Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer

Author(s): Waleed H. Almalki*

Volume 21, Issue 4, 2024

Published on: 15 June, 2023

Page: [509 - 524] Pages: 16

DOI: 10.2174/1567201820666230509101020

Price: $65

conference banner
Abstract

Background: A big health issue facing the world's population is cancer. An alarming increase in cancer patients was anticipated by worldwide demographic statistics, which showed that the number of patients with different malignancies was rapidly increasing. By 2025, probably 420 million cases were projected to be achieved. The most common cancers diagnosed are breast, colorectal, prostate, and lung. Conventional treatments, such as surgery, chemotherapy, and radiation therapy, have been practiced.

Objective: In recent years, the area of cancer therapy has changed dramatically with expanded studies on the molecular-level detection and treatment of cancer. Recent advances in cancer research have seen significant advances in therapies such as chemotherapy and immunotherapy, although both have limitations in effectiveness and toxicity.

Methods: The development of nanotechnology for anticancer drug delivery has developed several potentials as nanocarriers, which may boost the pharmacokinetic and pharmacodynamic effects of the drug product and substantially reduce the side effects.

Results: The advancement in non-viral to viral-based protein-based nanocarriers for treating cancer has earned further recognition in this respect. Many scientific breakthroughs have relied on protein-based nanocarriers, and proteins are essential organic macromolecules for life. It allows targeted delivery of passive or active tumors using non-viral-based protein-based nanocarriers to viral-based protein nanocarriers. When targeting cancer cells, both animal and plant proteins may be used in a formulation process to create self-assembled viruses and platforms that can successfully eradicate metastatic cancer cells.

Conclusion: This review, therefore, explores in depth the applications of non-viral to viral proteinbased noncarriers with a specific focus on intracellular drug delivery and anti-cancer drug targeting ability.

Graphical Abstract

[1]
Sanchez-Garcia, L.; Martín, L.; Mangues, R.; Ferrer-Miralles, N.; Vázquez, E.; Villaverde, A. Recombinant pharmaceuticals from microbial cells: A 2015 update. Microb. Cell Fact., 2016, 15(1), 33.
[http://dx.doi.org/10.1186/s12934-016-0437-3] [PMID: 26861699]
[2]
Shen, J.; Wolfram, J.; Ferrari, M.; Shen, H. Taking the vehicle out of drug delivery. Mater. Today, 2017, 20(3), 95-97.
[http://dx.doi.org/10.1016/j.mattod.2017.01.013] [PMID: 28522922]
[3]
Mangues, R.; Vázquez, E.; Villaverde, A. Targeting in cancer therapies. Med. Sci., 2016, 4(1), 6.
[http://dx.doi.org/10.3390/medsci4010006] [PMID: 29083369]
[4]
Rahman, M.; Al-Ghamdi, S.A.; Alharbi, K.S.; Beg, S.; Sharma, K.; Anwar, F.; Al-Abbasi, F.A.; Kumar, V. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 782-793.
[http://dx.doi.org/10.1080/10717544.2019.1606865] [PMID: 31357897]
[5]
Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Jalees Ahmed, F.; Anwar, F. Advancement in multifunctional nano-particles for the effective treatment of cancer. Expert Opin. Drug Deliv., 2012, 9(4), 367-381.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[6]
Rahman, M.; Zaki Ahmad, M.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Ranjan Sinha, V. Emergence of nanomedicine as cancer targeted magic bullets: Recent development and need to address the toxicity apprehension. Curr. Drug Discov. Technol., 2012, 9(4), 319-329. [b]
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[7]
Pandey, P.; Rahman, M.; Bhatt, P.C.; Beg, S.; Paul, B.; Hafeez, A.; Al-Abbasi, F.A.; Nadeem, M.S.; Baothman, O.; Anwar, F.; Kumar, V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 2018, 13(8), 849-870.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[8]
Aneja, P.; Rahman, M.; Beg, S.; Aneja, S.; Dhingra, V.; Chugh, R. Cancer targeted magic bullets for effective treatment of cancer. Recent Patents Anti-Infect. Drug Disc., 2015, 9(2), 121-135.
[http://dx.doi.org/10.2174/1574891X10666150415120506] [PMID: 25876849]
[9]
Rahman, M.; Kumar, V.; Beg, S.; Sharma, G.; Katare, O.P.; Anwar, F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1597-1608.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[10]
Ahmad, J.; Amin, S.; Rahman, M.; Rub, R.; Singhal, M.; Ahmad, M.; Rahman, Z.; Addo, R.; Ahmad, F.; Mushtaq, G.; Kamal, M.; Akhter, S. Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: Applications and pharmacokinetics. Curr. Drug Metab., 2015, 16(8), 633-644.
[http://dx.doi.org/10.2174/1389200216666150812122128] [PMID: 26264206]
[11]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Amin, S.; Rahman, M.; Ahmad, M.Z.; Rizvi, M.A.; Kamal, M.A.; Ahmad, F.J. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl., 2015, 8(8), 55-66.
[PMID: 26640374]
[12]
Hawkins, M.J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev., 2008, 60(8), 876-885.
[http://dx.doi.org/10.1016/j.addr.2007.08.044] [PMID: 18423779]
[13]
Hedayati, R.; Jahanshahi, M.; Attar, H. Fabrication and characterization of albumin-acacia nanoparticles based on complex coacervation as potent nanocarrier. J. Chem. Technol. Biotechnol., 2012, 87(10), 1401-1408.
[http://dx.doi.org/10.1002/jctb.3758]
[14]
Sharma, A.; Kaur, A.; Jain, U.K.; Chandra, R.; Madan, J. Stealth recombinant human serum albumin nanoparticles conjugating 5-fluorouracil augmented drug delivery and cytotoxicity in human colon cancer, HT-29 cells. Colloids Surf. B Biointerfaces, 2017, 155, 200-208.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.020] [PMID: 28431329]
[15]
Bayer, I.S. Advances in fibrin-based materials in wound repair: A Review. Molecules, 2022, 27(14), 4504.
[http://dx.doi.org/10.3390/molecules27144504] [PMID: 35889381]
[16]
Breen, A.; O’Brien, T.; Pandit, A. Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng. Part B Rev., 2009, 15(2), 201-214.
[http://dx.doi.org/10.1089/ten.teb.2008.0527] [PMID: 19249942]
[17]
Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv. Protein Chem. Struct. Biol., 2015, 98, 121-143.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.002] [PMID: 25819278]
[18]
Fanciullino, R.; Ciccolini, J.; Milano, G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs. Crit. Rev. Oncol. Hematol., 2013, 88(3), 504-513.
[http://dx.doi.org/10.1016/j.critrevonc.2013.06.010] [PMID: 23871532]
[19]
Kim, B.; Seo, B.; Park, S.; Lee, C.; Kim, J.O.; Oh, K.T.; Lee, E.S.; Choi, H.G.; Youn, Y.S. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids Surf. B Biointerfaces, 2017, 158, 157-166.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.039] [PMID: 28688365]
[20]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[21]
Bansal, A.; Kapoor, D.; Kapil, R.; Chhabra, N.; Dhawan, S. Design and development of paclitaxel-loaded bovine serum albumin nanoparti-cles for brain targeting. Acta Pharm., 2011, 61(2), 141-156.
[http://dx.doi.org/10.2478/v10007-011-0012-8] [PMID: 21684843]
[22]
Lee, S. Human serum albumin: A nanomedicine platform targeting breast cancer cells. J. Drug Deliv. Sci. Technol., 2019, 52, 652-659.
[http://dx.doi.org/10.1016/j.jddst.2019.05.033]
[23]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine, 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[24]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[25]
Rizk, N.; Christoforou, N.; Lee, S. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles. Nanotechnology, 2016, 27(18), 185704.
[http://dx.doi.org/10.1088/0957-4484/27/18/185704] [PMID: 27004512]
[26]
Campbell, I.G.; Jones, T.A.; Foulkes, W.D.; Trowsdale, J. Folate-binding protein is a marker for ovarian cancer. Cancer Res., 1991, 51(19), 5329-5338.
[PMID: 1717147]
[27]
Fenech, M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat. Res., 2012, 733(1-2), 21-33.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.11.003] [PMID: 22093367]
[28]
Zhen, X.; Wang, X.; Xie, C.; Wu, W.; Jiang, X. Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials, 2013, 34(4), 1372-1382.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.061] [PMID: 23158934]
[29]
Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol., 2014, 37(1), 5-20.
[http://dx.doi.org/10.1016/j.tifs.2014.02.008]
[30]
Elzoghby, A.O.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: Formulation, characterization, and in vivo pharmacokinetics. Eur. J. Pharm. Biopharm., 2013, 84(3), 487-496. [a]
[http://dx.doi.org/10.1016/j.ejpb.2013.01.005] [PMID: 23403015]
[31]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm. Res., 2013, 30(2), 512-522. [b]
[http://dx.doi.org/10.1007/s11095-012-0897-z] [PMID: 23135815]
[32]
Elzoghby, A.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Novel ionically crosslinked casein nanoparticles for flutamide delivery: Formula-tion, characterization, and in vivo pharmacokinetics. Int. J. Nanomedicine, 2013, 8, 1721-1732.
[http://dx.doi.org/10.2147/IJN.S40674] [PMID: 23658490]
[33]
Narayanan, S.; Mony, U.; Vijaykumar, D.K.; Koyakutty, M.; Paul-Prasanth, B.; Menon, D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine, 2015, 11(6), 1399-1406.
[http://dx.doi.org/10.1016/j.nano.2015.03.015] [PMID: 25888278]
[34]
Huang, J.; Shu, Q.; Wang, L.; Wu, H.; Wang, A.Y.; Mao, H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 2015, 39, 105-113.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.059] [PMID: 25477177]
[35]
El-Samaligy, M.S.; Rohdewald, P. Reconstituted collagen nanoparticles, a novel drug carrier delivery system. J. Pharm. Pharmacol., 2011, 35(8), 537-539.
[http://dx.doi.org/10.1111/j.2042-7158.1983.tb04831.x] [PMID: 6137547]
[36]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release, 2012, 161(1), 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036] [PMID: 22564368]
[37]
Lam, P.L.; Kok, S.H.L.; Bian, Z.X.; Lam, K.H.; Tang, J.C.O.; Lee, K.K.H.; Gambari, R.; Chui, C.H. d-glucose as a modifying agent in gela-tin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery. Colloids Surf. B Biointerfaces, 2014, 117, 277-283.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.041] [PMID: 24657927]
[38]
Li, D.; He, J.; Cheng, W.; Wu, Y.; Hu, Z.; Tian, H.; Huang, Y. Redox-responsive nanoreservoirs based on collagen end-capped mesoporous hydroxyapatite nanoparticles for targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(36), 6089-6096.
[http://dx.doi.org/10.1039/C4TB00947A] [PMID: 32261861]
[39]
Sahoo, N.; Sahoo, R.K.; Biswas, N.; Guha, A.; Kuotsu, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol., 2015, 81, 317-331.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.006] [PMID: 26277745]
[40]
Yasmin, R.; Shah, M.; Khan, S.A.; Ali, R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol. Rev., 2017, 6(2), 191-207.
[http://dx.doi.org/10.1515/ntrev-2016-0009]
[41]
Morán, M.C.; Rosell, N.; Ruano, G.; Busquets, M.A.; Vinardell, M.P. Gelatin-based nanoparticles as DNA delivery systems: Synthesis, physicochemical and biocompatible characterization. Colloids Surf. B Biointerfaces, 2015, 134, 156-168.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.009] [PMID: 26188853]
[42]
Won, Y.W.; Kim, Y.H. Recombinant human gelatin nanoparticles as a protein drug carrier. J. Control. Release, 2008, 127(2), 154-161.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.010] [PMID: 18329122]
[43]
Mirshahi, T.; Irache, J.M.; Gueguen, J.; Orecchioni, A.M. Development of drug delivery systems from vegetal proteins: Legumin nanoparti-cles. Drug Dev. Ind. Pharm., 1996, 22(8), 841-846.
[http://dx.doi.org/10.3109/03639049609065914]
[44]
Young Lee, G.; Park, K.; Nam, J.H.; Kim, S.Y.; Byun, Y. Anti-tumor and anti-metastatic effects of gelatin-doxorubicin and PEGylated gela-tin-doxorubicin nanoparticles in SCC7 bearing mice. J. Drug Target., 2006, 14(10), 707-716.
[http://dx.doi.org/10.1080/10611860600935701] [PMID: 17162740]
[45]
Kaul, G.; Amiji, M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: In vitro and in vivo studies. Pharm. Res., 2005, 22(6), 951-961.
[http://dx.doi.org/10.1007/s11095-005-4590-3] [PMID: 15948039]
[46]
Perteghella, S.; Crivelli, B.; Catenacci, L.; Sorrenti, M.; Bruni, G.; Necchi, V.; Vigani, B.; Sorlini, M.; Torre, M.L.; Chlapanidas, T. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int. J. Pharm., 2017, 520(1-2), 86-97.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.005] [PMID: 28163224]
[47]
Philipp Seib, F. Silk nanoparticles-an emerging anticancer nanomedicine. AIMS Bioeng., 2017, 4(2), 239-258.
[http://dx.doi.org/10.3934/bioeng.2017.2.239]
[48]
Mishra, D.; Iyyanki, T.S.; Hubenak, J.R.; Zhang, Q.; Mathur, A.B. Silk fibroin nanoparticles and cancer therapy. In: Nanotechnology in Cancer; Micro and Nano Technologies; William Andrew Applied Science Publishers: Norwich, NY, 2017, pp. 19-44.
[49]
Totten, J.D.; Wongpinyochit, T.; Seib, F.P. Silk nanoparticles: Roof of lysosomotropic anticancer drug delivery at single-cell resolution. J. Drug Target., 2017, 25(9-10), 865-872.
[http://dx.doi.org/10.1080/1061186X.2017.1363212] [PMID: 28812388]
[50]
Coburn, J.; Harris, J.; Zakharov, A.D.; Poirier, J.; Ikegaki, N.; Kajdacsy-Balla, A.; Pilichowska, M.; Lyubimov, A.V.; Shimada, H.; Kaplan, D.L.; Chiu, B. Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment. Int. J. Cancer, 2017, 140(3), 726-735.
[http://dx.doi.org/10.1002/ijc.30479] [PMID: 27770551]
[51]
Hu, D.; Xu, Z.; Hu, Z.; Hu, B.; Yang, M.; Zhu, L. PH-triggered charge-reversal silk sericin based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustain. Chem.& Eng., 2017, 5(2), 1638-1647.
[http://dx.doi.org/10.1021/acssuschemeng.6b02392]
[52]
Wang, J.; Yang, S.; Li, C.; Miao, Y.; Zhu, L.; Mao, C.; Yang, M. Nucleation and assembly of silica into protein-based nanocomposites as effective anticancer drug carriers using self-assembled silk protein nanostructures as bio-templates. ACS Appl. Mater. Interfaces, 2017, 9(27), 22259-22267.
[http://dx.doi.org/10.1021/acsami.7b05664] [PMID: 28665103]
[53]
Song, W.; Muthana, M.; Mukherjee, J.; Falconer, R.J.; Biggs, C.A.; Zhao, X. Magnetic-silk core shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater. Sci. Eng., 2017, 3(6), 1027-1038.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00153] [PMID: 33429579]
[54]
Malekzad, H.; Mirshekari, H.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Baniasadi, F.; Sharifi Aghdam, M.; Karimi, M.; Hamblin, M.R. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit. Rev. Biotechnol., 2018, 38(1), 47-67.
[http://dx.doi.org/10.1080/07388551.2017.1312267] [PMID: 28434263]
[55]
Xu, H.; Yang, Y. Nanoparticles derived from plant proteins for controlled release and targeted delivery of therapeutics. Nanomedicine, 2015, 10(13), 2001-2004.
[http://dx.doi.org/10.2217/nnm.15.84] [PMID: 26096671]
[56]
Gulfam, M.; Kim, J.; Lee, J.M.; Ku, B.; Chung, B.H.; Chung, B.G. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir, 2012, 28(21), 8216-8223.
[http://dx.doi.org/10.1021/la300691n] [PMID: 22568862]
[57]
Luo, Y.; Teng, Z.; Wang, T.T.Y.; Wang, Q. Cellular uptake and transport of zein nanoparticles: Effects of sodium caseinate. J. Agric. Food Chem., 2013, 61(31), 7621-7629.
[http://dx.doi.org/10.1021/jf402198r] [PMID: 23859760]
[58]
Weissmueller, N.T.; Lu, H.D.; Hurley, A.; Prud’homme, R.K. Nanocarriers from GRAS zein proteins to encapsulate hydrophobic actives. Biomacromolecules, 2016, 17(11), 3828-3837.
[http://dx.doi.org/10.1021/acs.biomac.6b01440] [PMID: 27744703]
[59]
Liang, H.; Huang, Q.; Zhou, B.; He, L.; Lin, L.; An, Y.; Li, Y.; Liu, S.; Chen, Y.; Li, B. Self-assembled zein-sodium carboxymethyl cellu-lose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(16), 3242-3253.
[http://dx.doi.org/10.1039/C4TB01920B] [PMID: 32262318]
[60]
Liu, G.; Pang, J.; Huang, Y.; Xie, Q.; Guan, G.; Jiang, Y. Self-assembled nanospheres of folate decorated zein for the targeted delivery of 10-hydroxycamptothecin. Ind. Eng. Chem. Res., 2017, 56(30), 8517-8527.
[http://dx.doi.org/10.1021/acs.iecr.7b01632]
[61]
Alqahtani, M.S.; Islam, M.S.; Podaralla, S.; Kaushik, R.S.; Reineke, J.; Woyengo, T.; Perumal, O. Food protein-based core shell nanocarri-ers for oral drug delivery: Effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers. Mol. Pharm., 2017, 14(3), 757-769.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01017] [PMID: 28103046]
[62]
Kim, S.; Kim, D.; Jung, H.H.; Lee, I.H.; Kim, J.I.L.; Suh, J.Y.; Jon, S. Bio-inspired design and potential biomedical applications of a novel class of high-affinity peptides. Angew. Chem. Int. Ed., 2012, 51(8), 1890-1894.
[http://dx.doi.org/10.1002/anie.201107894] [PMID: 22271427]
[63]
Gautam, A.; Kapoor, P.; Chaudhary, K.; Kumar, R. Drug Discovery Consortium. O.; Raghava, G.P.S. Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics. Curr. Med. Chem., 2014, 21(21), 2367-2391.
[http://dx.doi.org/10.2174/0929867321666140217122100] [PMID: 24533809]
[64]
Lu, L.; Qi, H.; Zhu, J.; Sun, W.X.; Zhang, B.; Tang, C.Y.; Cheng, Q. Vascular-homing peptides for cancer therapy. Biomed. Pharmacother., 2017, 92, 187-195.
[http://dx.doi.org/10.1016/j.biopha.2017.05.054] [PMID: 28544932]
[65]
David, A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv. Drug Deliv. Rev., 2017, 119, 120-142.
[http://dx.doi.org/10.1016/j.addr.2017.05.006] [PMID: 28506743]
[66]
Öztürk, K.; Eroğlu, H.; Çalış, S. Novel advances in targeted drug delivery. J. Drug Target., 2018, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[67]
Dardevet, L.; Rani, D.; Aziz, T.; Bazin, I.; Sabatier, J.M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins, 2015, 7(4), 1079-1101.
[http://dx.doi.org/10.3390/toxins7041079] [PMID: 25826056]
[68]
Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 3-12.
[http://dx.doi.org/10.1016/j.addr.2016.03.008] [PMID: 27040947]
[69]
Svensen, N.; Walton, J.G.A.; Bradley, M. Peptides for cell-selective drug delivery. Trends Pharmacol. Sci., 2012, 33(4), 186-192.
[http://dx.doi.org/10.1016/j.tips.2012.02.002] [PMID: 22424670]
[70]
Li, S.; Gray, B.P.; McGuire, M.J.; Brown, K.C. Synthesis and biological evaluation of a peptide-paclitaxel conjugate which targets the integ-rin αvβ6. Bioorg. Med. Chem., 2011, 19(18), 5480-5489.
[http://dx.doi.org/10.1016/j.bmc.2011.07.046] [PMID: 21868241]
[71]
Yu, X.; Jin, C. Application of albumin-based nanoparticles in the management of cancer. J. Mater. Sci. Mater. Med., 2016, 27(1), 4.
[http://dx.doi.org/10.1007/s10856-015-5618-9] [PMID: 26610927]
[72]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[73]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1), e1416.
[http://dx.doi.org/10.1002/wnan.1416] [PMID: 27312983]
[74]
Joerger, M. Treatment regimens of classical and newer taxanes. Cancer Chemother. Pharmacol., 2016, 77(2), 221-233.
[http://dx.doi.org/10.1007/s00280-015-2893-6] [PMID: 26589792]
[75]
Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Chawla, S.; Falchook, G.; Hong, D.; Akcakanat, A.; Chen, H.; Naing, A.; Fu, S.; Wheler, J.; Moulder, S.; Helgason, T.; Li, S.; Elias, I.; Desai, N.; Kurzrock, R. Weekly nab-Rapamycin in patients with advanced nonhematologic ma-lignancies: Final results of a phase I trial. Clin. Cancer Res., 2013, 19(19), 5474-5484.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3110] [PMID: 24089446]
[76]
Wang, Y.; Liu, J.; Zhang, J.; Wang, L.; Chan, J.; Wang, H.; Jin, Y.; Yu, L.; Grainger, D.W.; Ying, W. A cell-based pharmacokinetics assay for evaluating tubulin-binding drugs. Int. J. Med. Sci., 2014, 11(5), 479-487.
[http://dx.doi.org/10.7150/ijms.8340] [PMID: 24688312]
[77]
Schütz, C.A.; Juillerat-Jeanneret, L.; Mueller, H.; Lynch, I.; Riediker, M. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine, 2013, 8(3), 449-467.
[http://dx.doi.org/10.2217/nnm.13.8] [PMID: 23477336]
[78]
Xu, L.; Tremblay, M.L.; Orrell, K.E.; Leclerc, J.; Meng, Q.; Liu, X.Q.; Rainey, J.K. Nanoparticle self-assembly by a highly stable recombi-nant spider wrapping silk protein subunit. FEBS Lett., 2013, 587(19), 3273-3280.
[http://dx.doi.org/10.1016/j.febslet.2013.08.024] [PMID: 23994530]
[79]
Wang, Y.; Zhang, L.; Guo, S.; Hatefi, A.; Huang, L. Incorporation of histone derived recombinant protein for enhanced disassembly of core-membrane structured liposomal nanoparticles for efficient siRNA delivery. J. Control. Release, 2013, 172(1), 179-189.
[80]
Majidi, A.; Nikkhah, M.; Sadeghian, F.; Hosseinkhani, S. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo. Eur. J. Pharm. Biopharm., 2016, 107, 191-204.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.017] [PMID: 27368745]
[81]
Kotcherlakota, R.; Srinivasan, D.J.; Mukherjee, S.; Haroon, M.M.; Dar, G.H.; Venkatraman, U.; Patra, C.R.; Gopal, V. Engineered fusion protein-loaded gold nanocarriers for targeted co-delivery of doxorubicin and erbB2-siRNA in human epidermal growth factor receptor-2+ ovarian cancer. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 7082-7098.
[http://dx.doi.org/10.1039/C7TB01587A] [PMID: 32263899]
[82]
Ahmad, E.; Fatima, M.T.; Hoque, M.; Owais, M.; Saleemuddin, M. Fibrin matrices: The versatile therapeutic delivery systems. Int. J. Biol. Macromol., 2015, 81, 121-136.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.054] [PMID: 26231328]
[83]
Park, M.S.; Kim, Y.B. Sustained release of antibiotic from a fibrin-gelatin-antibiotic mixture. Laryngoscope, 1997, 107(10), 1378-1381.
[http://dx.doi.org/10.1097/00005537-199710000-00016] [PMID: 9331317]
[84]
Kumar, T.R.S.; Vasantha Bai, M.; Krishnan, L.K. A freeze-dried fibrin disc as a biodegradable drug release matrix. Biologicals, 2004, 32(1), 49-55.
[http://dx.doi.org/10.1016/j.biologicals.2003.11.002] [PMID: 15026025]
[85]
Sharma, R.; Smits, I.P.M.; De La Vega, L.; Lee, C.; Willerth, S.M. 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front. Bioeng. Biotechnol., 2020, 8, 57.
[http://dx.doi.org/10.3389/fbioe.2020.00057] [PMID: 32117936]
[86]
Viale, M.; Monticone, M.; Maric, I.; Giglio, V.; Profumo, A.; Aprile, A.; Cilli, M.; Abelmoschi, M.L.; Rocco, M. Characterization of drug release from fibrin gels loaded with different pharmaceutical and experimental doxorubicin formulations. Pharmacol. Rep., 2018, 70(4), 760-765.
[http://dx.doi.org/10.1016/j.pharep.2018.02.014] [PMID: 29936363]
[87]
McCormick, F. Cancer gene therapy: Fringe or cutting edge? Nat. Rev. Cancer, 2001, 1(2), 130-141.
[http://dx.doi.org/10.1038/35101008] [PMID: 11905804]
[88]
Zhang, W.W.; Li, L.; Li, D.; Liu, J.; Li, X.; Li, W.; Xu, X.; Zhang, M.J.; Chandler, L.A.; Lin, H.; Hu, A.; Xu, W.; Lam, D.M.K. The first approved gene therapy product for cancer Ad-p53 (gendicine): 12 years in the clinic. Hum. Gene Ther., 2018, 29(2), 160-179.
[http://dx.doi.org/10.1089/hum.2017.218] [PMID: 29338444]
[89]
Rosenberg, S.A.; Yang, J.C.; Restifo, N.P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med., 2004, 10(9), 909-915.
[http://dx.doi.org/10.1038/nm1100] [PMID: 15340416]
[90]
Shore, N.D.; Boorjian, S.A.; Canter, D.J.; Ogan, K.; Karsh, L.I.; Downs, T.M.; Gomella, L.G.; Kamat, A.M.; Lotan, Y.; Svatek, R.S.; Bi-valacqua, T.J.; Grubb, R.L., III; Krupski, T.L.; Lerner, S.P.; Woods, M.E.; Inman, B.A.; Milowsky, M.I.; Boyd, A.; Treasure, F.P.; Gregory, G.; Sawutz, D.G.; Yla-Herttuala, S.; Parker, N.R.; Dinney, C.P.N. Intravesical rAd-IFNalpha/Syn3 for patients with high grade, bacillus Calmette-Guerin-refractory or relapsed nonmuscle-invasive bladder cancer: A phase II randomized study. J. Clin. Oncol., 2017, 35(30), 3410-3416.
[http://dx.doi.org/10.1200/JCO.2017.72.3064] [PMID: 28834453]
[91]
Antonarakis, E.S. Combining active immunotherapy with immune checkpoint blockade for the treatment of advanced prostate cancer. Asian J. Androl., 2012, 14(4), 520-521.
[http://dx.doi.org/10.1038/aja.2012.45] [PMID: 22580638]
[92]
Larocca, C.; Schlom, J. Viral vector-based therapeutic cancer vaccines. Cancer J., 2011, 17(5), 359-371.
[http://dx.doi.org/10.1097/PPO.0b013e3182325e63] [PMID: 21952287]
[93]
Twumasi-Boateng, K.; Pettigrew, J.L.; Kwok, Y.Y.E.; Bell, J.C.; Nelson, B.H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer, 2018, 18(7), 419-432.
[http://dx.doi.org/10.1038/s41568-018-0009-4] [PMID: 29695749]
[94]
Pol, J.; Kroemer, G.; Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. OncoImmunology, 2016, 5(1), e1115641.
[http://dx.doi.org/10.1080/2162402X.2015.1115641] [PMID: 26942095]
[95]
Desjardins, A.; Gromeier, M.; Herndon, J.E., II; Beaubier, N.; Bolognesi, D.P.; Friedman, A.H.; Friedman, H.S.; McSherry, F.; Muscat, A.M.; Nair, S.; Peters, K.B.; Randazzo, D.; Sampson, J.H.; Vlahovic, G.; Harrison, W.T.; McLendon, R.E.; Ashley, D.; Bigner, D.D. Recur-rent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med., 2018, 379(2), 150-161.
[http://dx.doi.org/10.1056/NEJMoa1716435] [PMID: 29943666]
[96]
Beck, A.; Reichert, J.M. Antibody-drug conjugates. MAbs, 2014, 6(1), 15-17.
[http://dx.doi.org/10.4161/mabs.27436] [PMID: 24423577]
[97]
Norsworthy, K.J.; Ko, C.W.; Lee, J.E.; Liu, J.; John, C.S.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA approval summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist, 2018, 23(9), 1103-1108.
[http://dx.doi.org/10.1634/theoncologist.2017-0604] [PMID: 29650683]
[98]
Lin, R.D.; Steinmetz, N.F. Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. Nanoscale, 2018, 10(34), 16307-16313.
[http://dx.doi.org/10.1039/C8NR04142C] [PMID: 30129956]
[99]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[100]
Lambert, J.M.; Chari, R.V.J. Ado-trastuzumab Emtansine (T-DM1): An antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964.
[http://dx.doi.org/10.1021/jm500766w] [PMID: 24967516]
[101]
Lamb, Y.N. Inotuzumab Ozogamicin: First global approval. Drugs, 2017, 77(14), 1603-1610.
[http://dx.doi.org/10.1007/s40265-017-0802-5] [PMID: 28819740]
[102]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Resistance to antibody drug conjugates. Cancer Res., 2018, 78(9), 2159-2165.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3671] [PMID: 29653942]
[103]
Andreev, J.; Thambi, N.; Perez Bay, A.E.; Delfino, F.; Martin, J.; Kelly, M.P.; Kirshner, J.R.; Rafique, A.; Kunz, A.; Nittoli, T.; MacDonald, D.; Daly, C.; Olson, W.; Thurston, G. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor im-prove efficacy of HER2 ADCs. Mol. Cancer Ther., 2017, 16(4), 681-693.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0658] [PMID: 28108597]
[104]
Gerber, H.P.; Sapra, P.; Loganzo, F.; May, C. Combining antibody-drug conjugates and immune-mediated cancer therapy: What to expect? Biochem. Pharmacol., 2016, 102, 1-6.
[http://dx.doi.org/10.1016/j.bcp.2015.12.008] [PMID: 26686577]
[105]
Ding, X.; Liu, D.; Booth, G.; Gao, W.; Lu, Y. Virus-like particle engineering: From rational design to versatile applications. Biotechnol. J., 2018, 13(5), 1700324.
[http://dx.doi.org/10.1002/biot.201700324] [PMID: 29453861]
[106]
Pokorski, J.K.; Steinmetz, N.F. The art of engineering viral nanoparticles. Mol. Pharm., 2011, 8(1), 29-43.
[http://dx.doi.org/10.1021/mp100225y] [PMID: 21047140]
[107]
Hartley, J.A. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin. Biol. Ther., 2021, 21(7), 931-943.
[http://dx.doi.org/10.1080/14712598.2020.1776255] [PMID: 32543981]
[108]
Fu, Y.; Urban, D.J.; Nani, R.R.; Zhang, Y.F.; Li, N.; Fu, H.; Shah, H.; Gorka, A.P.; Guha, R.; Chen, L.; Hall, M.D.; Schnermann, M.J.; Ho, M. Glypican‐3‐specific antibody drug conjugates targeting hepatocellular carcinoma. Hepatology, 2019, 70(2), 563-576.
[http://dx.doi.org/10.1002/hep.30326] [PMID: 30353932]
[109]
Schwarz, B.; Uchida, M.; Douglas, T. Biomedical and catalytic opportunities of virus-like particles in nanotechnology. Adv. Virus Res., 2017, 97, 1-60.
[http://dx.doi.org/10.1016/bs.aivir.2016.09.002] [PMID: 28057256]
[110]
Wang, G.; Jia, T.; Xu, X.; Chang, L.; Zhang, R.; Fu, Y.; Li, Y.; Yang, X.; Zhang, K.; Lin, G.; Han, Y.; Li, J. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget, 2016, 7(37), 59402-59416.
[http://dx.doi.org/10.18632/oncotarget.10681] [PMID: 27449085]
[111]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; Brinker, C.J.; Caldeira, J.C.; Chackerian, B.; Wharton, W.; Peabody, D.S. Cell-specific delivery of diverse cargos by bacteriophage MS2 vi-rus-like particles. ACS Nano, 2011, 5(7), 5729-5745.
[http://dx.doi.org/10.1021/nn201397z] [PMID: 21615170]
[112]
Tapia-Moreno, A.; Juarez-Moreno, K.; Gonzalez-Davis, O.; Cadena-Nava, R.D.; Vazquez-Duhalt, R. Biocatalytic virus capsid as nanovehi-cle for enzymatic activation of Tamoxifen in tumor cells. Biotechnol. J., 2017, 12(6), 1600706.
[http://dx.doi.org/10.1002/biot.201600706] [PMID: 28371407]
[113]
Chao, C.N.; Lin, M.C.; Fang, C.Y.; Chen, P.L.; Chang, D.; Shen, C.H.; Wang, M. Gene therapy for human lung adenocarcinoma using a sui-cide gene driven by a lung-specific promoter delivered by JC virus like particles. PLoS One, 2016, 11(6), e0157865.
[http://dx.doi.org/10.1371/journal.pone.0157865] [PMID: 27322500]
[114]
Alemzadeh, E.; Izadpanah, K.; Ahmadi, F. Generation of recombinant protein shells of Johnson grass chlorotic stripe mosaic virus in to-bacco plants and their use as drug carrier. J. Virol. Methods, 2017, 248, 148-153.
[http://dx.doi.org/10.1016/j.jviromet.2017.07.003] [PMID: 28709614]
[115]
Kato, T.; Yui, M.; Deo, V.K.; Park, E.Y. Development of Rous sarcoma virus-like particles displaying hCC49 scFv for specific targeted drug delivery to human colon carcinoma cells. Pharm. Res., 2015, 32(11), 3699-3707.
[http://dx.doi.org/10.1007/s11095-015-1730-2] [PMID: 26047779]
[116]
Deo, V.K.; Kato, T.; Park, E.Y. Virus-like particles displaying recombinant short-chain fragment region and interleukin 2 for targeting colon cancer tumours and attracting macrophages. J. Pharm. Sci., 2016, 105(5), 1614-1622.
[http://dx.doi.org/10.1016/j.xphs.2016.02.011] [PMID: 27037014]
[117]
Zochowska, M.; Piguet, A.C.; Jemielity, J.; Kowalska, J.; Szolajska, E.; Dufour, J.F.; Chroboczek, J. Virus-like particle-mediated intracellu-lar delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine, 2015, 11(1), 67-76.
[http://dx.doi.org/10.1016/j.nano.2014.07.009] [PMID: 25101883]
[118]
Shan, W.; Chen, R.; Zhang, Q.; Zhao, J.; Chen, B.; Zhou, X.; Ye, S.; Bi, S.; Nie, L.; Ren, L. Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis B core particles. Adv. Mater., 2018, 30(28), 1707567.
[http://dx.doi.org/10.1002/adma.201707567] [PMID: 29786899]
[119]
Schwarz, B.; Douglas, T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 722-735.
[http://dx.doi.org/10.1002/wnan.1336] [PMID: 25677105]
[120]
Lu, Y.; Chan, W.; Ko, B.Y.; VanLang, C.C.; Swartz, J.R. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc. Natl. Acad. Sci. USA, 2015, 112(40), 12360-12365.
[http://dx.doi.org/10.1073/pnas.1510533112] [PMID: 26392546]
[121]
Pesarrodona, M.; Crosas, E.; Cubarsi, R.; Sánchez-Chardi, A.; Saccardo, P.; Unzueta, U.; Rueda, F.; Sanchez-García, L.; Serna, N.; Mangues, R.; Ferrer-Miralles, N.; Vázquez, E.; Villaverde, A. Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Nanoscale, 2017, 9(19), 6427-6435.
[http://dx.doi.org/10.1039/C6NR09182B] [PMID: 28463351]
[122]
Li, W.; Jing, Z.; Wang, S.; Li, Q.; Xing, Y.; Shi, H.; Li, S.; Hong, Z. P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials, 2021, 271, 120726.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120726] [PMID: 33636548]
[123]
Lemke-Miltner, C.D.; Blackwell, S.E.; Yin, C.; Krug, A.E.; Morris, A.J.; Krieg, A.M.; Weiner, G.J. Antibody opsonization of a TLR9-agonist-containing virus-like particle enhances in situ immunization. J. Immunol., 2020, 204(5), 1386-1394.
[http://dx.doi.org/10.4049/jimmunol.1900742] [PMID: 31953355]
[124]
Sánchez, J.M.; Sánchez-García, L.; Pesarrodona, M.; Serna, N.; Sánchez-Chardi, A.; Unzueta, U.; Mangues, R.; Vázquez, E.; Villaverde, A. Conformational conversion during controlled oligomerization into nonamylogenic protein nanoparticles. Biomacromolecules, 2018, 19(9), 3788-3797.
[http://dx.doi.org/10.1021/acs.biomac.8b00924] [PMID: 30052033]
[125]
Pesarrodona, M.; Ferrer-Miralles, N.; Unzueta, U.; Gener, P.; Tatkiewicz, W.; Abasolo, I.; Ratera, I.; Veciana, J.; Jr, S.S.; Villaverde, A.; Vazquez, E. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. Int. J. Pharm., 2014, 473(1-2), 286-295.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.016] [PMID: 25019161]
[126]
Unzueta, U.; Céspedes, M.V.; Vázquez, E.; Ferrer-Miralles, N.; Mangues, R.; Villaverde, A. Towards protein-based viral mimetics for can-cer therapies. Trends Biotechnol., 2015, 33(5), 253-258.
[http://dx.doi.org/10.1016/j.tibtech.2015.02.007] [PMID: 25805413]
[127]
Céspedes, M.V.; Unzueta, U.; Aviñó, A.; Gallardo, A.; Álamo, P.; Sala, R.; Sánchez-Chardi, A.; Casanova, I.; Mangues, M.A.; Lopez-Pousa, A.; Eritja, R.; Villaverde, A.; Vázquez, E.; Mangues, R. Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Mol. Med., 2018, 10(10), 8772.
[http://dx.doi.org/10.15252/emmm.201708772] [PMID: 30190334]
[128]
Serna, N.; Sánchez-García, L.; Unzueta, U.; Díaz, R.; Vázquez, E.; Mangues, R.; Villaverde, A. Protein-based therapeutic killing for cancer therapies. Trends Biotechnol., 2018, 36(3), 318-335.
[http://dx.doi.org/10.1016/j.tibtech.2017.11.007] [PMID: 29246477]
[129]
Díaz, R.; Pallarès, V.; Cano-Garrido, O.; Serna, N.; Sánchez-García, L.; Falgàs, A.; Pesarrodona, M.; Unzueta, U.; Sánchez-Chardi, A.; Sánchez, J.M.; Casanova, I.; Vázquez, E.; Mangues, R.; Villaverde, A. Selective CXCR4(+) cancer cell targeting and potent antineoplastic ef-fect by a nanostructured version of recombinant ricin. Small, 2018, 14(26), 1800665.
[http://dx.doi.org/10.1002/smll.201800665] [PMID: 29845742]
[130]
Sánchez-García, L.; Serna, N.; Álamo, P.; Sala, R.; Céspedes, M.V.; Roldan, M.; Sánchez-Chardi, A.; Unzueta, U.; Casanova, I.; Mangues, R.; Vázquez, E.; Villaverde, A. Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. J. Control. Release, 2018, 274, 81-92.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.031] [PMID: 29408658]
[131]
Serna, N.; Céspedes, M.V.; Sánchez-García, L.; Unzueta, U.; Sala, R.; Sánchez-Chardi, A.; Cortés, F.; Ferrer-Miralles, N.; Mangues, R.; Vázquez, E.; Villaverde, A. Peptide-based nanostructured materials with intrinsic proapoptotic activities in CXCR4+ solid tumours. Adv. Funct. Mater., 2017, 27(32), 1700919.
[http://dx.doi.org/10.1002/adfm.201700919]
[132]
Fonseca, D.P.; Khalil, N.M.; Mainardes, R.M. Bovine serum albumin-based nanoparticles containing resveratrol: Characterization and anti-oxidant activity. J. Drug Deliv. Sci. Technol., 2017, 39, 147-155.
[http://dx.doi.org/10.1016/j.jddst.2017.03.017]
[133]
Kim, B.; Lee, C.; Lee, E.S.; Shin, B.S.; Youn, Y.S. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J. Pharmaceut. Sci., 2016, 11(6), 708-714.
[http://dx.doi.org/10.1016/j.ajps.2016.05.005]
[134]
Catanzaro, G.; Curcio, M.; Cirillo, G.; Spizzirri, U.G.; Besharat, Z.M.; Abballe, L.; Vacca, A.; Iemma, F.; Picci, N.; Ferretti, E. Albumin na-noparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. Int. J. Pharm., 2017, 517(1-2), 168-174.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.017] [PMID: 27956195]
[135]
Safavi, M.S.; Shojaosadati, S.A.; Dorkoosh, F.A.; Jo, H.J.; Kwon, Y.; Lee, K.C.; Yang, H.G.; Park, E.J.; Na, D.H. The synthesis of tamoxi-fen-loaded albumin nanoparticles by homogenizers: Optimization and in vitro characterization. J. Drug Deliv. Sci. Technol., 2017, 41, 20-30.
[http://dx.doi.org/10.1016/j.jddst.2017.06.007]
[136]
Gawde, K.A.; Kesharwani, P.; Sau, S.; Sarkar, F.H.; Padhye, S.; Kashaw, S.K.; Iyer, A.K. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. J. Colloid Interface Sci., 2017, 496, 290-299.
[http://dx.doi.org/10.1016/j.jcis.2017.01.092] [PMID: 28236692]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy