Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

A Comprehensive Review on MRI-based Knee Joint Segmentation and Analysis Techniques

Author(s): Pavan Mahendrakar*, Dileep Kumar and Uttam Patil

Volume 20, 2024

Published on: 07 July, 2023

Article ID: e150523216894 Pages: 30

DOI: 10.2174/1573405620666230515090557

Price: $65

Abstract

Using magnetic resonance imaging (MRI) in osteoarthritis pathogenesis research has proven extremely beneficial. However, it is always challenging for both clinicians and researchers to detect morphological changes in knee joints from magnetic resonance (MR) imaging since the surrounding tissues produce identical signals in MR studies, making it difficult to distinguish between them. Segmenting the knee bone, articular cartilage and menisci from the MR images allows one to examine the complete volume of the bone, articular cartilage, and menisci. It can also be used to assess certain characteristics quantitatively. However, segmentation is a laborious and time-consuming operation that requires sufficient training to complete correctly. With the advancement of MRI technology and computational methods, researchers have developed several algorithms to automate the task of individual knee bone, articular cartilage and meniscus segmentation during the last two decades. This systematic review aims to present available fully and semi-automatic segmentation methods for knee bone, cartilage, and meniscus published in different scientific articles. This review provides a vivid description of the scientific advancements to clinicians and researchers in this field of image analysis and segmentation, which helps the development of novel automated methods for clinical applications. The review also contains the recently developed fully automated deep learning-based methods for segmentation, which not only provides better results compared to the conventional techniques but also open a new field of research in Medical Imaging.

[1]
Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 2012; 83(3): 315-23.
[http://dx.doi.org/10.1016/j.bcp.2011.09.018] [PMID: 21964345]
[2]
Gait AD, Hodgson R, Parkes MJ, et al. Synovial volume vs synovial measurements from dynamic contrast enhanced MRI as measures of response in osteoarthritis. Osteoarthritis Cartilage 2016; 24(8): 1392-8.
[http://dx.doi.org/10.1016/j.joca.2016.03.015] [PMID: 27038489]
[3]
Bowes MA, Vincent GR, Wolstenholme CB, Conaghan PG. A novel method for bone area measurement provides new insights into osteoarthritis and its progression. Ann Rheum Dis 2013; 74(3): 519-25.
[4]
Hunter D, Nevitt M, Lynch J, et al. Longitudinal validation of periarticular bone area and 3D shape as biomarkers for knee OA progression? Data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 2015; 75(9): 1607-4.
[5]
Neogi T, Felson DT. Bone as an imaging biomarker and treatment target in OA. Nat Rev Rheumatol 2016; 12(9): 503-4.
[http://dx.doi.org/10.1038/nrrheum.2016.113] [PMID: 27383914]
[6]
Heimann T. Segmentation of knee images: A grand challenge. Proc MICCAIWorkshop on Medical Image Analysis for the Clinic 2010.
[7]
Carmen Taylor J. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC, and contrast-enhanced CT. Magn Reson Imaging 2009; 27(6): 779-84.
[http://dx.doi.org/10.1016/j.mri.2009.01.016] [PMID: 19269769]
[8]
Neogi T, Bowes MA, Niu J, et al. Magnetic resonance imaging-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum 2013; 65(8): 2048-58.
[http://dx.doi.org/10.1002/art.37987] [PMID: 23650083]
[9]
MacKay JW, et al. Subchondral bone in osteoarthritis: Association between MRI texture analysis and histomorphometry. Osteoarthritis Cartilage 2016.
[PMID: 27986620]
[10]
Ababneh SY, Prescott JW, Gurcan MN. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med Image Anal 2011; 15(4): 438-48.
[http://dx.doi.org/10.1016/j.media.2011.01.007] [PMID: 21474362]
[11]
Jose Gerardo Tamez-Pena ST. Performance assessment of an automated segmentation system for knee MRI scans. ORS 2016.
[12]
Dam EB, Lillholm M, Marques J, Nielsen M. Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative. J Med Imaging (Bellingham) 2015; 2(2): 024001-1.
[http://dx.doi.org/10.1117/1.JMI.2.2.024001] [PMID: 26158096]
[13]
Dodin P, Martel-Pelletier J, Pelletier JP, Abram F. A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 2011; 49(12): 1413-24.
[http://dx.doi.org/10.1007/s11517-011-0838-8] [PMID: 22038239]
[14]
Balsiger F, Ronchetti T, Pletscher M. Distal femur segmentation on MR images using random forests. Medical Image Analysis Laboratory 2015.
[15]
Wang Q. Semantic context forests for learning-based knee cartilage segmentation in 3D MR images. International MICCAI Workshop on Medical Computer Vision 2013.
[16]
Bindernagel M, Kainmueller D, Seim H, Lamecker H, Zachow S, Hege HC. An articulated statistical shape model of the human knee. Bildverarbeitung für die Medizin 2011. Berlin, Heidelberg: Springer 2011; pp. 59-63.
[http://dx.doi.org/10.1007/978-3-642-19335-4_14]
[17]
Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S. Model-based Auto-Segmentation of Knee Bones and Cartilage in MRI Data. Auto-Segmentation of the Knee in MRI Data 2010.
[18]
Shan L, Zach C, Styner M, Charles C, Niethammer M. Automatic Bone Segmentation and Alignment From MR Knee Images. Proceedings of SPIE - The International Society for Optical Engineering 2010.
[http://dx.doi.org/10.1117/12.841167]
[19]
Ratzlaff C, Guermazi A, Collins J, et al. A rapid, novel method of volumetric assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis. Osteoarthritis Cartilage 2013; 21(6): 806-14.
[http://dx.doi.org/10.1016/j.joca.2013.03.007] [PMID: 23518154]
[20]
Deniz CM, Xiang S, Hallyburton RS, et al. Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks. Sci Rep 2018; 8(1): 16485.
[http://dx.doi.org/10.1038/s41598-018-34817-6] [PMID: 30405145]
[21]
Kim D, Lee J, Yoon JS, Lee KJ, Won K. Development of automated 3D knee bone segmentation with inhomogeneity correction for deformable approach in magnetic resonance imaging. RACS '18: Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems 2018; 285-90.
[http://dx.doi.org/10.1145/3264746.3264776]
[22]
Zhou Z, Zhao G, Kijowski R, Liu F. Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med 2018; 80(6): 2759-70.
[http://dx.doi.org/10.1002/mrm.27229] [PMID: 29774599]
[23]
Roemer F, Neogi T, Nevitt M, et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthritis Cartilage 2009; 18(1): 47.
[24]
Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach. Sci Rep 2018; 8(1): 1727.
[http://dx.doi.org/10.1038/s41598-018-20132-7] [PMID: 29379060]
[25]
Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Med Image Anal 2019; 52: 109-18.
[http://dx.doi.org/10.1016/j.media.2018.11.009]
[26]
Schock J. A method for semantic knee bone and cartilage segmentation with deep 3D shape fitting using data from the osteoarthritis initiative. Shape in Medical Imaging ShapeMI 2020 Lecture Notes in Computer Science 2020; 12474
[27]
Rini C, Perumal B, Rajasekaran MP. Automatic knee joint segmentation using Douglas-Rachford splitting method. Multimedia Tools Appl 2020; 79(9-10): 6599-621.
[http://dx.doi.org/10.1007/s11042-019-08303-8]
[28]
Gatti AA, Maly MR. Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative. MAGMA 2021; 34(6): 859-75.
[http://dx.doi.org/10.1007/s10334-021-00934-z] [PMID: 34101071]
[29]
Heckelman LN, Soher BJ, Spritzer CE, Lewis BD, DeFrate LE. Design and validation of a semi-automatic bone segmentation algorithm from MRI to improve research efficiency. Sci Rep 2022; 12(1): 7825.
[http://dx.doi.org/10.1038/s41598-022-11785-6] [PMID: 35551485]
[30]
Rini C, Perumal B, Pallikonda Rajasekaran M, Muneeswaran V. Automatic knee segmentation using eagle algorithm with multi stochastic objective process. 3C Tecnología 2021; 2021: 333-53.
[http://dx.doi.org/10.17993/3ctecno.2021.specialissue8.333-353]
[31]
Robert B, Boulanger P. Automatic Bone Segmentation from MRI for Real-Time Knee Tracking in Fluoroscopic Imaging. Diagnostics (Basel) 2022; 12(9): 2228.
[http://dx.doi.org/10.3390/diagnostics12092228] [PMID: 36140633]
[32]
Patekar R, Kumar PS, Gan H-S, Ramlee MH. Automated knee bone segmentation and visualisation using mask RCNN and marching cube: Data from the osteoarthritis initiative. ASM Science Journal 2022.
[33]
Gandhamal A, Talbar S, Gajre S, Razak R, Hani AFM, Kumar D. Fully automated subchondral bone segmentation from knee MR images: Data from the Osteoarthritis Initiative. Comput Biol Med 2017; 88: 110-25.
[http://dx.doi.org/10.1016/j.compbiomed.2017.07.008] [PMID: 28711767]
[34]
Chen H, Zhao N, Tan T, et al. Knee Bone and Cartilage Segmentation Based on a 3D Deep Neural Network Using Adversarial Loss for Prior Shape Constraint. Front Med (Lausanne) 2022; 9: 792900.
[http://dx.doi.org/10.3389/fmed.2022.792900] [PMID: 35669917]
[35]
Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation of the bone and extraction of the bone–cartilage interface from magnetic resonance images of the knee. Phys Med Biol 2007; 52(6): 1617-31.
[http://dx.doi.org/10.1088/0031-9155/52/6/005] [PMID: 17327652]
[36]
Folkesson J, Dam EB, Olsen OF, Pettersen PC, Christiansen C. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 2007; 26(1): 106-15.
[http://dx.doi.org/10.1109/TMI.2006.886808] [PMID: 17243589]
[37]
Wu D, Sofka M, Birkbeck N, Zhou SK. Segmentation of multiple knee bones from CT for orthopedic knee surgery planning. Med Image Comput Comput Assist Interv 2014; 17(Pt 1): 372-80.
[http://dx.doi.org/10.1007/978-3-319-10404-1_47]
[38]
Lee S, Park SH, Shim H, Yun ID, Lee SU. Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images. Comput Vis Image Underst 2011; 115(12): 1710-20.
[http://dx.doi.org/10.1016/j.cviu.2011.05.014]
[39]
Liang S, Charles C, Niethammer M. Automatic multi-atlas-based cartilage segmentation from knee MR images. Biomedical Imaging 2012; 1028-31.
[40]
Zhang K, Lu W, Marziliano P. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn Reson Imaging 2013; 31(10): 1731-43.
[http://dx.doi.org/10.1016/j.mri.2013.06.005]
[41]
Lee J-G, Gumus S, Moon C-H, Kwoh K, Bae KT. Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method. Med Phys 2014; 41(9): 092303.
[http://dx.doi.org/10.1118/1.4893533]
[42]
Shan L, Zach C, Charles C, Niethammer M. Automatic atlas-based three-label cartilage segmentation from MR knee images. Med Image Anal 2014; 18(7): 1233-46.
[http://dx.doi.org/10.1016/j.media.2014.05.008] [PMID: 25128683]
[43]
Pang J, Li P, Qiu M, Chen W, Qiao L. Automatic Articular Cartilage Segmentation Based on Pattern Recognition from Knee MRI Images. J Digit Imaging 2015; 28(6): 695-703.
[http://dx.doi.org/10.1007/s10278-015-9780-x] [PMID: 25700618]
[44]
Öztürk CN, Albayrak S. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling. Comput Biol Med 2016; 72: 90-107.
[http://dx.doi.org/10.1016/j.compbiomed.2016.03.011] [PMID: 27017069]
[45]
Alderin F. Automated Segmentation of the Meniscus. Examination work within the field of technology medical technology and the main area engineering physics, advanced level, 30 HP Stockholm, Sweden. 2017.
[46]
Norman B, Pedoia V, Majumdar S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology 2018; 288(1): 177-85.
[http://dx.doi.org/10.1148/radiol.2018172322] [PMID: 29584598]
[47]
Dodin P, Abram F, Pelletier JP, Martel-Pelletier J. A fully automated system for quantification of knee bone marrow lesions using MRI and the osteoarthritis initiative cohort. J Biomed Graph Comput 2012; 3(1): 51-65.
[http://dx.doi.org/10.5430/jbgc.v3n1p51]
[48]
Ahn C, Bui TD, Lee Y, Shin J, Park H. Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative. Biomed Eng Online 2016; 15(1): 99.
[http://dx.doi.org/10.1186/s12938-016-0225-7] [PMID: 27558127]
[49]
Brui E, Efimtcev AY, Fokin VA, et al. Deep learning-based fully automatic segmentation of wrist cartilage in MR images. NMR Biomed 2020; 33(8): e4320.
[http://dx.doi.org/10.1002/nbm.4320] [PMID: 32394453]
[50]
Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: Achieving high diagnostic performance for cartilage lesion detection. Radiology 2018; 289(1): 160-9.
[http://dx.doi.org/10.1148/radiol.2018172986] [PMID: 30063195]
[51]
Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging: Deep Learning Approach for Segmenting MR Image. Magn Reson Med 2018. 79(2).
[http://dx.doi.org/10.1002/mrm.26841]
[52]
Liu F. SUSAN: Segment unannotated image structure using adversarial network. Magn Reson Med 2019; 81(5): 3330-45.
[PMID: 30536427]
[53]
Kashyap S, Zhang H, Sonka M. Just-enough interaction approach to knee MRI segmentation: Data from the osteoarthritis initiative. arXiv:190304027v1 2019.
[54]
Bonaretti S, Gold GE, Beaupre GS. pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage. PLoS One 2019; 15(1): e0226501.
[55]
Kashyap S, Oguz I, Zhang H, Sonka M. Automated segmentation of knee MRI using hierarchical classifiers and just enough interaction based learning: Data from osteoarthritis initiative. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 MICCAI 2016 Lecture Notes in Computer Science 2019; 9901
[56]
Kashyap S, Zhang H, Rao K, Sonka M. Learning-based cost functions for 3D and 4D multi-surface multi-object segmentation of Knee MRI: Data from the osteoarthritis initiative. IEEE Transactions on Medical Imaging 2018; 37(5): 1103-13.
[http://dx.doi.org/10.1109/TMI.2017.2781541]
[57]
Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging 2010; 29(1): 55-64.
[http://dx.doi.org/10.1109/TMI.2009.2024743] [PMID: 19520633]
[58]
Dodin P, Pelletier J, Martel-Pelletier J, Abram F. Automatic Human Knee Cartilage Segmentation From 3-D Magnetic Resonance Images. IEEE Trans Biomed Eng 2010; 57(11): 2699-711.
[http://dx.doi.org/10.1109/TBME.2010.2058112]
[59]
Ali Shah SA, Yahya KM, Mubashar G, Bais A. Quantification and visualization of MRI cartilage of the knee: A simplified approach. 2010 6th International Conference on Emerging Technologies (ICET) 2010.
[http://dx.doi.org/10.1109/ICET.2010.5638495]
[60]
Mallikarjuna Swamy MS, Holi MS. Knee joint cartilage visualization and quantification in normal and osteoarthritis. 2010 International Conference on Systems in Medicine and Biology 2010.
[http://dx.doi.org/10.1109/ICSMB.2010.5735360]
[61]
Long NQ, Jiang D, Ding C. “Application of artificial neural networks in automatic cartilage segmentation,” 3rd Int. Work Adv Comput Intell IWACI 2010; 2010: 81-5.
[62]
Williams TG. Automatic segmentation of bones and inter-image anatomical correspondence by volumetric statistical modelling of knee MRI. 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2010.
[http://dx.doi.org/10.1109/ISBI.2010.5490316]
[63]
Yin Yin , Xiangmin Zhang , Williams R, Xiaodong Wu , Anderson DD, Sonka M. Logismos layered optimal graph image segmentation of multiple objects and surfaces: Cartilage segmentation in the knee joint. IEEE Trans Med Imaging 2010; 29(12): 2023-37.
[http://dx.doi.org/10.1109/TMI.2010.2058861] [PMID: 20643602]
[64]
Tamez-Pena J, González P, Farber J, Baum K, Schreyer E, Totterman S. Atlas based method for the automated segmentation and quantification of knee features: Data from the osteoarthritis initiative Int Symp Biomed Imaging 1484-7.2011;
[http://dx.doi.org/10.1109/ISBI.2011.5872681]
[65]
Zhang K, Deng J, Lu W. Segmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields. 2011 18th IEEE International Conference on Image Processing 2011.
[http://dx.doi.org/10.1109/ICIP.2011.6116655]
[66]
Jiang J-G. Segmentation of knee joints based on improved multiphase Chan-Vese model. 2008 2nd International Conference on Bioinformatics and Biomedical Engineering 2008.
[67]
Marstal K, Gudbergsen H, Boesen M, Kubassova O, Bouert R, Bliddal H. Semi-automatic segmentation of knee osteoarthritic cartilage in magnetic resonance images. Proceedings ELMAR-2011 2011; 385-8.
[68]
Tran HV, Jiang D. Articular cartilage segmentation in noisy MR images of human knee 2012 Cairo International Biomedical Engineering Conference (CIBEC). 146-9.
[http://dx.doi.org/10.1109/CIBEC.2012.6473331]
[69]
Tamez-Peña JG, Farber J, González PC, Schreyer E, Schneider E, Totterman S. Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative. IEEE Trans Biomed Eng 2012; 59(4): 1177-86.
[http://dx.doi.org/10.1109/TBME.2012.2186612] [PMID: 22318477]
[70]
Kashyap S, Yin Y, Sonka M. Automated analysis of cartilage morphology 2013 IEEE 10th International Symposium on Biomedical Imaging. 1300-3.
[71]
Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. International conference on medical image computing and computer-assisted intervention 2013; 246-53.
[http://dx.doi.org/10.1007/978-3-642-40763-5_31]
[72]
Prasoon A, Igel C, Loog M, Lauze F, Dam EB, Nielsen M. Femoral cartilage segmentation in Knee MRI scans using two stage voxel classification. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013.
[http://dx.doi.org/10.1109/EMBC.2013.6610787]
[73]
Shan L, Charles C, Niethammer M. Longitudinal three-label segmentation of knee cartilage. 2013 IEEE 10th International Symposium on Biomedical Imaging 2013.
[74]
Gan HS, Tan TS, Sayuti KA, Karim AHA, Kadir MRA. Multilabel graph based approach for knee cartilage segmentation: Data from the osteoarthritis initiative. 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). 210-3.
[http://dx.doi.org/10.1109/IECBES.2014.7047487]
[75]
Kubicek J, Penhaker M. Fuzzy algorithm for segmentation of images in extraction of objects from MRI. 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 2014; 1422-7.
[http://dx.doi.org/10.1109/ICACCI.2014.6968264]
[76]
Gan HS. Binary Seeds Auto Generation Model for Knee Cartilage Segmentation. 2018 International Conference on Intelligent and Advanced System (ICIAS) 2018.
[http://dx.doi.org/10.1109/ICIAS.2018.8540570]
[77]
Revathi SA, Holi G. Cartilage Segmentation of Knee OsteoArthritis from Magnetic Resonance Images(MRI). 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC) 2018.
[78]
Viken H, Angman M. Automatic segmentation of articular cartilage in arthroscopic images using deep neural networks and multifractal analysis. Linköping University Department of Biomedical Engineering Master’s thesis, 30 ECTS Computer science. 2020.
[79]
Xue YP, Jang H, Byra M, et al. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Eur Radiol 2021; 31(10): 7653-63.
[http://dx.doi.org/10.1007/s00330-021-07853-6] [PMID: 33783571]
[80]
Dimitri A, MacKay JW, McDonnell SM, et al. Segmentation of knee MRI data with convolutional neural networks for semi-automated three-dimensional surface-based analysis of cartilage morphology and composition. Osteoarthritis Imaging 2022; 2(2): 100010.
[81]
Yang M, Colak C, Chundru KK, et al. Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning. Quant Imaging Med Surg 2022; 12(5): 2620-33.
[http://dx.doi.org/10.21037/qims-21-459] [PMID: 35502381]
[82]
Stehling C, Baum T, Mueller-Hoecker C, et al. A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging – data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2011; 19(8): 984-9.
[http://dx.doi.org/10.1016/j.joca.2011.04.002] [PMID: 21515391]
[83]
Frondelius T, Tiulpin A, Lehenkari P, Nieminen HJ, Saarakkala S. Fully automatic deep learning based segmentation of bone-cartilage interface from micro-CT images of human osteochondral samples. Osteoarthr Cartil 2018; 26(1): S469.
[http://dx.doi.org/10.1016/j.joca.2018.02.885]
[84]
Wirth W, Maschek S, Beringer P, Eckstein F. Subregional laminar cartilage MR spin–spin relaxation times (T2) in osteoarthritic knees with and without medial femorotibial cartilage loss – data from the Osteoarthritis Initiative (OAI). Osteoarthr Cartil 2017; 25(8): 1313-23.
[http://dx.doi.org/10.1016/j.joca.2017.03.013] [PMID: 28351705]
[85]
Si Liping, Xuan Kai, Zhong Jingyu, et al. Knee cartilage thickness differs alongside ages: A 3-T magnetic resonance research upon 2,481 subjects via deep learning. Front Med 2021; 7: 600049.
[http://dx.doi.org/10.3389/fmed.2020.600049]
[86]
Almajalid R, Shan J, Du Y, Zhang M. Identification of Knee Cartilage Changing Pattern. Appl Sci (Basel) 2019; 9(17): 3469.
[http://dx.doi.org/10.3390/app9173469]
[87]
Panfilov Egor. Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the osteoarthritis initiative. J Orthop Res 2021; 40(5): 1113-24.
[88]
Sekiya I, Kohno Y, Hyodo A, et al. Interscan measurement error of knee cartilage thickness and projected cartilage area ratio at 9 regions and 45 subregions by fully automatic three-dimensional MRI analysis. Eur J Radiol 2021; 139: 109700.
[http://dx.doi.org/10.1016/j.ejrad.2021.109700] [PMID: 33865065]
[89]
Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The multicenter osteoarthritis study. Arthritis Rheum 2009; 60(3): 831-9.
[http://dx.doi.org/10.1002/art.24383] [PMID: 19248082]
[90]
Hunter DJ, Zhang YQ, Niu JB, et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 2006; 54(3): 795-801.
[http://dx.doi.org/10.1002/art.21724] [PMID: 16508930]
[91]
Sharma L, Eckstein F, Song J, et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 2008; 58(6): 1716-26.
[http://dx.doi.org/10.1002/art.23462] [PMID: 18512777]
[92]
Paproki A, Engstrom C, Chandra SS, Neubert A, Fripp J, Crozier S. Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images – data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2014; 22(9): 1259-70.
[http://dx.doi.org/10.1016/j.joca.2014.06.029] [PMID: 25014660]
[93]
Tack A, Mukhopadhyay A, Zachow S. Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2018; 26(5): 680-8.
[http://dx.doi.org/10.1016/j.joca.2018.02.907] [PMID: 29526784]
[94]
Bloecker K, Wirth W, Hudelmaier M, Burgkart R, Frobell R, Eckstein F. Morphometric differences between the medial and lateral meniscus in healthy men - a three-dimensional analysis using magnetic resonance imaging. Cells Tissues Organs 2012; 195(4): 353-64.
[http://dx.doi.org/10.1159/000327012] [PMID: 21709397]
[95]
Zarandi MHF, Khadangi A, Karimi F, Turksen IB. A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear. J Digit Imaging 2016; 29(6): 677-95.
[http://dx.doi.org/10.1007/s10278-016-9884-y] [PMID: 27198133]
[96]
Zhang K, Li L, Yang L, et al. Effect of degenerative and radial tears of the meniscus and resultant meniscectomy on the knee joint: A finite element analysis. J Orthop Translat 2019; 18: 20-1.
[http://dx.doi.org/10.1016/j.jot.2018.12.004]
[97]
Couteaux V, Si-Mohamed S, Nempont O, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging 2019; 100(4): 235-42.
[http://dx.doi.org/10.1016/j.diii.2019.03.002] [PMID: 30910620]
[98]
Byra M, Wu M, Zhang X, et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning. Magn Reson Med 2020; 83(3): 1109-22.
[http://dx.doi.org/10.1002/mrm.27969] [PMID: 31535731]
[99]
Fritz B, Marbach G, Civardi F, Fucentese SF, Pfirrmann CWA. Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Skeletal Radiol 2020; 49(8): 1207-17.
[http://dx.doi.org/10.1007/s00256-020-03410-2]
[100]
Long Z, Zhang D, Guo H, Wang W. Automated segmentation of knee menisci from magnetic resonance images by using ATTU-Net: a pilot study on small datasets. OSA Continuum 2021; 4(12): 3096-107.
[http://dx.doi.org/10.1364/OSAC.444518]
[101]
Wang Y, Li Y, Huang M, Lai Q, Huang J, Chen J. Feasibility of Constructing an Automatic Meniscus Injury Detection Model Based on Dual-Mode Magnetic Resonance Imaging (MRI) Radiomics of the Knee Joint. Comput Math Methods Med 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/2155132] [PMID: 35392588]
[102]
Radiological Society of North America 2013 Scientific Assembly and Annual Meeting, Chicago IL. 2013. Available from: https://www.medscape.com/viewcollection/32980
[103]
Patel R, Eltgroth M, Souza RB, et al. Loaded versus unloaded magnetic resonance imaging (MRI) of the knee: Effect on meniscus extrusion in healthy volunteers and patients with osteoarthritis. Eur J Radiol Open 2016; 3: 100-7.
[http://dx.doi.org/10.1016/j.ejro.2016.05.002] [PMID: 27331081]
[104]
Ozeki N, Seil R, Krych AJ, Koga H. Surgical treatment of complex meniscus tear and disease: state of the art. J ISAKOS 2021; 6(1): 35-45.
[http://dx.doi.org/10.1136/jisakos-2019-000380] [PMID: 33833044]
[105]
Lorigo LM, Faugeras O, Grimson WEL, Keriven R, Kikinis R. Segmentation of bone in clinical knee MRI using texture-based geodesic active contours International Conference on Medical Image Computing and Computer-Assisted Intervention. 1195-204.
[http://dx.doi.org/10.1007/BFb0056309]
[106]
Cohen ZA, McCarthy DM, Kwak SD, et al. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage 1999; 7(1): 95-109.
[http://dx.doi.org/10.1053/joca.1998.0165] [PMID: 10367018]
[107]
Lynch J A, Zaim S, Zhao J, Stork A, Peterfy C G, Genant H K. Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours. Proceedings of SPIE - The International Society for Optical Engineering 2000.
[http://dx.doi.org/10.1117/12.387758]
[108]
Carballido-Gamio J, Bauer JS, Keh-Yang Lee , Krause S, Majumdar S. Combined image processing techniques for characterization of MRI cartilage of the knee. Conf Proc IEEE Eng Med Biol Soc 2005; 2005: 3043-6.
[http://dx.doi.org/10.1109/IEMBS.2005.1617116] [PMID: 17282885]
[109]
Carballido-Gamio J, Bauer JS, Stahl R, et al. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 2008; 12(2): 120-35.
[http://dx.doi.org/10.1016/j.media.2007.08.002] [PMID: 17923429]
[110]
Jinshan Tang , Millington S, Acton ST, Crandall J, Hurwitz S. Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Trans Biomed Eng 2006; 53(5): 896-907.
[http://dx.doi.org/10.1109/TBME.2006.872816] [PMID: 16686412]
[111]
Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med 1997; 37(6): 943-52.
[http://dx.doi.org/10.1002/mrm.1910370620] [PMID: 9178247]
[112]
Gilles B, Magnenat-Thalmann N. Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal 2010; 14(3): 291-302.
[http://dx.doi.org/10.1016/j.media.2010.01.006] [PMID: 20303319]
[113]
Vincent G, Wolstenholme C, Scott I, Bowes M. Fully automatic segmentation of the knee joint using active appearance models. 2010.
[114]
Williams TG, Taylor CJ, Gao Z, Waterton JC. Corresponding articular cartilage thickness measurements in the knee joint by modelling the underlying bone (commercial in confidence Biennial International Conference on Information Processing in Medical Imaging. 126-35.
[http://dx.doi.org/10.1007/978-3-540-45087-0_11]
[115]
Williams TG, Taylor CJ, Waterton JC, Holmes A. Population analysis of knee cartilage thickness maps using model based correspondence. IEEE Xplore 2004.
[http://dx.doi.org/10.1109/ISBI.2004.1398507]
[116]
Wang Z, Donoghue C, Rueckert D. Patch-based segmentation without registration: application to knee MRI International Workshop on Machine Learning in Medical Imaging. 98-105.
[http://dx.doi.org/10.1007/978-3-319-02267-3_13]
[117]
Liu Q, Wang Q, Zhang L, Gao Y, Shen D. Multi-atlas context forests for knee MR image segmentation International Workshop on Machine Learning in Medical Imaging. 186-93.
[http://dx.doi.org/10.1007/978-3-319-24888-2_23]
[118]
Schmid J, Magnenat-Thalmann N. MRI bone segmentation using deformable models and shape priors International conference on medical image computing and computer-assisted intervention. 119-26.
[http://dx.doi.org/10.1007/978-3-540-85988-8_15]
[119]
Schmid J, Kim J, Magnenat-Thalmann N. Robust statistical shape models for MRI bone segmentation in presence of small field of view. Med Image Anal 2011; 15(1): 155-68.
[http://dx.doi.org/10.1016/j.media.2010.09.001] [PMID: 20951075]
[120]
Prasoon A, Igel C, Loog M, Lauze F, Dam E, Nielsen M. Cascaded classifier for large-scale data applied to automatic segmentation of articular cartilage. Proceedings Volume 8314, Medical Imaging 2012: Image Processing; 83144V 2012.
[http://dx.doi.org/10.1117/12.910809]
[121]
Huang C, Shan L, Charles HC, Wirth W, Niethammer M, Zhu H. Diseased Region Detection of Longitudinal Knee Magnetic Resonance Imaging Data. IEEE Trans Med Imaging 2015; 34(9): 1914-27.
[http://dx.doi.org/10.1109/TMI.2015.2415675] [PMID: 25823031]
[122]
Eckstein F, Wirth W, Nevitt MC. Recent advances in osteoarthritis imaging—the Osteoarthritis Initiative. Nat Rev Rheumatol 2012; 8(10): 622-30.
[http://dx.doi.org/10.1038/nrrheum.2012.113] [PMID: 22782003]
[123]
Zerfass P, Lowitz T, Museyko O, et al. An integrated segmentation and analysis approach for QCT of the knee to determine subchondral bone mineral density and texture. IEEE Trans Biomed Eng 2012; 59(9): 2449-58.
[http://dx.doi.org/10.1109/TBME.2012.2202660] [PMID: 22692866]
[124]
Youssef R, Bouhadoun H, Laredo JD, Chappard C. Semi-automatic compartment extraction to assess 3D bone mineral density and morphometric parameters of the subchondral bone in the tibial knee 2015 19th International Conference on Information Visualisation. 518-23.
[http://dx.doi.org/10.1109/iV.2015.92]
[125]
Lee H, Hong H, Kim J. BCD-NET: A novel method for cartilage segmentation of knee MRI via deep segmentation networks with bone-cartilage-complex modeling 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).
[http://dx.doi.org/10.1109/ISBI.2018.8363866]
[126]
Thaha R, Jogi SP, Rajan S, Mahajan V, Mehndiratta A, Singh A. Automated Segmentation of Knee Cartilage Using Modified Radial Approach for OA Patients with and without Bone Abnormality 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). 432-6.
[http://dx.doi.org/10.1109/IECBES.2018.8626718]
[127]
Uozumi Y, Nagamune K. An automatic bone segmentation method based on anatomical structure for the knee joint in MDCT image 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 7124-7.
[http://dx.doi.org/10.1109/EMBC.2013.6611200]
[128]
Desai PR, Hacihaliloglu I. Enhancement and automated segmentation of ultrasound knee cartilage for early diagnosis of knee osteoarthritis 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 1471-4.
[http://dx.doi.org/10.1109/ISBI.2018.8363850]
[129]
Yamamoto Y, Tsuruta S, Kobashi S, Sakurai Y, Knauf R. An Efficient Classification Method for Knee MR Image Segmentation 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). 36-41.
[http://dx.doi.org/10.1109/SITIS.2016.15]
[130]
Suresha S, Kidziński L, Halilaj E, Gold GE, Delp SL. Automated staging of knee osteoarthritis severity using deep neural networks. Osteoarthr Cartil 2018; 26(1): S441.
[http://dx.doi.org/10.1016/j.joca.2018.02.845]
[131]
Joseph GB, Baum T, Alizai H, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3years – data from the Osteoarthritis Initiative. Osteoarthr Cartil 2012; 20(7): 727-35.
[http://dx.doi.org/10.1016/j.joca.2012.04.003] [PMID: 22503812]
[132]
Bhagyashri LW, Patil MM. Osteoarthritis disease detection with the help of image processing technique. Int J Comput Appl 2015; 1-4.
[133]
Beuf O. Characterization of trabecular bone micro-architecture in the knee in osteoarthrosis using high-resolution MRI. Clin Rheumatol 1995; 432: 16388-8.
[134]
Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: Computational method and reproducibility in the living. Magn Reson Med 1999; 41(3): 529-36.
[http://dx.doi.org/10.1002/(SICI)1522-2594(199903)41:3<529::AID-MRM15>3.0.CO;2-Z] [PMID: 10204876]
[135]
Stammberger T, Hohe J, Englmeier KH, Reiser M, Eckstein F. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn Reson Med 2000; 44(4): 592-601.
[http://dx.doi.org/10.1002/1522-2594(200010)44:4<592::AID-MRM13>3.0.CO;2-J] [PMID: 11025515]
[136]
Williams TG, Holmes AP, Waterton JC, et al. Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone. IEEE Trans Med Imaging 2010; 29(8): 1541-59.
[http://dx.doi.org/10.1109/TMI.2010.2047653] [PMID: 20378463]
[137]
Kauffmann C, Gravel P, Godbout B, et al. Computer-aided method for quantification of cartilage thickness and volume changes using mri: validation study using a synthetic model. IEEE Trans Biomed Eng 2003; 50(8): 978-88.
[http://dx.doi.org/10.1109/TBME.2003.814539] [PMID: 12892325]
[138]
Swanson MS, Prescott JW, Best TM, et al. Semi-automated segmentation to assess the lateral meniscus in normal and osteoarthritic knees. Osteoarthritis Cartilage 2010; 18(3): 344-53.
[http://dx.doi.org/10.1016/j.joca.2009.10.004] [PMID: 19857510]
[139]
Folkesson J, Dam E, Olsen OF, Pettersen P, Christiansen C. Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme International Conference on Medical Image Computing and Computer-Assisted Intervention. 327-34.
[http://dx.doi.org/10.1007/11566465_41]
[140]
Folkesson J, Olsen OF, Pettersen P, Dam E, Christiansen C. Combining binary classifiers for automatic cartilage segmentation in knee MRI International Workshop on Computer Vision for Biomedical Image Applications. 230-9.
[http://dx.doi.org/10.1007/11569541_24]
[141]
Gornale SS, Patravali PU, Marathe KS, Hiremath PS. “Determination of Osteoarthritis Using Histogram of Oriented Gradients and Multiclass SVM,” Int. J. Image. Graph Signal Process 2017; 9(12): 41-9.
[http://dx.doi.org/10.5815/ijigsp.2017.12.05]
[142]
Ang I, Fox M, Polk JD, Kersh ME. A structure-based algorithm for automated separation of subchondral bone in micro-computed tomography data. Preprint 2018.
[http://dx.doi.org/10.31224/osf.io/w86ke]
[143]
Li YZ, Wang Y, Fang KB, et al. Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN. Eur J Med Res 2022; 27(1): 247.
[http://dx.doi.org/10.1186/s40001-022-00883-w] [PMID: 36372871]
[144]
Fripp J, Bourgeat P, Mewes AJ, Warfield SK, Crozier S, Ourselin S. 3D statistical shape models to embed spatial relationship information International Workshop on Computer Vision for Biomedical Image Applications. 51-60.
[http://dx.doi.org/10.1007/11569541_7]
[145]
Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med Image Anal 2014; 18(2): 359-73.
[http://dx.doi.org/10.1016/j.media.2013.12.002] [PMID: 24418598]
[146]
Janvier T, Toumi H, Jennane R, Lespessailles E. Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: Data from the osteoarthritis initiative. Osteoarthr Cartil 2017; 25(12): 2047-54.
[147]
Maly MR, Acker SM, Totterman S, et al. Knee adduction moment relates to medial femoral and tibial cartilage morphology in clinical knee osteoarthritis. J Biomech 2015; 48(12): 3495-501.
[http://dx.doi.org/10.1016/j.jbiomech.2015.04.039] [PMID: 26141161]
[148]
Hossain MB, Lai KW, Pingguan-Murphy B, Hum YC, Mohd Salim MI, Liew YM. Contrast enhancement of ultrasound imaging of the knee joint cartilage for early detection of knee osteoarthritis. Biomed Signal Process Control 2014; 13(1): 157-67.
[http://dx.doi.org/10.1016/j.bspc.2014.04.008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy