequency ultrasound images. Comput Math Methods Med 2022; 2022: 8754693.
[http://dx.doi.org/10.1155/2022/8754693] [PMID: 35035525]
[10]
Tan D, Yao J, Hua X, et al. Application of 3D modeling and printing technology in accurate resection of complicated thoracic tumors. Ann Transl Med 2020; 8(21): 1342.
[http://dx.doi.org/10.21037/atm-20-1791] [PMID: 33313087]
[11]
Alemayehu D G, Zhang Z, Tahir E, et al. Preoperative planning using 3D printing technology in orthopedic surgery. Biomed Res Int 2021; 2021: 7940242.
[http://dx.doi.org/10.1155/2021/7940242] [PMID: 34676264]
[12]
Montanhesi PK, Coelho G, Curcio SAF, Poffo R. Three-dimensional printing in minimally invasive cardiac surgery: Optimizing surgical planning and education with life-like models. Rev Bras Cir Cardiovasc 2022; 37(1): 110-7.
[http://dx.doi.org/10.21470/1678-9741-2020-0409] [PMID: 35274522]
[13]
Kaderka R, Gillespie EF, Mundt RC, et al. Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients. Radiother Oncol 2019; 131: 215-20.
[http://dx.doi.org/10.1016/j.radonc.2018.07.013] [PMID: 30107948]
[14]
Ciardo D, Gerardi MA, Vigorito S, et al. Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases. Breast 2017; 32: 44-52.
[http://dx.doi.org/10.1016/j.breast.2016.12.010] [PMID: 28033509]
[15]
Mason SA, White IM, Lalondrelle S, Bamber JC, Harris EJ. The stacked-ellipse algorithm: An ultrasound-based 3-D uterine segmentation tool for enabling adaptive radiotherapy for uterine cervix cancer. Ultrasound Med Biol 2020; 46(4): 1040-52.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.09.001] [PMID: 31926750]
[16]
Priese L, Sturm P. Introduction to the color structure code and its implementation. Universität Koblenz-Landau, Fachbereich Informatik 2003.
[17]
Udupa JK, Saha PK. Fuzzy connectedness and image segmentation. Proc IEEE 2003; 91(10): 1649-69. [J].
[http://dx.doi.org/10.1109/JPROC.2003.817883]
[18]
Naqi SM, Sharif M, Yasmin M. Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Int J CARS 2018; 13(7): 1083-95.
[http://dx.doi.org/10.1007/s11548-018-1715-9] [PMID: 29492880]
[19]
Chuang K S, Tzeng H L, Chen S. Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 2006; 30(1): 9-15.
[http://dx.doi.org/10.1016/j.compmedimag.2005.10.001] [PMID: 16361080]
[20]
Liu B, Niu X, Zhang X, et al. 3D shared matting method for directly extracting standard organ models from human body color volume image. Curr Med Imaging Rev 2020; 16(9): 1170-81.
[http://dx.doi.org/10.2174/1573405616666200103100030] [PMID: 33135612]
[21]
Wang L, Ye X, Zhang D, et al. 3D matting: A benchmark study on soft segmentation method for pulmonary nodules applied in computed tomography. Comput Biol Med 2022; 150: 106153.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106153] [PMID: 36228464]
[22]
Liu B, Liu S, Shang G, et al. Direct 3D model extraction method for color volume images. Technol Health Care 2021; 29(S1): 133-40.
[http://dx.doi.org/10.3233/THC-218014] [PMID: 33682753]
[23]
Chuang Y Y, Curless B, Salesin D H, et al. A bayesian approach to digital matting. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2001. 264-71.
[24]
Levin A, Lischinski D, Weiss Y. A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 2008; 30(2): 228-42.
[http://dx.doi.org/10.1109/TPAMI.2007.1177] [PMID: 18084055]
[25]
Gastal ESL, Oliveira MM. Shared sampling for real-time alpha matting. Computer Graphics Forum. Oxford, UK: Blackwell Publishing Ltd 2010; 29: pp. 575-84.
[26]
Chen Q, Li D, Tang CK. KNN Matting. IEEE Trans Pattern Anal Mach Intell 2013; 35(9): 2175-88.
[http://dx.doi.org/10.1109/TPAMI.2013.18] [PMID: 23868778]
[27]
Xu N, Price B, Cohen S, et al. Deep image matting. Proceedings of the IEEE conference on computer vision and pattern recognition. 2970-9.
[28]
Levoy M. Area flooding algorithms. Two-Dimensional Computer Animation, Course Notes 9 for SIGGRAPH 1981; 82
[29]
Ong SH, Yeo NC, Lee KH, Venkatesh YV, Cao DM. Segmentation of color images using a two-stage self-organizing network. Image Vis Comput 2002; 20(4): 279-89.
[http://dx.doi.org/10.1016/S0262-8856(02)00021-5]
[30]
Zhang TY, Suen CY. A fast parallel algorithm for thinning digital patterns. Commun ACM 1984; 27(3): 236-9.
[http://dx.doi.org/10.1145/357994.358023]
[31]
Drebin RA, Carpenter L, Hanrahan P. Volume rendering. Comput Graph 1988; 22(4): 65-74.
[http://dx.doi.org/10.1145/378456.378484]
[32]
Sun D, Lu G, Zhou H, Yan Y, Liu S. Quantitative assessment of flame stability through image processing and spectral analysis. IEEE Trans Instrum Meas 2015; 64(12): 3323-33.
[http://dx.doi.org/10.1109/TIM.2015.2444262]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy