Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

The Implications of Telomere Length: Advanced Aging, Cell Senescence, MRI Phenotypes, Stem Cells and Alzheimer’s Disease

Author(s): Kenneth Maiese*

Volume 20, Issue 2, 2023

Published on: 10 May, 2023

Page: [171 - 174] Pages: 4

DOI: 10.2174/1567202620666230510150337

Price: $65

Next »
[1]
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the causal relationship between telomere biology and alzheimer’s disease. Mol Neurobiol 2023; 60: 4169-83.
[2]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: a multifactorial strategy to target alzheimer’s disease. Int J Mol Sci 2019; 20(20): 5090.
[3]
Cardoso S, López IP, Piñeiro-Hermida S, Pichel JG, Moreira PI. IGF1R deficiency modulates brain signaling pathways and disturbs mitochondria and redox homeostasis. Biomedicines 2021; 9(2): 158.
[4]
De Bonis ML, Ortega S, Blasco MA. SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Reports 2014; 2(5): 690-706.
[5]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 2021; 17(1): 1-382.
[6]
Shafi O. Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review. BMC Neurol 2016; 16(1): 236.
[7]
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a target for the prevention of arterial aging: promises and challenges. J Cardiovasc Pharmacol 2021; 78 (Suppl. 6): S63-s77.
[8]
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, et al. Non-coding RNAs steering the senescence-related progress, properties, and application of mesenchymal stem cells. Front Cell Dev Biol 2021; 9: 650431.
[9]
Dorvash M, Farahmandnia M, Tavassoly I. A systems biology roadmap to decode mtor control system in cancer. Interdiscip Sci 2020; 12(1): 1-11.
[10]
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, et al. Innate immunity in diabetic wound healing: focus on the mastermind hidden in chronic inflammatory. Front Pharmacol 2021; 12: 653940.
[11]
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and nuclear dna oxidative damage in physiological and pathological aging. DNA Cell Biol 2020; 39(8): 1410-20.
[12]
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2020; 77(4): 651-63.
[13]
Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 2014; 9(15): 1413-7.
[14]
Maiese K. Stem cell guidance through the mechanistic target of rapamycin. World J Stem Cells 2015; 7(7): 999-1009.
[15]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[16]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[17]
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem Int 2022; 155: 105311.
[18]
Tabibzadeh S. Signaling pathways and effectors of aging. Front Biosci (Landmark edition) 2021; 26: 50-96.
[19]
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, et al. Key signaling pathways in aging and potential interventions for healthy aging. Cells 2021; 10(3): 660.
[20]
Zhang GZ, Deng YJ, Xie QQ, Ren EH, Ma ZJ, He XG, et al. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta 2020; 508: 33-42.
[21]
Zhou J, Chen H, Wang Q, Chen S, Wang R, Wang Z, et al. Sirt1 overexpression improves senescence-associated pulmonary fibrosis induced by vitamin D deficiency through downregulating IL-11 transcription. Aging Cell 2022; 21(8): e13680.
[22]
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[23]
Maiese K. Disease onset and aging in the world of circular RNAs. J Transl Sci 2016; 2(6): 327-9.
[24]
Maiese K. Novel Stem Cell Strategies with mTOR Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies. Hoboken, New Jersey: Academic Press 2016; pp. 3-22.
[25]
Watroba M, Szukiewicz D. Sirtuins at the service of healthy longevity. Front Physiol 2021; 12: 724506.
[26]
Chen Z, He Y, Hu F, Li M, Yao Y. Genkwanin alleviates mitochondrial dysfunction and oxidative stress in a murine model of experimental colitis: the participation of sirt1. Ann Clin Lab Sci 2022; 52(2): 301-13.
[27]
Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting alpha-synuclein as a therapy for parkinson’s disease. Front Mol Neurosci 2019; 12: 299.
[28]
Gallyas F Jr, Sumegi B, Szabo C. Role of Akt activation in parp inhibitor resistance in cancer. Cancers 2020; 12(3): 532.
[29]
Groen CM, Podratz JL, Pathoulas J, Staff N, Windebank AJ. Genetic reduction of mitochondria complex i subunits is protective against cisplatin-induced neurotoxicity in drosophila. J Neurosci 2021; 42(5): 922-37.
[30]
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, et al. Roles of α‐synuclein in gastrointestinal microbiome dysbiosis‐related Parkinson’s disease progression. Mol Med Rep (Review) 2021; 24(4): 1-4.
[31]
Li N, Yue L, Wang J, Wan Z, Bu W. MicroRNA-24 alleviates isoflurane-induced neurotoxicity in rat hippocampus via attenuation of oxidative stress. Biochem Cell Biol 2020; 98(2): 208-18.
[32]
Li X, Feng Y, Wang XX, Truong D, Wu YC. The critical role of sirt1 in parkinson’s disease: mechanism and therapeutic considerations. Aging Dis 2020; 11(6): 1608-22.
[33]
Maiese K. The mechanistic target of rapamycin (mtor): novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[34]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[35]
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199: 105595.
[36]
Odnokoz O, Nakatsuka K, Wright C, Castellanos J, Klichko VI, Kretzschmar D, et al. Mitochondrial redox signaling is critical to the normal functioning of the neuronal system. Front Cell Dev Biol 2021; 9: 613036.
[37]
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116: 102012.
[38]
Oliveira ALL, Santos GGL, Espirito-Santo RF, Silva GSA, Evangelista AF, Silva DN, et al. Reestablishment of redox homeostasis in the nociceptive primary afferent as a mechanism of antinociception promoted by mesenchymal stem/stromal cells in oxaliplatin-induced chronic peripheral neuropathy. Stem Cells Int 2021; 2021: 8815206.
[39]
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: a promising model to assess oxidative stress-induced Central Nervous System damage. Dev Neurobiol 2021; 81(5): 653-70.
[40]
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169: 382-96.
[41]
Piao S, Lee I, Jin SA, Kim S, Nagar H, Choi SJ, et al. SIRT1 activation attenuates the cardiac dysfunction induced by endothelial cell-specific deletion of CRIF1. Biomedicines 2021; 9(1): 52.
[42]
Prasuhn J, Brüggemann N. Genotype-driven therapeutic developments in Parkinson’s disease. Mol Med 2021; 27(1): 42.
[43]
Xiong J, Bonney S, Gonçalves RV, Esposito D. Brassinosteroids control the inflammation, oxidative stress and cell migration through the control of mitochondrial function on skin regeneration. Life Sci 2022; 307: 120887.
[44]
Zhuang X, Ma J, Xu G, Sun Z. SHP-1 knockdown suppresses mitochondrial biogenesis and aggravates mitochondria-dependent apoptosis induced by all trans retinal through the STING/AMPK pathways. Mol Med 2022; 28(1): 125.
[45]
Raut SK, Khullar M. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478(1): 185-96.
[46]
Wang R, Zhu Y, Qin LF, Xu ZG, Gao XR, Liu CB, et al. Comprehensive bibliometric analysis of stem cell research in alzheimer’s disease from 2004 to 2022. Dement Geriatr Cogn Disord 2023; 52(2): 47-73.
[47]
Lai KY, Webster C, Kumari S, Gallacher JEJ, Sarkar C. The associations of socioeconomic status with incident dementia and Alzheimer’s disease are modified by leucocyte telomere length: a population-based cohort study. Sci Rep 2023; 13(1): 6163.
[48]
Topiwala A, Nichols TE, Williams LZJ, Robinson EC, Alfaro-Almagro F, Taschler B, et al. Telomere length and brain imaging phenotypes in UK Biobank. PLoS One 2023; 18(3): e0282363.
[49]
Hua K, Li T, He Y, Guan A, Chen L, Gao Y, et al. Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection. Virulence 2023; 14(1): 2171636.
[50]
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH, et al. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer’s disease. Transl Neurodegener 2023; 12(1): 1.
[51]
Maiese K. Peripheral neuropathy: an early indication for systemic disease that involves the mechanistic target of rapamycin (mtor). Curr Neurovasc Res 2023; 20(1): 1-4.
[52]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[53]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[54]
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR signaling disruption and its association with the development of autism spectrum disorder. Molecules 2023; 28(4): 1889.
[55]
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, et al. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22(1): 284.
[56]
Casciano F, Zauli E, Rimondi E, Mura M, Previati M, Busin M, et al. The role of the mTOR pathway in diabetic retinopathy. Front Med (Lausanne) 2022; 9: 973856.
[57]
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152: 113208.
[58]
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Loera-Arias MJ, Saucedo-Cardenas O, Montes de Oca-Luna R, et al. Peripheral tissular analysis of rapamycin’s effect as a neuroprotective agent in vivo. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(10): 1239-55.
[59]
Kim SH, Yu HS, Huh S, Kang UG, Kim YS. Electroconvulsive seizure inhibits the mTOR signaling pathway via AMPK in the rat frontal cortex. Psychopharmacology 2022; 239(2): 443-54.
[60]
Kirchenwitz M, Stahnke S, Grunau K, Melcher L, van Ham M, Rottner K, et al. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Sci Rep 2022; 12(1): 17805.
[61]
Liu D, Zhang M, Tian J, Gao M, Liu M, Fu X, et al. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J Hypertens 2022; 40(9): 1666-81.
[62]
Liu Y, Xu Y, Yu M. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer’s disease. Exp Ther Med 2022; 23(3): 241.
[63]
Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M, et al. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40(3): 232-47.
[64]
Pinchera B, Scotto R, Buonomo AR, Zappulo E, Stagnaro F, Gallicchio A, et al. Diabetes and COVID-19: The potential role of mTOR. Diabetes Res Clin Pract 2022; 186: 109813.
[65]
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22(1): 105.
[66]
Temiz-Resitoglu M, Guden DS, Senol SP, Vezir O, Sucu N, Kibar D, et al. Pharmacological inhibition of mammalian target of rapamycin attenuates deoxycorticosterone acetate salt-induced hypertension and related pathophysiology: regulation of oxidative stress, inflammation, and cardiovascular hypertrophy in male rats. J Cardiovasc Pharmacol 2022; 79(3): 355-67.
[67]
Wu Z, Li H, Zhang Y, Ding C, Zhao W, Dai J, et al. Liver transcriptome analyses of acute poisoning and recovery of male ICR mice exposed to the mushroom toxin α-amanitin. Arch Toxicol 2022; 96(6): 1751-66.
[68]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[69]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[70]
Maiese K. Cognitive impairment and dementia: gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[71]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front Biosci (Landmark edition) 2021; 26(9): 614-27.
[72]
Chung CL, Lawrence I, Hoffman M, Elgindi D, Nadhan K, Potnis M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience 2019; 41: 6.
[73]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[74]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[75]
Maiese K. Nicotinamide: oversight of metabolic dysfunction through sirt1, mtor, and clock genes. Curr Neurovasc Res 2020; 17(5): 765-83.
[76]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16(1): 44.
[77]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic pathways and alzheimer’s disease: probing therapeutic potential. Neurochem Res 2021; 46: 3103-22.
[78]
Wang H, Li Q, Sun S, Chen S. Neuroprotective effects of salidroside in a mouse model of alzheimer’s disease. Cell Mol Neurobiol 2020; 40: 1133-42.
[79]
Ferrara-Romeo I, Martinez P, Saraswati S, Whittemore K, Graña-Castro O, Thelma Poluha L, et al. The mTOR pathway is necessary for survival of mice with short telomeres. Nat Commun 2020; 11(1): 1168.
[80]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[81]
Hsu YC, Wu YT, Tsai CL, Wei YH. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood) 2018; 243(6): 563-75.
[82]
Kita A, Saito Y, Miura N, Miyajima M, Yamamoto S, Sato T, et al. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5(1): 310.
[83]
Tang YL, Zhang CG, Liu H, Zhou Y, Wang YP, Li Y, et al. Ginsenoside rg1 inhibits cell proliferation and induces markers of cell senescence in cd34+cd38- leukemia stem cells derived from kg1α acute myeloid leukemia cells by activating the Sirtuin 1 (SIRT1)/tuberous sclerosis complex 2 (tsc2) signaling pathway. Med Sci Monit 2020; 26: e918207.
[84]
Yuan X, Liu Y, Bijonowski BM, Tsai AC, Fu Q, Logan TM, et al. NAD(+)/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun Biol 2020; 3(1): 774.
[85]
Adhikari UK, Khan R, Mikhael M, Balez R, David MA, Mahns D, et al. Therapeutic anti-amyloid β antibodies cause neuronal disturbances. Alzheimers Dement 2022; 19(6): 2479-96.
[86]
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015: 569392.
[87]
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer’s disease. Biol Rev Biol Proc 2023; 98(4): 1424-58.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy