Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Bacterial Persister Cells: Mechanisms of Formation, Control, and Eradication

Author(s): Ebrahim Kouhsari, Vahab Hassan Kaviar, Arezoo Asadi, Alireza Ahmadi, Mohammad Sholeh, Ali Mirbalouchzehi, Sajad Yaghoubi* and Milad Abdi*

Volume 23, Issue 7, 2023

Published on: 23 June, 2023

Article ID: e110523216805 Pages: 12

DOI: 10.2174/1871526523666230511142054

Price: $65

Abstract

Bacterial Persister Cells (BPCs) are quiescent, slow-growing or growth-arrested phenotypic variants of normal bacterial cells that are transiently tolerant to antibiotics. It seems that persister cells are the main cause of the recurrence of various chronic infections. Stress response (RpoS-mediated), Toxin-Antitoxin (TA) systems, inhibition of ATP production, Reactive Oxygen Species (ROS), efflux pumps, bacterial SOS response, cell-to-cell communication and stringent response (ppGpp- mediated) are the primary potential mechanisms for persistence cell formation. However, eradicating persistent cells is challenging as the specific molecular mechanisms that initiate their formation remain fuzzy and unknown. Here we reviewed and summarized the current understanding of how bacterial persister cells are formed, controlled, and destroyed.

Graphical Abstract

[1]
Abdi M, Lohrasbi V, Asadi A, et al. Interesting probiotic traits of mother’s milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog 2021; 158: 104998.
[http://dx.doi.org/10.1016/j.micpath.2021.104998] [PMID: 34044041]
[2]
Lohrasbi V, Abdi M, Asadi A, et al. The effect of improved formulation of chitosan-alginate microcapsules of Bifidobacteria on serum lipid profiles in mice. Microb Pathog 2020; 149: 104585.
[http://dx.doi.org/10.1016/j.micpath.2020.104585] [PMID: 33075520]
[3]
Poolman JT, Anderson AS. Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev Vaccines 2018; 17(7): 607-18.
[http://dx.doi.org/10.1080/14760584.2018.1488590] [PMID: 29902092]
[4]
Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5(1): 48-56.
[http://dx.doi.org/10.1038/nrmicro1557] [PMID: 17143318]
[5]
Hobby GL, Meyer K, Chaffee E. Observations on the mechanism of action of penicillin. Exp Biol Med (Maywood) 1942; 50(2): 281-5.
[http://dx.doi.org/10.3181/00379727-50-13773]
[6]
Bigger J. Treatment of staphyloeoeeal infections with penicillin by intermittent sterilisation. Lancet 1944; 244(6320): 497-500.
[http://dx.doi.org/10.1016/S0140-6736(00)74210-3]
[7]
Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 2012; 56(5): 2223-30.
[http://dx.doi.org/10.1128/AAC.06288-11] [PMID: 22391538]
[8]
Lewis K. Multidrug tolerance of biofilms and persister cells Bacterial Biofilms. Springer 2008; pp. 107-31.
[http://dx.doi.org/10.1007/978-3-540-75418-3_6]
[9]
Wiuff C, Zappala RM, Regoes RR, Garner KN, Baquero F, Levin BR. Phenotypic tolerance: Antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother 2005; 49(4): 1483-94.
[http://dx.doi.org/10.1128/AAC.49.4.1483-1494.2005] [PMID: 15793130]
[10]
Lewis K. Persister Cells. Annu Rev Microbiol 2010; 64(1): 357-72.
[http://dx.doi.org/10.1146/annurev.micro.112408.134306] [PMID: 20528688]
[11]
Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics (Basel) 2020; 10(1): 3.
[http://dx.doi.org/10.3390/antibiotics10010003] [PMID: 33374551]
[12]
Vázquez-Laslop N, Lee H, Neyfakh AA. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol 2006; 188(10): 3494-7.
[http://dx.doi.org/10.1128/JB.188.10.3494-3497.2006] [PMID: 16672603]
[13]
Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2(1): 0008.
[http://dx.doi.org/10.1038/msb4100050] [PMID: 16738554]
[14]
Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 2007; 5(9): 721-6.
[http://dx.doi.org/10.1038/nrmicro1743] [PMID: 17694072]
[15]
Berg HC, Brown DA. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 1972; 239(5374): 500-4.
[http://dx.doi.org/10.1038/239500a0] [PMID: 4563019]
[16]
Song S, Wood TK. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem Biophys Res Commun 2020; 523(2): 281-6.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.102] [PMID: 32007277]
[17]
Moradkasani S, et al. Evaluation of putative toxin-antitoxins systems in clinical Brucella melitensis in Iran. Infect Disord Drug Targets 2021; 21(1): 38-42.
[PMID: 31957618]
[18]
Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 2009; 323(5912): 396-401.
[http://dx.doi.org/10.1126/science.1163806] [PMID: 19150849]
[19]
Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010; 8(2): e1000317.
[http://dx.doi.org/10.1371/journal.pbio.1000317] [PMID: 20186264]
[20]
Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016; 354(6318): aaf4268.
[http://dx.doi.org/10.1126/science.aaf4268] [PMID: 27980159]
[21]
Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell 2014; 157(3): 539-48.
[http://dx.doi.org/10.1016/j.cell.2014.02.050] [PMID: 24766804]
[22]
Van Melderen L, Wood TK. Commentary: What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Front Microbiol 2017; 8: 191.
[http://dx.doi.org/10.3389/fmicb.2017.00191] [PMID: 28261163]
[23]
Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-dependent persister formation in Escherichia coli. MBio 2017; 8(1): e02267-16.
[http://dx.doi.org/10.1128/mBio.02267-16] [PMID: 28174313]
[24]
Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 2014; 343(6167): 204-8.
[http://dx.doi.org/10.1126/science.1244705] [PMID: 24408438]
[25]
Jaiswal S, Paul P, Padhi C, et al. The Hha-TomB toxin-antitoxin system shows conditional toxicity and promotes persister cell formation by inhibiting apoptosis-like death in S. typhimurium. Sci Rep 2016; 6(1): 38204.
[http://dx.doi.org/10.1038/srep38204] [PMID: 27910884]
[26]
Hu Y, Kwan BW, Osbourne DO, Benedik MJ, Wood TK. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ Microbiol 2015; 17(4): 1275-85.
[http://dx.doi.org/10.1111/1462-2920.12567] [PMID: 25041421]
[27]
Butt A, Higman VA, Williams C, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J 2014; 459(2): 333-44.
[http://dx.doi.org/10.1042/BJ20140073] [PMID: 24502667]
[28]
Christensen SK, Gerdes K. RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 2003; 48(5): 1389-400.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03512.x] [PMID: 12787364]
[29]
Christensen SK, Pedersen K, Hansen FG, Gerdes K. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 2003; 332(4): 809-19.
[http://dx.doi.org/10.1016/S0022-2836(03)00922-7] [PMID: 12972253]
[30]
Yoshida H, Maki Y, Kato H, et al. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli. J Biochem 2002; 132(6): 983-9.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003313] [PMID: 12473202]
[31]
Dawson CC, Intapa C, Jabra-Rizk MA. “Persisters”: survival at the cellular level. PLoS Pathog 2011; 7(7): e1002121.
[http://dx.doi.org/10.1371/journal.ppat.1002121] [PMID: 21829345]
[32]
Kuroda A, Nomura K, Ohtomo R, et al. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 2001; 293(5530): 705-8.
[http://dx.doi.org/10.1126/science.1061315] [PMID: 11474114]
[33]
Murakami K, Ono T, Viducic D, et al. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 2005; 242(1): 161-7.
[http://dx.doi.org/10.1016/j.femsle.2004.11.005] [PMID: 15621433]
[34]
Hong SH, Wang X, O’Connor HF, Benedik MJ, Wood TK. Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol 2012; 5(4): 509-22.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00327.x] [PMID: 22221537]
[35]
Wu N, He L, Cui P, et al. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol 2015; 6: 1003.
[http://dx.doi.org/10.3389/fmicb.2015.01003] [PMID: 26483762]
[36]
Liu S, Wu N, Zhang S, Yuan Y, Zhang W, Zhang Y. Variable persister gene interactions with (p) ppGpp for persister formation in Escherichia coli. Front Microbiol 2017; 8: 1795.
[http://dx.doi.org/10.3389/fmicb.2017.01795] [PMID: 28979246]
[37]
Bokinsky G, Baidoo EEK, Akella S, et al. HipA-triggered growth arrest and β-lactam tolerance in Escherichia coli are mediated by RelA-dependent ppGpp synthesis. J Bacteriol 2013; 195(14): 3173-82.
[http://dx.doi.org/10.1128/JB.02210-12] [PMID: 23667235]
[38]
Dörr T, Lewis K, Vulić M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 2009; 5(12): e1000760.
[http://dx.doi.org/10.1371/journal.pgen.1000760] [PMID: 20011100]
[39]
Fung DKC, Chan EWC, Chin ML, Chan RCY. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob Agents Chemother 2010; 54(3): 1082-93.
[http://dx.doi.org/10.1128/AAC.01218-09] [PMID: 20086164]
[40]
Spoering AL, Vulić M, Lewis K. GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 2006; 188(14): 5136-44.
[http://dx.doi.org/10.1128/JB.00369-06] [PMID: 16816185]
[41]
Chung JD, Stephanopoulos G, Ireton K, Grossman AD. Gene expression in single cells of Bacillus subtilis: Evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol 1994; 176(7): 1977-84.
[http://dx.doi.org/10.1128/jb.176.7.1977-1984.1994] [PMID: 8144465]
[42]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284(5418): 1318-22.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[43]
Correia FF, D’Onofrio A, Rejtar T, et al. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 2006; 188(24): 8360-7.
[http://dx.doi.org/10.1128/JB.01237-06] [PMID: 17041039]
[44]
Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23(9): 1105-16.
[http://dx.doi.org/10.1038/nbt1126] [PMID: 16151404]
[45]
De Groote VN, Verstraeten N, Fauvart M, et al. Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 2009; 297(1): 73-9.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01657.x] [PMID: 19508279]
[46]
Moyed HS, Bertrand KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 1983; 155(2): 768-75.
[http://dx.doi.org/10.1128/jb.155.2.768-775.1983] [PMID: 6348026]
[47]
Hansen S, Lewis K, Vulić M. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 2008; 52(8): 2718-26.
[http://dx.doi.org/10.1128/AAC.00144-08] [PMID: 18519731]
[48]
Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease. Res Microbiol 2006; 157(8): 701-13.
[http://dx.doi.org/10.1016/j.resmic.2006.05.004] [PMID: 16854568]
[49]
Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell 2013; 52(2): 248-54.
[http://dx.doi.org/10.1016/j.molcel.2013.08.045] [PMID: 24095282]
[50]
Shi L, Sohaskey CD, Kana BD, et al. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 2005; 102(43): 15629-34.
[http://dx.doi.org/10.1073/pnas.0507850102] [PMID: 16227431]
[51]
Singh R, Barry CE III, Boshoff HIM. The three RelE homologs of Mycobacterium tuberculosishave individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 2010; 192(5): 1279-91.
[http://dx.doi.org/10.1128/JB.01285-09] [PMID: 20061486]
[52]
Defraine V, Fauvart M, Michiels J. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist Updat 2018; 38: 12-26.
[http://dx.doi.org/10.1016/j.drup.2018.03.002] [PMID: 29857815]
[53]
Mirzaei R, Mohammadzadeh R, Sholeh M, et al. The importance of intracellular bacterial biofilm in infectious diseases. Microb Pathog 2020; 147: 104393.
[http://dx.doi.org/10.1016/j.micpath.2020.104393] [PMID: 32711113]
[54]
Wood TK. Strategies for combating persister cell and biofilm infections. Microb Biotechnol 2017; 10(5): 1054-6.
[http://dx.doi.org/10.1111/1751-7915.12774] [PMID: 28696066]
[55]
Wood TK. Combatting bacterial persister cells. Biotechnol Bioeng 2016; 113(3): 476-83.
[http://dx.doi.org/10.1002/bit.25721] [PMID: 26264116]
[56]
Kwan BW, Chowdhury N, Wood TK. Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 2015; 17(11): 4406-14.
[http://dx.doi.org/10.1111/1462-2920.12873] [PMID: 25858802]
[57]
Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant per-sister cells. Antimicrob Agents Chemother 2015; 59(8): 4616-24.
[http://dx.doi.org/10.1128/AAC.00864-15] [PMID: 26014929]
[58]
Gil F, Paredes-Sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 2016; 11(9): 1179-89.
[http://dx.doi.org/10.2217/fmb-2016-0064] [PMID: 27546386]
[59]
Conlon B, et al. Killing persister cells and eradicating a biofilm infection by activating the ClpP protease. Nature 2013; 503(7476): 365.
[http://dx.doi.org/10.1038/nature12790] [PMID: 24226776]
[60]
Conlon BP, Nakayasu ES, Fleck LE, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 2013; 503(7476): 365-70.
[http://dx.doi.org/10.1038/nature12790] [PMID: 24226776]
[61]
Kim W, Fricke N, Conery AL, et al. NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med Chem 2016; 8(3): 257-69.
[http://dx.doi.org/10.4155/fmc.15.189] [PMID: 26910612]
[62]
Hu Y, Liu A, Ortega-Muro F, Alameda-Martin L, Mitchison D, Coates A. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbiol 2015; 6: 641.
[http://dx.doi.org/10.3389/fmicb.2015.00641] [PMID: 26157437]
[63]
Feng J, Auwaerter PG, Zhang Y. Drug combinations against Borrelia burgdorferi persisters in vitro: eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS One 2015; 10(3): e0117207.
[http://dx.doi.org/10.1371/journal.pone.0117207] [PMID: 25806811]
[64]
Chen X, Zhang M, Zhou C, Kallenbach NR, Ren D. Control of bacterial persister cells by Trp/Arg-containing antimicrobial peptides. Appl Environ Microbiol 2011; 77(14): 4878-85.
[http://dx.doi.org/10.1128/AEM.02440-10] [PMID: 21622798]
[65]
Bahar AA, Liu Z, Totsingan F, Buitrago C, Kallenbach N, Ren D. Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2015; 99(19): 8125-35.
[http://dx.doi.org/10.1007/s00253-015-6645-7] [PMID: 26012420]
[66]
Marques CNH, Morozov A, Planzos P, Zelaya HM. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 2014; 80(22): 6976-91.
[http://dx.doi.org/10.1128/AEM.01576-14] [PMID: 25192989]
[67]
Kim JS, Heo P, Yang TJ, et al. Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 2011; 55(11): 5380-3.
[http://dx.doi.org/10.1128/AAC.00708-11] [PMID: 21844322]
[68]
Chen Z, Gao Y, Lv B, et al. Hypoionic shock facilitates aminoglycoside killing of both nutrient shift-and starvation-induced bacterial persister cells by rapidly enhancing aminoglycoside uptake. Front Microbiol 2019; 10: 2028.
[http://dx.doi.org/10.3389/fmicb.2019.02028] [PMID: 31551965]
[69]
Pascoe B, Dams L, Wilkinson TS, et al. Dormant cells of Staphylococcus aureus are resuscitated by spent culture supernatant. PLoS One 2014; 9(2): e85998.
[http://dx.doi.org/10.1371/journal.pone.0085998] [PMID: 24523858]
[70]
Narayanaswamy VP, Keagy LL, Duris K, et al. Novel glycopolymer eradicates antibiotic-and CCCP-induced persister cells in Pseudomonas aeruginosa. Front Microbiol 2018; 9: 1724.
[http://dx.doi.org/10.3389/fmicb.2018.01724] [PMID: 30123191]
[71]
Radlinski LC, Rowe SE, Brzozowski R, et al. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem Biol 2019; 26(10): 1355-1364.e4.
[72]
Lebeaux D, Chauhan A, Létoffé S, et al. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo bio-films. J Infect Dis 2014; 210(9): 1357-66.
[http://dx.doi.org/10.1093/infdis/jiu286] [PMID: 24837402]
[73]
Feng J, Zhang S, Shi W, Zhang Y. Ceftriaxone pulse dosing fails to eradicate biofilm-like microcolony B. burgdorferi persisters which are sterilized by daptomycin/doxycycline/cefuroxime without pulse dosing. Frontiers Microbiol 2016; 7: 1744.
[74]
Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011; 473(7346): 216-20.
[http://dx.doi.org/10.1038/nature10069] [PMID: 21562562]
[75]
Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 2013; 5(190): 190ra81.
[http://dx.doi.org/10.1126/scitranslmed.3006276] [PMID: 23785037]
[76]
Chua SL, Yam JKH, Hao P, et al. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas] aeruginosa biofilms. Nat Commun 2016; 7(1): 10750.
[http://dx.doi.org/10.1038/ncomms10750] [PMID: 26892159]
[77]
Orman MA, Brynildsen MP. Persister formation in Escherichia coli can be inhibited by treatment with nitric oxide. Free Radic Biol Med 2016; 93: 145-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.02.003] [PMID: 26849946]
[78]
Mirzaei R, Abdi M, Gholami H. The host metabolism following bacterial biofilm: What is the mechanism of action? Rev Med Microbiol 2020; 31(4): 175-82.
[http://dx.doi.org/10.1097/MRM.0000000000000216]
[79]
Aedo SJ, Orman MA, Brynildsen MP. Stationary phase persister formation in Escherichia coli can be suppressed by piperacillin and PBP3 inhibition. BMC Microbiol 2019; 19(1): 140.
[http://dx.doi.org/10.1186/s12866-019-1506-7] [PMID: 31234796]
[80]
Wexselblatt E, Katzhendler J, Saleem-Batcha R, et al. ppGpp analogues inhibit synthetase activity of Rel proteins from Gram-negative and Gram-positive bacteria. Bioorg Med Chem 2010; 18(12): 4485-97.
[http://dx.doi.org/10.1016/j.bmc.2010.04.064] [PMID: 20483622]
[81]
Allegretta G, Maurer CK, Eberhard J, et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front Microbiol 2017; 8: 924.
[http://dx.doi.org/10.3389/fmicb.2017.00924] [PMID: 28596760]
[82]
Chowdhury N, Wood TL, Martínez-Vázquez M, García-Contreras R, Wood TK. DNA‐crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 2016; 113(9): 1984-92.
[http://dx.doi.org/10.1002/bit.25963] [PMID: 26914280]
[83]
Barraud N, Buson A, Jarolimek W, Rice SA. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 2013; 8(12): e84220.
[http://dx.doi.org/10.1371/journal.pone.0084220] [PMID: 24349568]
[84]
Kim W, Conery AL, Rajamuthiah R, Fuchs BB, Ausubel FM, Mylonakis E. Identification of an antimicrobial agent effective against methicillin-resistant Staphylococcus aureus persisters using a fluorescence-based screening strategy. PLoS One 2015; 10(6): e0127640.
[http://dx.doi.org/10.1371/journal.pone.0127640] [PMID: 26039584]
[85]
Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci USA 2012; 109(30): 12147-52.
[http://dx.doi.org/10.1073/pnas.1203735109] [PMID: 22778419]
[86]
Rosenthal IM, Zhang M, Williams KN, et al. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med 2007; 4(12): e344.
[http://dx.doi.org/10.1371/journal.pmed.0040344] [PMID: 18092886]
[87]
Tasneen R, Li SY, Peloquin CA, et al. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob Agents Chemother 2011; 55(12): 5485-92.
[http://dx.doi.org/10.1128/AAC.05293-11] [PMID: 21930883]
[88]
Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 2011; 333(6049): 1630-2.
[http://dx.doi.org/10.1126/science.1208813] [PMID: 21835980]
[89]
Sukheja P, Kumar P, Mittal N, et al. A novel small-molecule inhibitor of the Mycobacterium tuberculosisdemethylmenaquinone methyltransferase MenG is bactericidal to both growing and nutritionally deprived persister cells. MBio 2017; 8(1): e02022-16.
[http://dx.doi.org/10.1128/mBio.02022-16] [PMID: 28196957]
[90]
Orman MA, Brynildsen MP. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat Commun 2015; 6(1): 7983.
[http://dx.doi.org/10.1038/ncomms8983] [PMID: 26246187]
[91]
Vilchèze C, Hartman T, Weinrick B, et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2017; 114(17): 4495-500.
[http://dx.doi.org/10.1073/pnas.1704376114] [PMID: 28396391]
[92]
Wood T, Kwan B, Chowdhury N. Methods for combating bacterial infections by killing persister cells with mitomycin C and/or cisplatin. Google Patents 2019.
[93]
Manuel J, Zhanel GG, de Kievit T. Cadaverine suppresses persistence to carboxypenicillins in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2010; 54(12): 5173-9.
[http://dx.doi.org/10.1128/AAC.01751-09] [PMID: 20855735]
[94]
Chung ES, Ko KS. Eradication of persister cells of Acinetobacter baumannii through combination of colistin and amikacin antibiotics. J Antimicrob Chemother 2019; 74(5): 1277-83.
[http://dx.doi.org/10.1093/jac/dkz034] [PMID: 30759206]
[95]
Theophilus PAS, Victoria MJ, Socarras KM, et al. Effectiveness of Stevia rebaudiana whole leaf extract against the various morphological forms of Borrelia burgdorferi in vitro Eur J Microbiol Immunol (Bp) 2015; 5(4): 268-80.
[http://dx.doi.org/10.1556/1886.2015.00031] [PMID: 26716015]
[96]
Li Y, Liu B, Guo J, et al. L-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorption. Future Microbiol 2019; 14(9): 757-71.
[http://dx.doi.org/10.2217/fmb-2019-0051] [PMID: 31271063]
[97]
Nicol M, Mlouka MAB, Berthe T, et al. Anti-persister activity of squalamine against Acinetobacter baumannii. Int J Antimicrob Agents 2019; 53(3): 337-42.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.004] [PMID: 30423343]
[98]
Koeva M, Gutu AD, Hebert W, et al. An antipersister strategy for treatment of chronic Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2017; 61(12): e00987-17.
[http://dx.doi.org/10.1128/AAC.00987-17] [PMID: 28923873]
[99]
Manoharan RK, Mahalingam S, Gangadaran P, Ahn YH. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids Surf B Biointerfaces 2020; 188: 110825.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110825] [PMID: 32006909]
[100]
Tkhilaishvili T, et al. Evaluation of Sb-1 bacteriophage activity in enhancing antibiotic efficacy against biofilm, degrading the exopolysaccharide matrix and targeting persister cells of Staphylococcus aureus. bioRxiv 2018; 312736.
[http://dx.doi.org/10.1101/312736]
[101]
Oppezzo OJ, Forte Giacobone AF. Lethal effect of photodynamic treatment on persister bacteria. Photochem Photobiol 2018; 94(1): 186-9.
[http://dx.doi.org/10.1111/php.12843] [PMID: 28881420]
[102]
Grassi L, Di Luca M, Maisetta G, et al. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front Microbiol 2017; 8: 1917.
[http://dx.doi.org/10.3389/fmicb.2017.01917] [PMID: 29046671]
[103]
Abouelhassan Y, Basak A, Yousaf H, Huigens RW III. Identification of N-Arylated NH125 analogues as rapid eradicating agents against MRSA persister cells and potent biofilm killers of gram-positive pathogens. ChemBioChem 2017; 18(4): 352-7.
[http://dx.doi.org/10.1002/cbic.201600622] [PMID: 27925693]
[104]
Defraine V, Schuermans J, Grymonprez B, et al. Efficacy of artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60(6): 3480-8.
[http://dx.doi.org/10.1128/AAC.00285-16] [PMID: 27021321]
[105]
Starkey M, Lepine F, Maura D, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 2014; 10(8): e1004321.
[http://dx.doi.org/10.1371/journal.ppat.1004321] [PMID: 25144274]
[106]
Uppu DSSM, Konai MM, Sarkar P, et al. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria. PLoS One 2017; 12(8): e0183263.
[http://dx.doi.org/10.1371/journal.pone.0183263] [PMID: 28837596]
[107]
Choudhary GS, Yao X, Wang J, Peng B, Bader RA, Ren D. Human granulocyte macrophage colony-stimulating factor enhances antibiotic susceptibility of Pseudomonas aeruginosa persister cells. Sci Rep 2015; 5(1): 17315.
[http://dx.doi.org/10.1038/srep17315] [PMID: 26616387]
[108]
Jiafeng L, Fu X, Chang Z. Hypoionic shock treatment enables aminoglycosides antibiotics to eradicate bacterial persisters. Sci Rep 2015; 5(1): 14247.
[http://dx.doi.org/10.1038/srep14247] [PMID: 26435063]
[109]
Yang H, Bi Y, Shang X, et al. Antibiofilm activities of a novel chimeolysin against Streptococcus mutans under physiological and cariogenic conditions. Antimicrob Agents Chemother 2016; 60(12): 7436-43.
[http://dx.doi.org/10.1128/AAC.01872-16] [PMID: 27736755]
[110]
Shan Y, Lazinski D, Rowe S, Camilli A, Lewis K. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio 2015; 6(2): e00078.
[111]
Amison RT, Faure ME, O’Shaughnessy BG, et al. The small quinolone derived compound HT61 enhances the effect of tobramycin against Pseudomonas aeruginosa in vitro and in vivo. Pulm Pharmacol Ther 2020; 61: 101884.
[http://dx.doi.org/10.1016/j.pupt.2019.101884] [PMID: 31887372]
[112]
Cui P, Niu H, Shi W, et al. Disruption of membrane by colistin kills uropathogenic Escherichia coli persisters and enhances killing of other antibiotics. Antimicrob Agents Chemother 2016; 60(11): 6867-71.
[http://dx.doi.org/10.1128/AAC.01481-16] [PMID: 27600051]
[113]
Fleck LE, North EJ, Lee RE, Mulcahy LR, Casadei G, Lewis K. A screen for and validation of prodrug antimicrobials. Antimicrob Agents Chemother 2014; 58(3): 1410-9.
[http://dx.doi.org/10.1128/AAC.02136-13] [PMID: 24342644]
[114]
Mukherjee D, Zou H, Liu S, Beuerman R, Dick T. Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol 2016; 11(5): 643-50.
[http://dx.doi.org/10.2217/fmb-2015-0015] [PMID: 27158932]
[115]
Feng J, Zhang S, Shi W, Zubcevik N, Miklossy J, Zhang Y. Selective essential oils from spice or culinary herbs have high activity against stationary phase and biofilm Borrelia burgdorferi. Front Med (Lausanne) 2017; 4: 169.
[http://dx.doi.org/10.3389/fmed.2017.00169] [PMID: 29075628]
[116]
Gavrish E, Sit CS, Cao S, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosisby targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 2014; 21(4): 509-18.
[http://dx.doi.org/10.1016/j.chembiol.2014.01.014] [PMID: 24684906]
[117]
Bryk R, Gold B, Venugopal A, et al. Selective killing of nonreplicating mycobacteria. Cell Host Microbe 2008; 3(3): 137-45.
[http://dx.doi.org/10.1016/j.chom.2008.02.003] [PMID: 18329613]
[118]
Moreira W, Aziz DB, Dick T. Boromycin kills mycobacterial persisters without detectable resistance. Front Microbiol 2016; 7: 199.
[http://dx.doi.org/10.3389/fmicb.2016.00199] [PMID: 26941723]
[119]
Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosisin a series of in vitro and in vivo models. Antimicrob Agents Chemother 2005; 49(6): 2294-301.
[http://dx.doi.org/10.1128/AAC.49.6.2294-2301.2005] [PMID: 15917524]
[120]
Singh R, Manjunatha U, Boshoff HIM, et al. PA-824 kills nonreplicating Mycobacterium tuberculosisby intracellular NO release. Science 2008; 322(5906): 1392-5.
[http://dx.doi.org/10.1126/science.1164571] [PMID: 19039139]
[121]
Wang F, Sambandan D, Halder R, et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci USA 2013; 110(27): E2510-7.
[http://dx.doi.org/10.1073/pnas.1309171110] [PMID: 23776209]
[122]
Sun F, Li Z, Bian M, et al. 5-Methylindole potentiates aminoglycoside against gram-positive bacteria including Staphylococcus aureus persisters under hypoionic conditions. Front Cell Infect Microbiol 2020; 10: 84.
[123]
Zhao Y, Lv B, Sun F, et al. Rapid freezing enables aminoglycosides to eradicate bacterial persisters via enhancing mechanosensitive channel mscl-mediated antibiotic uptake. mBio 2020; 11(1): e03239.
[http://dx.doi.org/10.1128/mBio.03239-19] [PMID: 32047133]
[124]
Le P, Kunold E, Macsics R, et al. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat Chem 2020; 12(2): 145-58.
[http://dx.doi.org/10.1038/s41557-019-0378-7] [PMID: 31844194]
[125]
Zou G, Pan W, Kim W, et al. The neutrally charged diarylurea compound PQ401 kills antibiotic-resistant and antibiotic-tolerant Staphylococcus aureus. mBio 2020; 11(3): e01140.
[http://dx.doi.org/10.1128/mBio.01140-20] [PMID: 32605985]
[126]
Liu Y, et al. Cysteine potentiates bactericidal antibiotics activity against gram-negative bacterial persisters 2020; 13: 2593.
[PMID: 32801796]
[127]
Lu K, Hou W, Xu XY, et al. Biological evaluation and chemoproteomics reveal potential antibacterial targets of a cajaninstilbene-acid analogue. Eur J Med Chem 2020; 188: 112026.
[http://dx.doi.org/10.1016/j.ejmech.2019.112026] [PMID: 31918072]
[128]
Berditsch M, Afonin S, Reuster J, et al. Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep 2019; 9(1): 17938.
[http://dx.doi.org/10.1038/s41598-019-54212-z] [PMID: 31784584]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy