Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Aluminum Nano Stars with Localized Surface Plasmon Resonance and Field Enhancement

Author(s): Chhaya Sharma, Jyoti Katyal* and Rina Singh

Volume 13, Issue 4, 2023

Published on: 05 June, 2023

Article ID: e070523216619 Pages: 8

DOI: 10.2174/2210681213666230507181111

Price: $65

Abstract

Aim: The Finite Difference Time Domain approach has been used to assess the localised surface plasmon resonance and field enhancement for Al nanostars. The structure's potential as a refractive index sensor has been demonstrated.

Background: Research on plasmonics has been possible in a variety of domains, including sensors, SERS, solar cells, and others, due to a tenability in the plasmon wavelength caused by a simple change in shape, size, or external environment. The growth of plasmonics has been greatly aided by the creation of novel ways for creating metallic nanostructures and a large deal of work on the creation of numerical algorithms to cope with arbitrarily shaped metallic nanostructures. The LSPR and field enhancement of an Al nano-star were the main topics of this paper. A larger RIS factor is obtained after adjusting the refractive index sensitivity parameter, making it appropriate for refractive index-based sensor nanostructures.

Objective: This study's primary goal is to provide a comparative analysis of the refractive index sensitivity factor for Al nanostars dependent on their size and number of arms.

Methods: Al nano star's LSPR and field enhancement have been assessed using the Finite Difference Time Domain (FDTD).

Results: By altering the size and number of arms of the nano star, the tenability of the plasmonic peak has been assessed, and it has been found that the peak is sensitive to the ambient dielectric constant. A study has been done on the refractive index sensitivity parameter. A higher sensitivity of about 370 nm/RIU, which is significantly higher than that of other metallic Nanostar (NS), is seen after adjusting the size and number of arms. A wide range of applications is covered by the Al NS field enhancement pattern, which exhibits stronger enhancement with no aggregation at the plasmon peak.

Conclusion: For LSPR sensing applications, the impact of modifying the environmental dielectric constant is examined. By changing the size and quantity of the Al NS's arms, we were able to compare the refractive index sensitivity parameter. The bigger size NS exhibits more peaks due to the contribution of the multipole; however, after tuning a number of parameters, better sensitivity in comparison to Au and Ag nanostar has been attained. Al NS can therefore be a promising sensing material for refractive index sensing employing LSPR properties.

Graphical Abstract

[1]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B, 2003, 107(3), 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[2]
Bohren, C.F.; Huffman, D.R. Absorption and scattering of light by small particles; Wiley Interscience Publication, 1998.
[3]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem., 2019, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[4]
Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by n gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 2020, 14(6), 7617-7627.
[http://dx.doi.org/10.1021/acsnano.0c03822] [PMID: 32437124]
[5]
Enrichi, F.; Quandt, A.; Righini, G.C. Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew. Sustain. Energy Rev., 2018, 82, 2433-2439.
[http://dx.doi.org/10.1016/j.rser.2017.08.094]
[6]
Yaraki, M.T.; Tan, Y.N. Metal nanoparticles‐enhanced biosensors: Synthesis, design and applications in fluorescence enhancement and surface‐enhanced raman scattering. Chem. Asian J., 2020, 15(20), 3180-3208.
[http://dx.doi.org/10.1002/asia.202000847] [PMID: 32808471]
[7]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[8]
Huakang, Y.; Peng, Y.; Yang, Y.; Li, Z.Y. Plasmon-enhanced light matter interactions and applications. NPJ Computational Materials, 2019, 5(1), 45.
[9]
Alekseeva, S.; Nedrygailov, I.I.; Langhammer, C. Single particle plasmonics for materials science and single particle catalysis. ACS Photonics, 2019, 6(6), 1319-1330.
[http://dx.doi.org/10.1021/acsphotonics.9b00339]
[10]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[11]
Poinern, G.E.J.; Chapman, P.; Shah, M.; Fawcett, D. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull., 2013, 2, 1-7.
[12]
Aslan, K.; Leonenko, Z.; Lakowicz, J.R.; Geddes, C.D. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B, 2005, 109(8), 3157-3162.
[http://dx.doi.org/10.1021/jp045186t] [PMID: 16851335]
[13]
Nghia, N.; Truong, N.N.K.; Thong, N.M.; Hung, N.P. Synthesis of nanowire-shaped silver by polyol process of sodium chloride. Int. J. Mater. Chem, 2012, 2, 75-78.
[http://dx.doi.org/10.5923/j.ijmc.20120202.06]
[14]
Kulkarni, S.K. Nanotechnology: Principles and Practices, 3rd ed.; , 2015, pp. 237-239.
[15]
Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Silva, A.M.; Durazzo, A.; Santini, A.; Garcia, M.L.; Souto, E.B. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials, 2020, 10(2), 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[16]
Li, W.; Ren, K.; Zhou, J. Aluminum-based localized surface plasmon resonance for biosensing. Trends Analyt. Chem., 2016, 80, 486-494.
[http://dx.doi.org/10.1016/j.trac.2015.08.013]
[17]
Chan, G.H.; Zhao, J.; Hicks, E.M.; Schatz, G.C.; Van Duyne, R.P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett., 2007, 7(7), 1947-1952.
[http://dx.doi.org/10.1021/nl070648a]
[18]
Pan, S. Yuan; P.Moodispaw, M.P. Corrosion performance of nano-treated aluminum alloy A206 with TiC nanoparticles. Materials and corrosions, 2022, 206, 110479.
[19]
Kosari, A.; Tichelaar, F.; Visser, P.; Zandbergen, H.; Terryn, H.; Mol, J.M.C. Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys. Corros. Sci., 2020, 177, 108947.
[http://dx.doi.org/10.1016/j.corsci.2020.108947]
[20]
Pan, S.; Yuan, J.; Linsley, C.; Liu, J.; Li, X. Corrosion behavior of nano-treated AA7075 alloy with TiC and TiB2 nanoparticles. Corros. Sci., 2022, 206, 110479.
[http://dx.doi.org/10.1016/j.corsci.2022.110479]
[21]
Dewen, Z.; Tongde, W.; Man, Z.; Yidong, M.; Quantao, F.; Xiaowen, C.; Zeyuan, H.; Lihong, M.; Fuxiang, W.; Feng, D.; Peng, C. Application of morphology and phase design of dealloying method in supercapacitor. J. Alloys Compd., 2022, 166974.
[22]
Pan, S.; Yuan, J.; Zhang, P.; Sokoluk, M.; Yao, G.; Li, X. Effect of electron concentration on electrical conductivity in in situ Al-TiB2 nanocomposites. Appl. Phys. Lett., 2020, 116(1), 014102.
[http://dx.doi.org/10.1063/1.5129817]
[23]
Pan, S.; Wang, T.; Jin, K.; Cai, X. Understanding and designing metal matrix nanocomposites with high electrical conductivity. J. Mater. Sci., 2020, 1-37.
[24]
Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett., 2008, 8(5), 1461-1471.
[http://dx.doi.org/10.1021/nl080453i] [PMID: 18393471]
[25]
Ekinci, Y.; Solak, H.H.; Löffler, J.F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys., 2008, 104(8), 083107.
[http://dx.doi.org/10.1063/1.2999370]
[26]
Chan, G.H.; Zhao, J.; Schatz, G.C.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C, 2008, 112(36), 13958-13963.
[http://dx.doi.org/10.1021/jp804088z]
[27]
Zhu, S. Cortie Michael and Blakey Idriss. Effect of Multimodal Plasmon Resonances on the Optical Properties of Five-pointed Nanostars; Nanomaterials and Nanotechnology, 2015.
[28]
Reyes Gómez, F.; Rubira, R.; Camacho, S.; Martin, C.; da Silva, R.; Constantino, C.; Alessio, P.; Oliveira, O., Jr; Mejía-Salazar, J. Surface plasmon resonances in silver nanostars. Sensors, 2018, 18(11), 3821.
[http://dx.doi.org/10.3390/s18113821] [PMID: 30413000]
[29]
Cennamo, N.; D’Agostino, G.; Donà, A.; Dacarro, G.; Pallavicini, P.; Pesavento, M.; Zeni, L. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors, 2013, 13(11), 14676-14686.
[http://dx.doi.org/10.3390/s131114676] [PMID: 24172284]
[30]
Katyal, J.; Soni, R.K. Size- and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications. J. Mod. Opt., 2013, 60(20), 1717-1728.
[http://dx.doi.org/10.1080/09500340.2013.856483]
[31]
Taflove, A.; Hagness, S.C. Computational electrodynamics: The Finite-Difference Time-Domain method, 3rd ed; Artech House: Norwood, MA, 2005.
[32]
Lumerical Solutions. Available from: http://docs.lumerical.com/en/fdtd/reference guide.html
[33]
Singh Sekhon, J.; S Verma, S. Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics, 2011, 6(2), 311-317.
[http://dx.doi.org/10.1007/s11468-011-9206-7]
[34]
Truong, P.L.; Kim, B.W.; Sim, S.J. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip, 2012, 12(6), 1102-1109.
[http://dx.doi.org/10.1039/c2lc20588b] [PMID: 22298159]
[35]
Tuersun, P.; Yusufu, T.; Yimiti, A.; Sidike, A. Refractive index sensitivity analysis of gold nanoparticles. Optik, 2017, 149, 384-390.
[http://dx.doi.org/10.1016/j.ijleo.2017.09.058]
[36]
Katyal, J. Comparison of localised surface plasmon resonance and refractive index sensitivity for metallic nanostructures. Mater. Today Proc., 2019, 18, 613-622.
[http://dx.doi.org/10.1016/j.matpr.2019.06.455]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy