Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

A Mini-review on New Developments in Nanocarriers and Polymers for Ophthalmic Drug Delivery Strategies

Author(s): Yash Sharma, Preeti Patel and Balak Das Kurmi*

Volume 21, Issue 4, 2024

Published on: 12 May, 2023

Page: [488 - 508] Pages: 21

DOI: 10.2174/1567201820666230504115446

Price: $65

conference banner
Abstract

The eye is an important and vital organ of the human body consisting of two segments - anterior and posterior segments and these segments are associated with many diseases. This review elaborates upon the various eye-related diseases with their medications and carriers used to deliver them. Delivery strategies include drugs encapsulated into liposomes, polymeric micelles of drugs, solid lipid nanoparticles, nanostructured lipid carriers, nano emulsions, and Nanosuspension used to improve penetrating properties, bioavailability, and residence time of the drugs as examples available in the literature. With regard to this, different forms of ocular drug delivery are classified and elaborated. Additionally, the possibility of addressing the physical and chemical complexities of ocular diseases and how they could be overcome with environmentally stable nanoformulations are briefly discussed. Enhanced drug delivery efficiency with various novel pharmaceuticals along with enhanced uptake by different routes/modes of drug administration. Current advancements in drug carrier systems, i.e., nanocarriers, have shown promise for improving the retention time, drug permeation and prolonging the duration of release of the drug in the ocular site. Bio-degradable polymers investigated for the preparation of nanocarriers for the entrapment of drugs and to enhance the efficacy through improved adherence of tissue in the eye, sustained release measures, enhanced bioavailability, lower toxicity, and targeted delivery is applicable. This review covers the introduction of various nanocarriers and polymers for ocular drug delivery with the purpose of enhancing the absorption, retention and bioavailability of medications in the eye.

Graphical Abstract

[1]
Tkachev, S.Y.; Mitrin, B.I.; Karnaukhov, N.S.; Sadyrin, E.V.; Voloshin, M.V.; Maksimov, A.Y.; Goncharova, A.S.; Lukbanova, E.A.; Zaikina, E.V.; Volkova, A.V.; Khodakova, D.V.; Mindar, M.V.; Yengibarian, M.A.; Protasova, T.P.; Kit, S.O.; Ermakov, A.M.; Chapek, S.V.; Tkacheva, M.S. Visualization of different anatomical parts of the enucleated human eye using X-ray micro-CT imaging. Exp. Eye Res., 2021, 203, 108394.
[http://dx.doi.org/10.1016/j.exer.2020.108394] [PMID: 33310058]
[2]
Allen, L.V. Jr Preservation, sterilization, and sterility testing of ophthalmic preparations. Int. J. Pharm. Compd., 1998, 2(3), 192-195.
[PMID: 23989541]
[3]
Toral, M.A.; Charlesworth, C.T.; Ng, B.; Chemudupati, T.; Homma, S.; Nakauchi, H.; Bassuk, A.G.; Porteus, M.H.; Mahajan, V.B. Investi-gation of Cas9 antibodies in the human eye. Nat. Commun., 2022, 13(1), 1053.
[http://dx.doi.org/10.1038/s41467-022-28674-1] [PMID: 35217666]
[4]
Stryjewski, T.P.; Stefater, J.A.; Eliott, D. Emerging applications for polymers in ophthalmology. Int. Ophthalmol. Clin., 2017, 57(4), 137-149.
[http://dx.doi.org/10.1097/IIO.0000000000000196] [PMID: 28885253]
[5]
Yasuoka, T.; Kawashima, M.; Takahashi, T.; Iwata, A.; Oka, N.; Tanaka, K. Changes in parathyroid hormone receptor binding affinity during egg laying: Implications for calcium homeostasis in chicken. J. Bone Miner. Res., 1996, 11(12), 1913-1920.
[http://dx.doi.org/10.1002/jbmr.5650111212] [PMID: 8970893]
[6]
Baydoun, L.; Furrer, P.; Gurny, R.; Müller-Goymann, C.C. New surface-active polymers for ophthalmic formulations: Evaluation of ocu-lar tolerance. Eur. J. Pharm. Biopharm., 2004, 58(1), 169-175.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.005] [PMID: 15207551]
[7]
Wood, J.M.; Black, A.A. Ocular disease and driving. Clin. Exp. Optom., 2016, 99(5), 395-401.
[http://dx.doi.org/10.1111/cxo.12391] [PMID: 27156178]
[8]
Almeida, H.; Amaral, M.H.; Lobão, P.; Lobo, J.M.S. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic phar-maceutical formulations. Drug Discov. Today, 2014, 19(4), 400-412.
[http://dx.doi.org/10.1016/j.drudis.2013.10.001] [PMID: 24120893]
[9]
Muench, S.; Roellig, M.; Balzani, D. A new method for the in vivo identification of degenerated material property ranges of the human eye: feasibility analysis based on synthetic data. Biomech. Model. Mechanobiol., 2022, 21(2), 401-418.
[http://dx.doi.org/10.1007/s10237-021-01541-6] [PMID: 34928468]
[10]
Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol., 2019, 127(6), 1612-1626.
[http://dx.doi.org/10.1111/jam.14290] [PMID: 31021482]
[11]
Rahman, M.A.; Rabbani, M.; Maruf, M.H.; Islam, A.; Shihavuddin, A.S.M. Characterizing the aging process of the human eye: Tear evap-oration, fluid dynamics, blood flow, and metabolism-based comparative study. BioMed Res. Int., 2022, 2022, 2805402.
[http://dx.doi.org/10.1155/2022/2805402] [PMID: 35372570]
[12]
Lopes, T.J.A.; Simic, M.; Myer, G.D.; Ford, K.R.; Hewett, T.E.; Pappas, E. The effects of injury prevention programs on the biomechanics of landing tasks: A systematic review with meta-analysis. Am. J. Sports Med., 2018, 46(6), 1492-1499.
[http://dx.doi.org/10.1177/0363546517716930] [PMID: 28759729]
[13]
Álvarez-Barrios, A.; Álvarez, L.; García, M.; Artime, E.; Pereiro, R.; González-Iglesias, H. Antioxidant defenses in the human eye: A focus on metallothioneins. Antioxidants, 2021, 10(1), 89.
[http://dx.doi.org/10.3390/antiox10010089] [PMID: 33440661]
[14]
Bonilla, L.; Espina, M.; Severino, P.; Cano, A.; Ettcheto, M.; Camins, A.; García, M.L.; Souto, E.B.; Sánchez-López, E. Lipid nanoparticles for the posterior eye segment. Pharmaceutics, 2021, 14(1), 90.
[http://dx.doi.org/10.3390/pharmaceutics14010090] [PMID: 35056986]
[15]
Boote, C.; Sigal, I.A.; Grytz, R.; Hua, Y.; Nguyen, T.D.; Girard, M.J.A. Scleral structure and biomechanics. Prog. Retin. Eye Res., 2020, 74, 100773.
[http://dx.doi.org/10.1016/j.preteyeres.2019.100773] [PMID: 31412277]
[16]
Ang, J.L.; Collis, S.; Dhillon, B.; Cackett, P. The eye in forensic medicine. Asia-Pac. J. Ophthalmol., 2021, (5), 486-494.
[http://dx.doi.org/10.1097/APO.0000000000000426] [PMID: 34524140]
[17]
Behar-Cohen, F.; Gelizé, E.; Jonet, L.; Lassiaz, P. Anatomie de la rétine. Med. Sci. (Paris), 2020, 36(6-7), 594-599.
[http://dx.doi.org/10.1051/medsci/2020094] [PMID: 32614310]
[18]
Boll, P.F. On the anatomy and physiology of the retina. Vision Res., 1977, 17(11-12), 1249-1265.
[http://dx.doi.org/10.1016/0042-6989(77)90112-2] [PMID: 345608]
[19]
Downie, L.E.; Bandlitz, S.; Bergmanson, J.P.G.; Craig, J.P.; Dutta, D.; Maldonado-Codina, C.; Ngo, W.; Siddireddy, J.S.; Wolffsohn, J.S. BCLA CLEAR-Anatomy and physiology of the anterior eye. Cont. Lens Anterior Eye, 2021, 44(2), 132-156.
[http://dx.doi.org/10.1016/j.clae.2021.02.009] [PMID: 33775375]
[20]
Clippinger, A.J.; Raabe, H.A.; Allen, D.G.; Choksi, N.Y.; van der Zalm, A.J.; Kleinstreuer, N.C.; Barroso, J.; Lowit, A.B. Human-relevant approaches to assess eye corrosion/irritation potential of agrochemical formulations. Cutan. Ocul. Toxicol., 2021, 40(2), 145-167.
[http://dx.doi.org/10.1080/15569527.2021.1910291] [PMID: 33830843]
[21]
Kaplan, H.J. Anatomy and function of the eye. Chem. Immunol. Allergy, 2007, 92, 4-10.
[http://dx.doi.org/10.1159/000099236] [PMID: 17264478]
[22]
Bouffard, M.A. The pupil. Continuum, 2019, 25(5), 1194-1214.
[http://dx.doi.org/10.1212/CON.0000000000000771] [PMID: 31584534]
[23]
Gilger, B.C. Advanced imaging of the equine eye. Vet. Clin. North Am. Equine Pract., 2017, 33(3), 607-626.
[http://dx.doi.org/10.1016/j.cveq.2017.07.006] [PMID: 28985984]
[24]
Parr, T.; Friston, K.J. Active inference and the anatomy of oculomotion. Neuropsychologia, 2018, 111, 334-343.
[http://dx.doi.org/10.1016/j.neuropsychologia.2018.01.041] [PMID: 29407941]
[25]
Fu, Y.S.; Chen, P.R.; Yeh, C.C.; Pan, J.Y.; Kuo, W.C.; Tseng, K.W. Human umbilical mesenchymal stem cell xenografts repair UV-induced photokeratitis in a rat model. Biomedicines, 2022, 10(5), 1125.
[http://dx.doi.org/10.3390/biomedicines10051125] [PMID: 35625862]
[26]
Chueh, K.M.; Hsieh, Y.T.; Chen, H.H.; Ma, I.H.; Huang, S.L. Identification of sex and age from macular optical coherence tomography and feature analysis using deep learning. Am. J. Ophthalmol., 2022, 235, 221-228.
[http://dx.doi.org/10.1016/j.ajo.2021.09.015] [PMID: 34582766]
[27]
Regal, S.; Troughton, J.; Djenizian, T.; Ramuz, M. Biomimetic models of the human eye, and their applications. Nanotechnology, 2021, 32(30), 302001.
[http://dx.doi.org/10.1088/1361-6528/abf3ee] [PMID: 33789258]
[28]
Tubbs, R.S. Anatomy, the eye of medicine. Clin. Anat., 2021, 34(6), 821.
[http://dx.doi.org/10.1002/ca.23766] [PMID: 34259362]
[29]
Franz-Odendaal, T.A. Skeletons of the eye: An evolutionary and developmental perspective. Anat. Rec., 2020, 303(1), 100-109.
[http://dx.doi.org/10.1002/ar.24043] [PMID: 30548203]
[30]
Sugiura, T.; Kaji, Y.; Tanaka, Y. Anatomy of the ciliary sulcus and the optimum site of needle passage for intraocular lens suture fixation in the living eye. J. Cataract Refract. Surg., 2018, 44(10), 1247-1253.
[http://dx.doi.org/10.1016/j.jcrs.2018.07.017] [PMID: 30172566]
[31]
Ugradar, S.; Kang, J.; Kossler, A.L.; Zimmerman, E.; Braun, J.; Harrison, A.R.; Bose, S.; Cockerham, K.; Douglas, R.S. Teprotumumab for the treatment of chronic thyroid eye disease. Eye, 2022, 36(8), 1553-1559.
[http://dx.doi.org/10.1038/s41433-021-01593-z] [PMID: 34244669]
[32]
Douglas, R.S.; Kahaly, G.J.; Ugradar, S.; Elflein, H.; Ponto, K.A.; Fowler, B.T.; Dailey, R.; Harris, G.J.; Schiffman, J.; Tang, R.; Wester, S.; Jain, A.P.; Marcocci, C.; Marinò, M.; Antonelli, A.; Eckstein, A.; Führer-Sakel, D.; Salvi, M.; Sile, S.; Francis-Sedlak, M.; Holt, R.J.; Smith, T.J. Teprotumumab efficacy, safety, and durability in longer-duration thyroid eye disease and re-treatment. Ophthalmology, 2022, 129(4), 438-449.
[http://dx.doi.org/10.1016/j.ophtha.2021.10.017] [PMID: 34688699]
[33]
Patel, A.; Yang, H.; Douglas, R.S. A new era in the treatment of thyroid eye disease. Am. J. Ophthalmol., 2019, 208, 281-288.
[http://dx.doi.org/10.1016/j.ajo.2019.07.021] [PMID: 31377284]
[34]
Bjordal, O.; Norheim, K.B.; Rødahl, E.; Jonsson, R.; Omdal, R. Primary Sjögren’s syndrome and the eye. Surv. Ophthalmol., 2020, 65(2), 119-132.
[http://dx.doi.org/10.1016/j.survophthal.2019.10.004] [PMID: 31634487]
[35]
Skarlis, C.; Raftopoulou, S.; Mavragani, C.P. Sjogren’s syndrome: Recent updates. J. Clin. Med., 2022, 11(2), 399.
[http://dx.doi.org/10.3390/jcm11020399] [PMID: 35054094]
[36]
Chen, Y.; He, Y.S.; Feng, Y.T.; Wu, Z.D.; Wang, J.; Yin, K.J.; Huang, J.X.; Pan, H.F. The effect of air pollution exposure on risk of outpa-tient visits for Sjogren’s syndrome: A time-series study. Environ. Res., 2022, 214(Pt 3), 114017.
[http://dx.doi.org/10.1016/j.envres.2022.114017] [PMID: 35981608]
[37]
Akpek, E.K.; Bunya, V.Y.; Saldanha, I.J. Sjögren’s syndrome: More than just dry eye. Cornea, 2019, 38(5), 658-661.
[http://dx.doi.org/10.1097/ICO.0000000000001865] [PMID: 30681523]
[38]
Ivanov, I.V.; Mappes, T.; Schaupp, P.; Lappe, C.; Wahl, S. Ultraviolet radiation oxidative stress affects eye health. J. Biophotonics, 2018, 11(7), e201700377.
[http://dx.doi.org/10.1002/jbio.201700377] [PMID: 29603665]
[39]
Tian, M.; Yang, J.; Yan, X.; Cao, Y.; Liu, Y.; Lei, Y.; Lv, H. Knockdown of lncRNA TUG1 alleviates diabetic retinal vascular dysfunction through regulating miR-524-5p/FGFR2. Bioengineered, 2022, 13(5), 12661-12672.
[http://dx.doi.org/10.1080/21655979.2022.2075306] [PMID: 35599572]
[40]
Suo, L.; Liu, C.; Zhang, Q.Y.; Yao, M.D.; Ma, Y.; Yao, J.; Jiang, Q.; Yan, B. METTL3-mediated N6 -methyladenosine modification gov-erns pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics, 2022, 12(1), 277-289.
[http://dx.doi.org/10.7150/thno.63441] [PMID: 34987645]
[41]
Abazari, M.A.; Soltani, M.; Kashkooli, F.M. Targeted nano-sized drug delivery to heterogeneous solid tumor microvasculatures: Implica-tions for immunoliposomes exhibiting bystander killing effect. Phys. Fluids, 2023, 35(1), 011905.
[http://dx.doi.org/10.1063/5.0130259]
[42]
Birsner, A.E.; Benny, O.; D’Amato, R.J. The corneal micropocket assay: A model of angiogenesis in the mouse eye. J. Vis. Exp., 2014, 90, 51375.
[43]
Keller, K.E.; Peters, D.M. Pathogenesis of glaucoma: Extracellular matrix dysfunction in the trabecular meshwork‐A review. Clin. Exp. Ophthalmol., 2022, 50(2), 163-182.
[http://dx.doi.org/10.1111/ceo.14027] [PMID: 35037377]
[44]
Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res., 2021, 83, 100916.
[http://dx.doi.org/10.1016/j.preteyeres.2020.100916] [PMID: 33075485]
[45]
Lee, S.S.Y.; Mackey, D.A. Glaucoma-risk factors and current challenges in the diagnosis of a leading cause of visual impairment. Maturitas, 2022, 163, 15-22.
[http://dx.doi.org/10.1016/j.maturitas.2022.05.002] [PMID: 35597227]
[46]
Powell, S.; Irnaten, M.; O’Brien, C. Glaucoma-‘A stiff eye in a stiff body’. Curr. Eye Res., 2023, 48(2), 152-160.
[PMID: 35184623]
[47]
Mylla Boso, A.L.; Gasperi, E.; Fernandes, L.; Costa, V.P.; Alves, M. Impact of ocular surface disease treatment in patients with glaucoma. Clin. Ophthalmol., 2020, 14, 103-111.
[http://dx.doi.org/10.2147/OPTH.S229815] [PMID: 32021074]
[48]
Lee, Y.; Kim, M.; Galor, A. Beyond dry eye: How co-morbidities influence disease phenotype in dry eye disease. Clin. Exp. Optom., 2022, 105(2), 177-185.
[http://dx.doi.org/10.1080/08164622.2021.1962210] [PMID: 34369296]
[49]
Agarwal, P.; Craig, J.P.; Rupenthal, I.D. Formulation considerations for the management of dry eye disease. Pharmaceutics, 2021, 13(2), 207.
[http://dx.doi.org/10.3390/pharmaceutics13020207] [PMID: 33546193]
[50]
Christen, W.G.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Lee, I.M.; Bubes, V.; Friedenberg, G.; Dushkes, R.; Smith, D.; Schaumberg, D.A.; Manson, J.A.M.; Buring, J.E.; Cook, N.R.; Lee, I-M.; Christen, W.G.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; Friedenberg, G.; Ridge, C.; Bubes, V.; Giovannucci, E.L.; Willett, W.C.; Baron, J.; Holick, M.; Hollis, B.; Albert, C.M.; Gold, D.; LeBoff, M.; Okereke, O.; Pradhan, A.; Sesso, H.; Chen, W.; Chandler, P.; Gaziano, J.M.; Demler, O.; Rexrode, K.; Costenbader, K.; Forman, J.; Alexander, E.; Friedman, S.; Katz, J.; Zhang, S.; Lin, J.; Walter, J.; Duszlak, J.; Kalan, K.; MacFadyen, J.; Gomelskaya, N.; Bates, D.; Sarkissian, A.; Breen, M.; Andrade, Y.; Vinayagamoorthy, M.; Li, C.; Kim, E.; Giulianini, F.; Kotler, G.; Van Denburgh, M.; Dushkes, R.; Liu, Y.; Pereira, E.; Johnson, L.F.; Menjin, G.; Liu, L.; Girard, L.; Zeller, S.; Riches, N.; Hasson, K.; Bhang, E.; Revilla, M.; McCarthy, E.; Moran, A.; Halse, K.; Arsenault, L.; Quinn, P.; Grimes, S.; Fitchorov, I.; Schwerin, K.; Curry, S.; Murray, A.; Zhang, A.; Walron-Williams, D.; Weinberg, A.; Pfeffer, C.; Haubourg, M.; Nguyen, V.; Ouellette, H.; Rodriguez, R.; Montgomery, T.; Morse, K.; Guzman, V.; Perry, M.; Weekes, S.; Smith, D.; Clar, A.; Curran, S.; Fonge, Y.; Hibbert, D.; Paine, L.; Royce, K.; Splaine, C.; McMahon, J.; Eldridge, D.; Hand, L.; Inandan, K. RieuWerden, M.; Samuelson, H.; Hrbek, A.; Mele, M.; Bowes, E.; Ryan, M.A.; Camargo, C.; Danik, J.; Thadhani, R.; Wang, T.; Shah, R.C.; Albert, M.A. Efficacy of Marine ω-3 fatty acid supplementation vs. placebo in reducing incidence of dry eye disease in healthy US adults. JAMA Ophthalmol., 2022, 140(7), 707-714.
[http://dx.doi.org/10.1001/jamaophthalmol.2022.1818] [PMID: 35679030]
[51]
Rouen, P.A.; White, M.L. Dry eye disease. Home Healthc. Now, 2018, 36(2), 74-83.
[http://dx.doi.org/10.1097/NHH.0000000000000652] [PMID: 29498987]
[52]
Gayton, J. Etiology, prevalence, and treatment of dry eye disease. Clin. Ophthalmol., 2009, 3, 405-412.
[http://dx.doi.org/10.2147/OPTH.S5555] [PMID: 19688028]
[53]
Brewitt, H.; Sistani, F. Dry eye disease: The scale of the problem. Surv. Ophthalmol., 2001, 45(Suppl. 2), S199-S202.
[http://dx.doi.org/10.1016/S0039-6257(00)00202-2] [PMID: 11587143]
[54]
Neti, N.; Prabhasawat, P.; Chirapapaisan, C.; Ngowyutagon, P. Provocation of dry eye disease symptoms during COVID-19 lockdown. Sci. Rep., 2021, 11(1), 24434.
[http://dx.doi.org/10.1038/s41598-021-03887-4] [PMID: 34952901]
[55]
Papas, E.B. The global prevalence of dry eye disease: A Bayesian view. Ophthalmic Physiol. Opt., 2021, 41(6), 1254-1266.
[http://dx.doi.org/10.1111/opo.12888] [PMID: 34545606]
[56]
Matossian, C.; McDonald, M.; Donaldson, K.E.; Nichols, K.K.; MacIver, S.; Gupta, P.K. Dry eye disease: Consideration for women’s health. J. Womens Health, 2019, 28(4), 502-514.
[http://dx.doi.org/10.1089/jwh.2018.7041] [PMID: 30694724]
[57]
Shah, S.S.; Denham, L.V.; Elison, J.R.; Bhattacharjee, P.S.; Clement, C.; Huq, T.; Hill, J.M. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev. Ophthalmol., 2010, 5(1), 75-93.
[http://dx.doi.org/10.1586/eop.09.70] [PMID: 20305803]
[58]
Shah, T.J.; Conway, M.D.; Peyman, G.A. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clin. Ophthalmol., 2018, 12, 2223-2235.
[http://dx.doi.org/10.2147/OPTH.S165722] [PMID: 30464383]
[59]
Raghava, S.; Hammond, M.; Kompella, U.B. Periocular routes for retinal drug delivery. Expert Opin. Drug Deliv., 2004, 1(1), 99-114.
[http://dx.doi.org/10.1517/17425247.1.1.99] [PMID: 16296723]
[60]
El-Feky, Y.A.; Fares, A.R.; Zayed, G.; El-Telbany, R.F.A.; Ahmed, K.A.; El-Telbany, D.F.A. Repurposing of nifedipine loaded in situ ophthalmic gel as a novel approach for glaucoma treatment. Biomed. Pharmacother., 2021, 142, 112008.
[http://dx.doi.org/10.1016/j.biopha.2021.112008] [PMID: 34385102]
[61]
Ma, B.; Pang, L.; Huang, P.; Bai, J.; Zhang, Z.; Wu, H.; Cai, M.; Yang, J.; Xu, Y.; Yin, X.; Qu, C.; Ni, J. Topical delivery of levocarnitine to the cornea and anterior eye by thermosensitive in situ gel for dry eye disease. Drug Des. Devel. Ther., 2021, 15, 2357-2373.
[http://dx.doi.org/10.2147/DDDT.S309648] [PMID: 34121838]
[62]
Samimi, M.S.; Mahboobian, M.M.; Mohammadi, M. Ocular toxicity assessment of nanoemulsion in situ gel formulation of fluconazole. Hum. Exp. Toxicol., 2021, 40(12), 2039-2047.
[http://dx.doi.org/10.1177/09603271211017314] [PMID: 34036827]
[63]
Eldesouky, L.M.; El-Moslemany, R.M.; Ramadan, A.A.; Morsi, M.H.; Khalafallah, N.M. Cyclosporine lipid nanocapsules as ther-moresponsive gel for dry eye management: Promising corneal mucoadhesion, biodistribution and preclinical efficacy in rabbits. Pharmaceutics, 2021, 13(3), 360.
[http://dx.doi.org/10.3390/pharmaceutics13030360] [PMID: 33803242]
[64]
Ge, Y.; Zhang, A.; Sun, R.; Xu, J.; Yin, T.; He, H.; Gou, J.; Kong, J.; Zhang, Y.; Tang, X. Penetratin-modified lutein nanoemulsion in situ gel for the treatment of age-related macular degeneration. Expert Opin. Drug Deliv., 2020, 17(4), 603-619.
[http://dx.doi.org/10.1080/17425247.2020.1735348] [PMID: 32105151]
[65]
Paulsamy, M.; Ponnusamy, C.; Palanisami, M.; Nackeeran, G.; Paramasivam, S.; Sugumaran, A.; Kandasamy, R.; Natesan, S.; Palanichamy, R. Nepafenac loaded silica nanoparticles dispersed in situ gel systems: Development and characterization. Int. J. Biol. Macromol., 2018, 110, 336-345.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.123] [PMID: 29408555]
[66]
Youssef, A.; Dudhipala, N.; Majumdar, S. Ciprofloxacin loaded nanostructured lipid carriers incorporated into in situ gels to improve management of bacterial endophthalmitis. Pharmaceutics, 2020, 12(6), 572.
[http://dx.doi.org/10.3390/pharmaceutics12060572] [PMID: 32575524]
[67]
Churchward, C.P.; Al-Kinani, A.A.; Abdelkader, H.; Swinden, J.; Siwoku, O.; Varnakulasingam, T.; Alany, R.G.; Snyder, L.A.S. Mono-caprin eye drop formulation to combat antibiotic resistant gonococcal blindness. Sci. Rep., 2020, 10(1), 12010.
[http://dx.doi.org/10.1038/s41598-020-68722-8] [PMID: 32694582]
[68]
Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. ScientificWorldJournal, 2014, 2014, 861904.
[http://dx.doi.org/10.1155/2014/861904] [PMID: 24772038]
[69]
Pawar, P.; Duduskar, A.; Waydande, S. Design and evaluation of eudragit rs-100 based itraconazole nanosuspension for ophthalmic appli-cation. Curr. Drug Res. Rev., 2021, 13(1), 36-48.
[http://dx.doi.org/10.2174/2589977512666200929111952] [PMID: 32990554]
[70]
Ceriotti, L.; Balzaretti, S.; Barone, S.; Meloni, M. Eye irritation potential of microglycine and microglycine-containing ointments: An in vitro study on reconstructed human corneal epithelium. Clin. Ophthalmol., 2020, 14, 257-267.
[http://dx.doi.org/10.2147/OPTH.S229879] [PMID: 32158183]
[71]
Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic drug delivery systems for antibiotherapy—a review. Pharmaceutics, 2018, 10(1), 10.
[http://dx.doi.org/10.3390/pharmaceutics10010010] [PMID: 29342879]
[72]
Chang, D.F.; Thiel, C.L.; Ophthalmic Instrument, C. Survey of cataract surgeons’ and nurses’ attitudes toward operating room waste. J. Cataract Refract. Surg., 2020, 46(7), 933-940.
[http://dx.doi.org/10.1097/j.jcrs.0000000000000267] [PMID: 32773547]
[73]
Bao, Q.; Burgess, D.J. Perspectives on physicochemical and in vitro profiling of ophthalmic ointments. Pharm. Res., 2018, 35(12), 234.
[http://dx.doi.org/10.1007/s11095-018-2513-3] [PMID: 30324424]
[74]
Noreen, S.; Ghumman, S.A.; Batool, F.; Ijaz, B.; Basharat, M.; Noureen, S.; Kausar, T.; Iqbal, S. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int. J. Biol. Macromol., 2020, 152, 1056-1067.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.193] [PMID: 31751751]
[75]
Esteruelas, G.; Halbaut, L.; García-Torra, V.; Espina, M.; Cano, A.; Ettcheto, M.; Camins, A.; Souto, E.B.; Luisa García, M.; Sánchez-López, E. Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment. Int. J. Pharm., 2022, 612, 121379.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121379] [PMID: 34915146]
[76]
Khan, N.; Aqil, M.; Imam, S.S.; Ali, A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug deliv-ery: In vitro and ex vivo characterization. Pharm. Dev. Technol., 2015, 20(6), 662-669.
[http://dx.doi.org/10.3109/10837450.2014.910807] [PMID: 24754411]
[77]
Al Khateb, K.; Ozhmukhametova, E.K.; Mussin, M.N.; Seilkhanov, S.K.; Rakhypbekov, T.K.; Lau, W.M.; Khutoryanskiy, V.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm., 2016, 502(1-2), 70-79.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.027] [PMID: 26899977]
[78]
Liu, Z.; Li, J.; Nie, S.; Liu, H.; Ding, P.; Pan, W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxa-cin. Int. J. Pharm., 2006, 315(1-2), 12-17.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.029] [PMID: 16616442]
[79]
Momin, M.M.; Afreen, S.D. Nanoformulations and highlights of clinical studies for ocular drug delivery systems: An overview. Crit. Rev. Ther. Drug Carrier Syst., 2021, 38(4), 79-107.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2021035767] [PMID: 34369740]
[80]
Koutsoviti, M.; Siamidi, A.; Pavlou, P.; Vlachou, M. Recent advances in the excipients used for modified ocular drug delivery. Materials, 2021, 14(15), 4290.
[http://dx.doi.org/10.3390/ma14154290] [PMID: 34361483]
[81]
Garcia, C.R.; Malik, M.H.; Biswas, S.; Tam, V.H.; Rumbaugh, K.P.; Li, W.; Liu, X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci., 2022, 10(3), 633-653.
[http://dx.doi.org/10.1039/D1BM01537K] [PMID: 34994371]
[82]
Fardous, J.; Inoue, Y.; Yoshida, K.; Ono, F.; Higuchi, A.; Ijima, H. Delivery of hydrophobic drugs to the posterior ocular region by gel-in-water nanoemulsion. Transl. Vis. Sci. Technol., 2022, 11(5), 16.
[http://dx.doi.org/10.1167/tvst.11.5.16] [PMID: 35576213]
[83]
Kasza, K.; Gurnani, P.; Hardie, K.R.; Cámara, M.; Alexander, C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv. Drug Deliv. Rev., 2021, 178, 113973.
[http://dx.doi.org/10.1016/j.addr.2021.113973] [PMID: 34530014]
[84]
Yasueda, S.; Inada, K.; Matsuhisa, K.; Terayama, H.; Ohtori, A. Evaluation of ophthalmic suspensions using surface tension. Eur. J. Pharm. Biopharm., 2004, 57(2), 377-382.
[http://dx.doi.org/10.1016/S0939-6411(03)00159-0] [PMID: 15018999]
[85]
Thomas, J.; Kim, L.; Albini, T.; Yeh, S. Triamcinolone acetonide injectable suspension for suprachoroidal use in the treatment of macular edema associated with uveitis. Expert Rev. Ophthalmol., 2022, 17(3), 165-173.
[http://dx.doi.org/10.1080/17469899.2022.2114456] [PMID: 36060305]
[86]
González Cela Casamayor, M.A.; López Cano, J.J.; Andrés Guerrero, V.; Herrero Vanrell, R.; Benítez del Castillo, J.M.; Molina Martínez, I.T. A novel osmoprotective liposomal formulation from synthetic phospholipids to reduce in vitro hyperosmolar stress in dry eye treat-ments. J. Liposome Res., 2022, 1-12.
[http://dx.doi.org/10.1080/08982104.2022.2087083] [PMID: 35706400]
[87]
Nanjawade, B.K.; Manvi, F.V.; Manjappa, A.S. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release, 2007, 122(2), 119-134.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.009] [PMID: 17719120]
[88]
Kaur, I.P.; Garg, A.; Singla, A.K.; Aggarwal, D. Vesicular systems in ocular drug delivery: An overview. Int. J. Pharm., 2004, 269(1), 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.016] [PMID: 14698571]
[89]
Sahoo, S.; Dilnawaz, F.; Krishnakumar, S. Nanotechnology in ocular drug delivery. Drug Discov. Today, 2008, 13(3-4), 144-151.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[90]
del Amo, E.M.; Rimpelä, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richard-son, D.; Subrizi, A.; Turunen, T.; Reinisalo, M.; Itkonen, J.; Toropainen, E.; Casteleijn, M.; Kidron, H.; Antopolsky, M.; Vellonen, K.S.; Ruponen, M.; Urtti, A. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res., 2017, 57, 134-185.
[http://dx.doi.org/10.1016/j.preteyeres.2016.12.001] [PMID: 28028001]
[91]
Fu, T.; Yi, J.; Lv, S.; Zhang, B. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. J. Liposome Res., 2017, 27(3), 228-233.
[http://dx.doi.org/10.1080/08982104.2016.1224899] [PMID: 27601177]
[92]
Tavakoli, S.; Puranen, J.; Bahrpeyma, S.; Lautala, V.E.; Karumo, S.; Lajunen, T.; del Amo, E.M.; Ruponen, M.; Urtti, A. Liposomal sunitinib for ocular drug delivery: A potential treatment for choroidal neovascularization. Int. J. Pharm., 2022, 620, 121725.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121725] [PMID: 35405282]
[93]
López-Machado, A.; Díaz-Garrido, N.; Cano, A.; Espina, M.; Badia, J.; Baldomà, L.; Calpena, A.C.; Souto, E.B.; García, M.L.; Sánchez-López, E. Development of lactoferrin-loaded liposomes for the management of dry eye disease and ocular inflammation. Pharmaceutics, 2021, 13(10), 1698.
[http://dx.doi.org/10.3390/pharmaceutics13101698] [PMID: 34683990]
[94]
Peito, S.; Peixoto, D.; Ferreira-Faria, I.; Margarida Martins, A.; Margarida Ribeiro, H.; Veiga, F.; Marto, J.; Cláudia Paiva-Santos, A. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. Int. J. Pharm., 2022, 615, 121455.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121455] [PMID: 35031412]
[95]
Hassan, H.A.F.M.; Ali, A.I.; ElDesawy, E.M.; ElShafeey, A.H. Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chi-tosan nanoparticles as an antibacterial ocular dosage form. J. Pharm. Sci., 2022, 111(5), 1497-1508.
[http://dx.doi.org/10.1016/j.xphs.2021.12.016] [PMID: 34929155]
[96]
Somasundar, A.; Sen, A. Chemically propelled nano and micromotors in the body: Quo Vadis? Small, 2021, 17(5), 2007102.
[http://dx.doi.org/10.1002/smll.202007102] [PMID: 33432722]
[97]
Srivastava, A.; Verma, A.; Saraf, S.; Jain, A.; Tiwari, A.; Panda, P.K.; Jain, S.K. Mucoadhesive gastroretentive microparticulate system for programmed delivery of famotidine and clarithromycin. J. Microencapsul., 2021, 38(3), 151-163.
[http://dx.doi.org/10.1080/02652048.2020.1851787] [PMID: 33205689]
[98]
Chang, D.; Park, K.; Famili, A. Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov. Today, 2019, 24(8), 1470-1482.
[http://dx.doi.org/10.1016/j.drudis.2019.05.037] [PMID: 31202673]
[99]
Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part I - Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm., 2017, 110, 70-75.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.009] [PMID: 27789358]
[100]
Ilochonwu, B.C.; Urtti, A.; Hennink, W.E.; Vermonden, T. Intravitreal hydrogels for sustained release of therapeutic proteins. J. Control. Release, 2020, 326, 419-441.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.031] [PMID: 32717302]
[101]
Fang, G.; Yang, X.; Wang, Q.; Zhang, A.; Tang, B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater. Sci. Eng. C, 2021, 127, 112212.
[http://dx.doi.org/10.1016/j.msec.2021.112212] [PMID: 34225864]
[102]
Achouri, D.; Alhanout, K.; Piccerelle, P.; Andrieu, V. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm., 2013, 39(11), 1599-1617.
[http://dx.doi.org/10.3109/03639045.2012.736515] [PMID: 23153114]
[103]
Ahmad, I.; Pandit, J.; Sultana, Y.; Mishra, A.K.; Hazari, P.P.; Aqil, M. Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: Characterization, pharmacokinetic and deposition study. Mater. Sci. Eng. C, 2019, 100, 959-970.
[http://dx.doi.org/10.1016/j.msec.2019.03.060] [PMID: 30948132]
[104]
Li, J.; Guo, X.; Liu, Z.; Okeke, C.I.; Li, N.; Zhao, H.; Aggrey, M.O.; Pan, W.; Wu, T. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies. Drug Dev. Ind. Pharm., 2014, 40(7), 980-987.
[http://dx.doi.org/10.3109/03639045.2013.795582] [PMID: 23662696]
[105]
Rapalli, V.K.; Kaul, V.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Pandey, M.M.; Singhvi, G.U.V. Spectrophotometric method for characteri-zation of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applica-tions in topical delivery. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 224, 117392.
[http://dx.doi.org/10.1016/j.saa.2019.117392] [PMID: 31330421]
[106]
Rapalli, V.K.; Singhvi, G.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Saha, R.N.; Hasnain, M.S.; Nayak, A.K. Stability indicating liquid chromatographic method for simultaneous quantification of betamethasone valerate and tazarotene in in vitro and ex vivo studies of com-plex nanoformulation. J. Sep. Sci., 2019, 42(22), 3413-3420.
[http://dx.doi.org/10.1002/jssc.201900538] [PMID: 31529758]
[107]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine, 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[108]
Li, M.; Xin, M.; Guo, C.; Lin, G.; Wu, X. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev. Ind. Pharm., 2017, 43(11), 1846-1857.
[http://dx.doi.org/10.1080/03639045.2017.1349787] [PMID: 28665151]
[109]
Alvarez-Rivera, F.; Fernández-Villanueva, D.; Concheiro, A.; Alvarez-Lorenzo, C. α-Lipoic acid in Soluplus® Polymeric Nanomicelles for ocular treatment of diabetes-associated corneal diseases. J. Pharm. Sci., 2016, 105(9), 2855-2863.
[http://dx.doi.org/10.1016/j.xphs.2016.03.006] [PMID: 27103010]
[110]
Mandal, A.; Bisht, R.; Rupenthal, I.D.; Mitra, A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent pre-clinical studies. J. Control. Release, 2017, 248, 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[111]
Lou, J.; Hu, W.; Tian, R.; Zhang, H.; Jia, Y.; Zhang, J.; Zhang, L. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int. J. Nanomedicine, 2014, 9, 2517-2525.
[PMID: 24904211]
[112]
Cunha, S.; Amaral, M.H.; Lobo, J.M.S.; Silva, A.C. Lipid nanoparticles for nasal/intranasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(3), 257-282.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693] [PMID: 28845761]
[113]
da Silva, J.B.; dos Santos, R.S.; da Silva, M.B.; Braga, G.; Cook, M.T.; Bruschi, M.L. Interaction between mucoadhesive cellulose deriva-tives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. Mater. Sci. Eng. C, 2021, 119, 111643.
[http://dx.doi.org/10.1016/j.msec.2020.111643] [PMID: 33321681]
[114]
Mirzaeei, S.; Taghe, S.; Asare-Addo, K.; Nokhodchi, A. Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/eudragit RL100 Multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: An in vitro and in vivo evaluation. AAPS PharmSciTech, 2021, 22(5), 170.
[http://dx.doi.org/10.1208/s12249-021-02051-5] [PMID: 34085150]
[115]
Osi, B.; Khoder, M.; Al-Kinani, A.A.; Alany, R.G. Pharmaceutical, biomedical and ophthalmic applications of biodegradable polymers (BDPs): Literature and patent review. Pharm. Dev. Technol., 2022, 27(3), 341-356.
[http://dx.doi.org/10.1080/10837450.2022.2055063] [PMID: 35297285]
[116]
Williams, L.; Hatton, F.L.; Willcock, H.; Mele, E. Electrospinning of stimuli‐responsive polymers for controlled drug delivery: pH‐ and temperature‐driven release. Biotechnol. Bioeng., 2022, 119(5), 1177-1188.
[http://dx.doi.org/10.1002/bit.28043] [PMID: 35075674]
[117]
Khare, P.; Chogale, M.M.; Kakade, P.; Patravale, V.B. Gellan gum-based in situ gelling ophthalmic nanosuspension of Posaconazole. Drug Deliv. Transl. Res., 2022, 12(12), 2920-2935.
[http://dx.doi.org/10.1007/s13346-022-01155-0] [PMID: 35538191]
[118]
Marangoni Júnior, L.; da Silva, R.G.; Anjos, C.A.R.; Vieira, R.P.; Alves, R.M.V. Effect of low concentrations of SiO2 nanoparticles on the physical and chemical properties of sodium alginate-based films. Carbohydr. Polym., 2021, 269, 118286.
[http://dx.doi.org/10.1016/j.carbpol.2021.118286] [PMID: 34294312]
[119]
Pamlényi, K.; Kristó, K.; Jójárt-Laczkovich, O.; Regdon, G., Jr Formulation and optimization of sodium alginate polymer film as a buccal mucoadhesive drug delivery system containing cetirizine dihydrochloride. Pharmaceutics, 2021, 13(5), 619.
[http://dx.doi.org/10.3390/pharmaceutics13050619] [PMID: 33925927]
[120]
Maddiboyina, B.; Jhawat, V.; Desu, P.K.; Gandhi, S.; Nakkala, R.K.; Singh, S. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J. Biomater. Sci. Polym. Ed., 2021, 32(12), 1584-1597.
[http://dx.doi.org/10.1080/09205063.2021.1927460] [PMID: 33977874]
[121]
Kaur, I.P.; Singh, M.; Kanwar, M. Formulation and evaluation of ophthalmic preparations of acetazolamide. Int. J. Pharm., 2000, 199(2), 119-127.
[http://dx.doi.org/10.1016/S0378-5173(00)00359-8] [PMID: 10802405]
[122]
Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in situ gel for ophthalmic formulation containing ciprofloxa-cin hydrochloride. Results Pharma Sci., 2016, 6, 1-6.
[http://dx.doi.org/10.1016/j.rinphs.2015.06.001] [PMID: 26949596]
[123]
Asasutjarit, R.; Thanasanchokpibull, S.; Fuongfuchat, A.; Veeranondha, S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int. J. Pharm., 2011, 411(1-2), 128-135.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.054] [PMID: 21459137]
[124]
Li, J.; Liu, H.; Liu, L.; Cai, C.; Xin, H.; Liu, W. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem. Pharm. Bull., 2014, 62(10), 1000-1008.
[http://dx.doi.org/10.1248/cpb.c14-00451] [PMID: 25099146]
[125]
Morsi, N.; Ghorab, D.; Refai, H.; Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int. J. Pharm., 2016, 506(1-2), 57-67.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.021] [PMID: 27091293]
[126]
Ambhore, N.P.; Dandagi, P.M.; Gadad, A.P. Formulation and comparative evaluation of HPMC and water soluble chitosan-based spar-floxacin nanosuspension for ophthalmic delivery. Drug Deliv. Transl. Res., 2016, 6(1), 48-56.
[http://dx.doi.org/10.1007/s13346-015-0262-y] [PMID: 26545605]
[127]
Qian, Y.; Wang, F.; Li, R.; Zhang, Q.; Xu, Q. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazola-mide. Drug Dev. Ind. Pharm., 2010, 36(11), 1340-1347.
[http://dx.doi.org/10.3109/03639041003801893] [PMID: 20849349]
[128]
Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev. Ind. Pharm., 2010, 36(11), 1330-1339.
[http://dx.doi.org/10.3109/03639041003801885] [PMID: 20545523]
[129]
Wu, H.; Liu, Z.; Peng, J.; Li, L.; Li, N.; Li, J.; Pan, H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm., 2011, 410(1-2), 31-40.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.007] [PMID: 21397671]
[130]
Gupta, S.; Vyas, S.P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci. Pharm., 2010, 78(4), 959-976.
[http://dx.doi.org/10.3797/scipharm.1001-06] [PMID: 21179328]
[131]
Dholakia, M.; Thakkar, V.; Patel, N.; Gandhi, T. Development and characterisation of thermo reversible mucoadhesive moxifloxacin hy-drochloride in situ ophthalmic gel. J. Pharm. Bioallied Sci., 2012, 4(Suppl. 1), 42-45.
[http://dx.doi.org/10.4103/0975-7406.94138] [PMID: 23066202]
[132]
Fernández-Ferreiro, A.; Fernández Bargiela, N.; Varela, M.S.; Martínez, M.G.; Pardo, M.; Piñeiro Ces, A.; Méndez, J.B.; Barcia, M.G.; La-mas, M.J.; Otero-Espinar, F. Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery. Beilstein J. Org. Chem., 2014, 10, 2903-2911.
[http://dx.doi.org/10.3762/bjoc.10.308] [PMID: 25550757]
[133]
Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm., 2013, 443(1-2), 293-305.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.049] [PMID: 23333217]
[134]
Rupenthal, I.D.; Alany, R.G.; Green, C.R. Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol. Pharm., 2011, 8(6), 2282-2290.
[http://dx.doi.org/10.1021/mp200140e] [PMID: 21985532]
[135]
Yu, S.; Zhang, X.; Tan, G.; Tian, L.; Liu, D.; Liu, Y.; Yang, X.; Pan, W. A novel pH-induced thermosensitive hydrogel composed of car-boxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr. Polym., 2017, 155, 208-217.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.073] [PMID: 27702506]
[136]
Gupta, H.; Velpandian, T.; Jain, S. Ion- and pH-activated novel in situ gel system for sustained ocular drug delivery. J. Drug Target., 2010, 18(7), 499-505.
[http://dx.doi.org/10.3109/10611860903508788] [PMID: 20055752]
[137]
Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research progress of in situ gelling ophthalmic drug delivery system. Asian J. Pharmaceut. Sci., 2019, 14(1), 1-15.
[http://dx.doi.org/10.1016/j.ajps.2018.04.008] [PMID: 32104434]
[138]
Mundada, A.S.; Avari, J.G. In situ gelling polymers in ocular drug delivery systems: A review. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(1), 85-118.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i1.30] [PMID: 19496748]
[139]
Sheshala, R.; Kok, Y.Y.; Ng, J.M.; Thakur, R.R.; Dua, K. In situ gelling ophthalmic drug delivery system: An overview and its applica-tions. Recent Pat. Drug Deliv. Formul., 2015, 9(3), 237-248.
[PMID: 26205681]
[140]
Khiev, D.; Mohamed, Z.A.; Vichare, R.; Paulson, R.; Bhatia, S.; Mohapatra, S.; Lobo, G.P.; Valapala, M.; Kerur, N.; Passaglia, C.L.; Mo-hapatra, S.S.; Biswal, M.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials, 2021, 11(1), 173.
[http://dx.doi.org/10.3390/nano11010173] [PMID: 33445545]
[141]
Hughes, P.; Olejnik, O.; Changlin, J.; Wilson, C. Topical and systemic drug delivery to the posterior segments. Adv. Drug Deliv. Rev., 2005, 57(14), 2010-2032.
[http://dx.doi.org/10.1016/j.addr.2005.09.004] [PMID: 16289435]
[142]
Gan, L.; Han, S.; Shen, J.; Zhu, J.; Zhu, C.; Zhang, X.; Gan, Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic deliv-ery system for dexamethasone: Improving preocular retention and ocular bioavailability. Int. J. Pharm., 2010, 396(1-2), 179-187.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.015] [PMID: 20558263]
[143]
Potta, S.G.; Minemi, S.; Nukala, R.K.; Peinado, C.; Lamprou, D.A.; Urquhart, A.; Douroumis, D. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. J. Biomed. Nanotechnol., 2010, 6(6), 634-640.
[http://dx.doi.org/10.1166/jbn.2010.1169] [PMID: 21361127]
[144]
Araújo, J.; Gonzalez, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Nanomedicines for ocular NSAIDs: Safety on drug delivery. Nanomedicine, 2009, 5(4), 394-401.
[http://dx.doi.org/10.1016/j.nano.2009.02.003] [PMID: 19341814]
[145]
Vaneev, A.; Tikhomirova, V.; Chesnokova, N.; Popova, E.; Beznos, O.; Kost, O.; Klyachko, N. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int. J. Mol. Sci., 2021, 22(22), 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[146]
Razavi, M.S.; Ebrahimnejad, P.; Fatahi, Y.; D’Emanuele, A.; Dinarvand, R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem., 2022, 10, 850757.
[http://dx.doi.org/10.3389/fchem.2022.850757] [PMID: 35494641]
[147]
Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy