Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

A Review of the Therapeutic Importance of Indole Scaffold in Drug Discovery

Author(s): Nishith Teraiya*, Khushbu Agrawal, Tarun M. Patel, Archita Patel, Samir Patel, Umang Shah, Shaileshkumar Shah, Khushman Rathod and Krupa Patel

Volume 20, Issue 6, 2023

Published on: 05 July, 2023

Article ID: e050523216584 Pages: 29

DOI: 10.2174/1570163820666230505120553

Price: $65

Abstract

Indole is known as a versatile heterocyclic building block for its multiple pharmacological activities and has a high probability of success in the race for drug candidates. Many natural products, alkaloids, and bioactive heterocycles contain indole as the active principle pharmacophore. These encourage the researchers to explore it as a lead in the drug development process. The current manuscript will serve as a torchbearer for understanding the structurally diverse class of indole derivatives with extensive pharmacological activity. The current manuscript describes the intermediates and their functional groups responsible for superior biological activity compared to the standard. The review is written to help researchers to choose leads against their target but also to provide crucial insight into the design of a hybrid pharmacophore-based approach in drug design with enhanced potential. The present reviews on the indole derivatives correlate the structures with biological activities as well as essential pharmacophores, which were highlighted. The discussion was explored under challenging targets like dengue, chikungunya (anti-viral), antihypertensive, diuretic, immunomodulator, CNS stimulant, antihyperlipidemic, antiarrhythmic, anti-Alzheimer’s, and neuroprotective, along with anticancer, antitubercular, antimicrobial, anti-HIV, antimalarial, anti-inflammatory, antileishmanial, antianthelmintic, and enzyme inhibitors. So, this review includes a discussion of 19 different pharmacological targets for indole derivatives that could be utilized to derive extensive information needed for ligand-based drug design. The article will guide the researchers in the selection, design of lead and pharmacophore, and ligand-based drug design using indole moiety.

Graphical Abstract

[1]
Kaushik NK, Kaushik K, Attri P, et al. Biomedical importance of indoles. Molecules 2013; 18(6): 6620-62.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[2]
Kumar SR. A brief review of the biological potential of indole derivatives. Futur J Pharm Sci 2020; 6: 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[3]
Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem 2019; 89: 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[4]
Mohammadi ZG, Moradi R, Ahmadi T, Lashgari N. Recent advances in the application of indoles in multicomponent reactions. RSC Advances 2018; 8(22): 12069-103.
[http://dx.doi.org/10.1039/C7RA13321A] [PMID: 35539427]
[5]
Bardiot D, Koukni M, Smets W, et al. Discovery of indole derivatives as novel and potent dengue virus inhibitors. J Med Chem 2018; 61(18): 8390-401.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00913] [PMID: 30149709]
[6]
Nie S, Zhao J, Wu X, et al. Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease. Eur J Med Chem 2021; 225: 113767.
[http://dx.doi.org/10.1016/j.ejmech.2021.113767] [PMID: 34450494]
[7]
Fikatas A, Vervaeke P, Meyen E, et al. A novel series of indole alkaloid derivatives inhibit dengue and zika virus infection by interference with the viral replication complex. Antimicrob Agents Chemother 2021; 65(8): e02349-20.
[http://dx.doi.org/10.1128/AAC.02349-20] [PMID: 34001508]
[8]
Hishiki T, Kato F, Tajima S, et al. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits late step in dengue virus lifecycle. Front Microbiol 2017; 8: 1674.
[http://dx.doi.org/10.3389/fmicb.2017.01674] [PMID: 28912773]
[9]
Costa J, Barboza R, Valente L, et al. One-step isolation of monoterpene indole alkaloids from psychotria leiocarpa leaves and their anti-viral activity on dengue virus type-2. J Braz Chem Soc 2020; 31(10): 2104-13.
[http://dx.doi.org/10.21577/0103-5053.20200111]
[10]
Scuotto M, Abdelnabi R, Collarile S, et al. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorg Med Chem 2016; 10: 1-15.
[PMID: 27856239]
[11]
Monsalve-escudero LM, Loaiza-cano V, Zapata-cardona MI, et al. The antiviral and virucidal activities of voacangine and structural analogs extracted from tabernaemontana cymosa depend on the dengue virus strain. Plants 2021; 10(7): 1280.
[http://dx.doi.org/10.3390/plants10071280]
[12]
Mishra P, Kumar A, Mamidi P, Kumar S. Inhibition of chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea(MBZM-N-IBT). Sci Rep 2016; 6: 20122.
[http://dx.doi.org/10.1038/srep20122] [PMID: 26843462]
[13]
Zhu W, Bao X, Ren H, et al. N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: Design, synthesis and biological evaluation. Eur J Med Chem 2016; 115: 161-78.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.021] [PMID: 27017546]
[14]
Sączewski F, Rybczyńska A, Ferdousi M, Laurila JM. Transfer of SAR information from hypotensive indazole to indole derivatives acting at α-adrenergic receptors: in vitro and Moringa oleifera studies. Eur J Med Chem 2016; 115: 406-15.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.026]
[15]
Kornicka A, Wasilewska A, Sączewski J, et al. 1-[(Imidazolidin-2-yl)imino]-1 H -indoles as new hypotensive agents: synthesis and in vitro and Moringa oleifera biological studies. Chem Biol Drug Des 2017; 89(3): 400-10.
[http://dx.doi.org/10.1111/cbdd.12846] [PMID: 27566285]
[16]
Monge A, Parrado P, Font M, Fernández-Alvarez E. Selective thromboxane synthetase inhibitors and antihypertensive agents. New derivatives of 4-hydrazino-5H-pyridazino[4,5-b]indole, 4-hydrazinotriazino[4,5-a]indole, and related compounds. J Med Chem 1987; 30(6): 1029-35.
[http://dx.doi.org/10.1021/jm00389a012] [PMID: 3585901]
[17]
Demir-Yazıcı K, Bua S, Akgüneş NM, Akdemir A, Supuran CT, Güzel-Akdemir Ö. Indole based hydrazones containing a sulfonamide moiety as selective inhibitors of tumor associated human carbonic anhydrase Isoforms IX and XII. Int J Mol Sci 2019; 20(9): 2354-9.
[http://dx.doi.org/10.3390/ijms20092354] [PMID: 31083645]
[18]
Shchukina N, Wu Y, Lobeck WG, Ryan RP, Gomoll AW. Diuretics. 1. 1-Imidoyl-2-(2- and 3-indolyl)indolines. J Med Chem 1972; 15(5): 529-34.
[19]
Park C, HwangBo H, Lee H, et al. The immunostimulatory effect of indole-6-carboxaldehyde isolated from Sargassum thunbergii(Mertens) Kuntze in RAW 264.7 macrophages. Anim Cells Syst 2020; 24(4): 233-41.
[http://dx.doi.org/10.1080/19768354.2020.1808529] [PMID: 33029301]
[20]
Carbonnelle D, Duflos M, Marchand P, Chauvet C. A novel indole-3-propanamide exerts its immunosuppressive activity by inhibiting JAK3 in T cells. J Pharmacol Exper Therapeut 2009; 331(2): 710-6.
[http://dx.doi.org/10.1124/jpet.109.155986]
[21]
Zeng T, Wu X, Yang S, et al. Monoterpenoid indole alkaloids from Kopsia officinalis and the immunosuppressive activity of rhazinilam. J Nat Prod 2017; 80(4): 864-71.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00697]
[22]
Dakic V, Maciel RDM, Drummond H, Nascimento JM, Trindade P, Rehen SK. Harmine stimulates proliferation of human neural pro-genitors. PeerJ 2016; 4: e2727.
[http://dx.doi.org/10.7717/peerj.2727]
[23]
Marusich JA, Antonazzo KR, Blough BE, et al. The new psychoactive substances 5-(2-Aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-it) interact with monoamine transporters in brain tissue. Neuropharmacology 2015; 101: 68-75.
[http://dx.doi.org/10.1016/j.neuropharm.2015.09.004] [PMID: 26362361]
[24]
Jansen KL, Prast CJ. Ethnopharmacology of kratom and the Mitragyna alkaloids. J Ethnopharmacol 1988; 23(1): 115-9.
[PMID: 3419199]
[25]
Sashidhara KV, Dodda RP, Sonkar R, Palnati GR, Bhatia G. Design and synthesis of novel indole-chalcone fibrates as lipid lowering agents. Eur J Med Chem 2014; 81: 499-509.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.085] [PMID: 24871900]
[26]
Sashidhara KV, Modukuri RK, Sonkar R, Rao KB, Bhatia G. Hybrid benzofuran–bisindole derivatives: New prototypes with promising anti-hyperlipidemic activities. Eur J Med Chem 2013; 68: 38-46.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.009] [PMID: 23954239]
[27]
Al-qirim T, Shahwan M, Shattat GF. l-Hiari Y, Abu-Sheikha G, Zaidi S. Pharmacological evaluation of novel indole-2-carboxamides as potent lipid-lowering agents in Triton-WR-1339-induced hyperlipidemic rats. Z Naturforsch C J Biosci 2009; 64(9-10): 619-25.
[http://dx.doi.org/10.1515/znc-2009-9-1003] [PMID: 19957427]
[28]
Sashidhara KV, Kumar A, Kumar M, Srivastava A, Puri A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg Med Chem Lett 2010; 20(22): 6504-7.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055] [PMID: 20932744]
[29]
Sashidhara KV, Kumar M, Sonkar R, Singh BS, Khanna AK, Bhatia G. Indole-based fibrates as potential hypolipidemic and antiobesity agents. J Med Chem 2012; 55(6): 2769-79.
[http://dx.doi.org/10.1021/jm201697v] [PMID: 22339404]
[30]
Bogus SK, Galenko-Yaroshevsky PA, Suzdalev KF, Sukoyan GV, Abushkevich VG. 2-phenyl-1-(3-pyrrolidin-1-il-propyl)-1 H-indole hydrochloride (SS-68): Antiarrhythmic and cardioprotective activity and its molecular mechanisms of action (Part I). Res Results Pharmacol 2018; 4(1): 130-55. [Part I
[http://dx.doi.org/10.3897/rrpharmacology.4.28592]
[31]
Adwas AA, Elkhoely AA, Kabel AM, Abdel-rahman MN, Eissa AA. Anti-cancer and cardioprotective effects of indol-3-carbinol in dox-orubicin-treated mice. J Infect Chemother 2015; 22(1): 36-43.
[http://dx.doi.org/10.1016/j.jiac.2015.10.001] [PMID: 26603425]
[32]
Panda S, Kar A, Sharma P, Sharma A. Cardioprotective potential of N, α-L-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: Moringa oleifera and in vitro studies. In: Bioorg Med Chem Lett 2013; 23(4): 959-62.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.060] [PMID: 23321560]
[33]
Guo X, Yang Q, Xu J, et al. Design and bio-evaluation of indole derivatives as potent Kv1.5 inhibitors. Bioorg Med Chem 2013; 21(21): 6466-76.
[http://dx.doi.org/10.1016/j.bmc.2013.08.041] [PMID: 24071446]
[34]
Maruyama S. Electrophysiological and antiarrhythmic effects of 4-(2-hydroxy-3-isopropylaminopropoxy)-indole (LB-46) on the canine cardiac cells. Jpn J Pharmacol 1973; 23(1): 17-27.
[http://dx.doi.org/10.1016/S0021-5198(19)49850-8] [PMID: 4146268]
[35]
Alzheimer's Association Available from:https://www.alz.org/
[36]
Taha M, Alshamrani FJ, Rahim F, et al. Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. J King Saud Univ Sci 2021; 33(3): 101401.
[http://dx.doi.org/10.1016/j.jksus.2021.101401]
[37]
Bingül M. Synthesis and characterisation of novel 4,6-dimethoxyindole-7- and -2-thiosemicarbazone derivatives: Biological evaluation as antioxidant and anticholinesterase candidates. J Chem Res 2019; 43(9-10): 399-406.
[http://dx.doi.org/10.1177/1747519819868386]
[38]
Bingul M, Ercan S, Boga M. The design of novel 4,6-dimethoxyindole based hydrazide-hydrazones: Molecular modeling, synthesis and anticholinesterase activity. J Mol Struct 2020; 1213: 128202.
[http://dx.doi.org/10.1016/j.molstruc.2020.128202]
[39]
Prochnow T, Maroneze A, Back DF, Jardim NS, Nogueira CW, Zeni G. Synthesis and anticholinesterase activity of 2-substituted-N-alkynylindoles. Org Biomol Chem 2018; 16: 7926-34.
[http://dx.doi.org/10.1039/C8OB02165A]
[40]
Li Y, Li J, Xie L, Zhou J, Li Q, Yang R. Monoterpenoid indole alkaloids with potential neuroprotective activities from the stems and leaves of melodinus cochinchinensis neuroprotective activities from the stems and leaves of. Nat Prod Res 2021; 36(20): 5181-8.
[http://dx.doi.org/10.1080/14786419.2021.1922406] [PMID: 33960216]
[41]
Casaril AM, Segatto N, Simões L, et al. Neuroprotective effect of 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole on hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Neurochem Res 2021; 46(3): 535-49.
[http://dx.doi.org/10.1007/s11064-020-03190-0] [PMID: 33548035]
[42]
Wei P, Chen C, Wu Y, et al. Neuroprotection of indole-derivative compound nc001-8 by the regulation of the NRF2 pathway in parkinson’ s disease cell models. Oxid Med Cell Longev 2019; 2019: 5074367.
[PMID: 31781339]
[43]
Chen J, Tao L, Xiao W, et al. Bioorganic & medicinal chemistry letters design, synthesis and biological evaluation of novel chiral oxazino-indoles as potential and selective neuroprotective agents against A b 25–35-induced neuronal damage. Bioorg Med Chem Lett 2016; 26(15): 3765-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.061] [PMID: 27301369]
[44]
Mohareb RM, Ahmed HH, Elmegeed GA, Abd-Elhalim MM, Shafic RW. Development of new indole-derived neuroprotective agents. Bioorg Med Chem 2011; 19(9): 2966-74.
[http://dx.doi.org/10.1016/j.bmc.2011.03.031] [PMID: 21493072]
[45]
Buemi MR, De Luca L, Chimirri A, et al. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorg Med Chem 2013; 21(15): 4575-80.
[http://dx.doi.org/10.1016/j.bmc.2013.05.044] [PMID: 23777828]
[46]
Stolc S, Snirc V M, M. Development of the new group of indole-derived neuroprotective drugs affecting oxidative stress 2006; 26: 1495-504.
[http://dx.doi.org/10.1007/s10571-006-9037-9] [PMID: 16705480]
[47]
Dadashpour S, Emami S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150: 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[48]
Al-Wabli RI, Almomen AA, Almutairi MS, Keeton AB, Piazza GA, Attia MI. New Isatin–indole conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro Antiproliferative Activity. Drug Des Devel Ther 2020; 14: 483-95.
[http://dx.doi.org/10.2147/DDDT.S227862] [PMID: 32099332]
[49]
Eldehna WM, Hassan GS, Al-Rashood ST, Alkahtani HMA. A Almehizia A, Al-Ansary GH. Marine-inspired bis-indoles possessing antiproliferative activity against breast cancer; design, synthesis, and biological evaluation. Mar Drugs 2020; 18(4): 190.
[http://dx.doi.org/10.3390/md18040190] [PMID: 32252280]
[50]
Kumari P, Mishra VS, Narayana C, Khanna A, Chakrabarty A, Sagar R. Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents. Sci Rep 2020; 10(1): 6660.
[http://dx.doi.org/10.1038/s41598-020-63377-x] [PMID: 31913322]
[51]
El-Sharief AMS, Ammar YA, Belal A, et al. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg Chem 2019; 85(85): 399-412.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.016] [PMID: 30665034]
[52]
He Z, Qiao H, Yang F, et al. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur J Med Chem 2019; 184: 111764.
[http://dx.doi.org/10.1016/j.ejmech.2019.111764] [PMID: 31614257]
[53]
Feng Y, Teng X, Gu J, Yu B, Luo Y, Ye L. Novel anti-cancer agents: Design, synthesis, biological activity, molecular docking, and MD simulations of 2, 3, 4, 5-tetrahydro-1H-pyrido-[4,3-b]indole derivatives. Med Chem Res 2019; 28(2): 133-42.
[http://dx.doi.org/10.1007/s00044-018-2271-0]
[54]
Youssif BGM, Abdelrahman MH, Abdelazeem AH, et al. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive ox-ygen species production. Eur J Med Chem 2018; 146: 260-73.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.042] [PMID: 29407956]
[55]
La Regina G, Bai R, Coluccia A, et al. New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. Eur J Med Chem 2018; 152: 283-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.042] [PMID: 29730191]
[56]
Peerzada MN, Khan P, Ahmad K, Hassan MI, Azam A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur J Med Chem 2018; 155: 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.034] [PMID: 29852328]
[57]
Shehab WS, El-Bassyouni GT. Synthesis and cyclization of β-keto-enol derivatives tethered indole and pyrazole as potential antimicro-bial and anticancer activity. J Indian Chem Soc 2018; 15(7): 1639-45.
[http://dx.doi.org/10.1007/s13738-018-1362-7]
[58]
Preti D, Romagnoli R, Rondanin R, et al. Design, synthesis, in vitro antiproliferative activity and apoptosis-inducing studies of 1-(3′,4′,5′-trimethoxyphenyl)-3-(2′-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. J Enzyme Inhib Med Chem 2018; 33(1): 1225-38.
[http://dx.doi.org/10.1080/14756366.2018.1493473] [PMID: 30141353]
[59]
Amr AEGE, Abdalla MM, Al-Omar MA, Elsayed EA. Anti-ovarian and anti-breast cancers with dual topoisomerase ii/braf600e inhibitors activities of some substituted indole derivatives. Biomed Res 2017; 28(1): 75-80.
[60]
Narsimha S, Satheesh Kumar N, Kumara Swamy B, Vasudeva Reddy N, Althaf Hussain SK, Srinivasa Rao M. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg Med Chem Lett 2016; 26(6): 1639-44.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.055] [PMID: 26873415]
[61]
Sreenivasulu R, Sujitha P, Jadav SS, Ahsan MJ, Kumar CG, Raju RR. Synthesis, antitumor evaluation, and molecular docking studies of indole-indazolyl hydrazide-hydrazone derivatives. Monatsh Chem 2017; 148(2): 305-14.
[http://dx.doi.org/10.1007/s00706-016-1750-6]
[62]
Hu H, Wu J, Ao M, et al. Synthesis, structure-activity relationship studies and biological evaluation of novel 2,5-disubstituted indole derivatives as anticancer agents. Chem Biol Drug Des 2016; 88(5): 766-78.
[http://dx.doi.org/10.1111/cbdd.12808] [PMID: 27315790]
[63]
Laxmi SV, Rajitha G, Rajitha B, Rao AJ. Photochemical synthesis and anticancer activity of barbituric acid, thiobarbituric acid, thiosemi-carbazide, and isoniazid linked to 2-phenyl indole derivatives. J Chem Biol 2016; 9(2): 57-63.
[http://dx.doi.org/10.1007/s12154-015-0148-y] [PMID: 27118996]
[64]
Wang G, Li C, He L, et al. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg Med Chem 2014; 22(7): 2060-79.
[http://dx.doi.org/10.1016/j.bmc.2014.02.028] [PMID: 24629450]
[65]
Choppara P, Bethu MS, Vara Prasad Y, et al. Synthesis, characterization and cytotoxic investigations of novel bis(indole) analogues besides antimicrobial study. Arab J Chem 2019; 12(8): 2721-31.
[http://dx.doi.org/10.1016/j.arabjc.2015.05.015]
[66]
Kaur H, Singh J, Narasimhan B. Indole hybridized diazenyl derivatives: Synthesis, antimicrobial activity, cytotoxicity evaluation and docking studies. BMC Chem 2019; 13(1): 65.
[http://dx.doi.org/10.1186/s13065-019-0580-0] [PMID: 31384812]
[67]
Tetali SR, Kunapaeddi E, Mailavaram RP, et al. Current advances in the clinical development of anti-tubercular agents. Tuberculosis (Edinb) 2020; 125: 101989.
[http://dx.doi.org/10.1016/j.tube.2020.101989] [PMID: 32957054]
[68]
Dogamanti A, Chiranjeevi P, Aamate VK, et al. Indole-fused spirochromenes as potential anti-tubercular agents: Design, synthesis and in vitro evaluation. Mol Divers 2020; 25(4): 2137-48.
[http://dx.doi.org/10.1007/s11030-020-10108-z] [PMID: 32474889]
[69]
Ramesh D, Joji A, Vijayakumar BG, Sethumadhavan A, Mani M, Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur J Med Chem 2020; 198: 112358.
[http://dx.doi.org/10.1016/j.ejmech.2020.112358] [PMID: 32361610]
[70]
Alsayed SSR, Lun S, Bailey AW, et al. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of Mycobacterium tuberculosis and paediatric brain tumour cells. RSC Advances 2021; 11(26): 15497-511.
[http://dx.doi.org/10.1039/D0RA10728J] [PMID: 35481189]
[71]
Desai NC, Somani H, Trivedi A, et al. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg Med Chem Lett 2016; 26(7): 1776-83.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.043] [PMID: 26920799]
[72]
Khan GA, Javeed A, Gowhar AN, Umer JP, Ratnesh D. Porous CuO catalysed green synthesis of some novel 3-alkylated indoles as potent antitubercular agents. J Saudi Chem Soc 2018; 22(1): 6-15.
[http://dx.doi.org/10.1016/j.jscs.2016.03.009]
[73]
Stec J, Onajole OK, Lun S, et al. Indole-2-carboxamide-based MmpL3 inhibitors show exceptional antitubercular activity in an animal model of tuberculosis infection. J Med Chem 2016; 59(13): 6232-47.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00415] [PMID: 27275668]
[74]
Tabbi A, Kaplancikli ZA, Tebbani D, et al. Synthesis of novel thiazolylpyrazoline derivatives and evaluation of their antimicrobial activities and cytotoxicities. Turk J Chem 2016; 40(4): 641-54.
[http://dx.doi.org/10.3906/kim-1512-12]
[75]
Deswal S. Naveen, Tittal RK, Ghule Vikas D, Lal K, Kumar A. 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J Mol Struct 2020; 1209: 127982.
[http://dx.doi.org/10.1016/j.molstruc.2020.127982]
[76]
Angelova VT, Pencheva T, Vassilev N, Simeonova R, Momekov G, Valcheva V. New indole and indazole derivatives as potential anti-mycobacterial agents. Med Chem Res 2019; 28(4): 485-97.
[http://dx.doi.org/10.1007/s00044-019-02293-w]
[77]
Raghavender M, Shankar B, Jalapathi P, Perugu S. Synthesis, antibacterial activity, and cytotoxicity of newly synthesized n-substituted 5,6-dimethoxy-1h-indole derivatives. Russ J Gen Chem 2019; 89(7): 1496-501.
[http://dx.doi.org/10.1134/S107036321907020X]
[78]
Nazia T, Mahesh K, Oberoi J. Synthesis and evaluation of anti-bacterial potential of imine analogs derived from different substituted 3-acetyl indole and amino pyrazine. World J Pharm Res 2018; 7(4): 325-34.
[79]
Abo-Ashour MF, Eldehna WM, George RF, et al. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents. Eur J Med Chem 2018; 160: 49-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.008] [PMID: 30317025]
[80]
Al-Wabli RI, Alsulami MA, Bukhari SI, Moubayed NMS, Al-Mutairi MS, Attia MI. Design, synthesis and antimicrobial activity of certain new indole-1,2,4-triazole conjugates. Molecules 2021; 26(8): 2292-305.
[http://dx.doi.org/10.3390/molecules26082292] [PMID: 33920952]
[81]
Sayed M, Kamal El-Dean AM, Ahmed M, Hassanien R. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synth Commun 2018; 48(4): 413-21.
[http://dx.doi.org/10.1080/00397911.2017.1403627]
[82]
Halawa AH, El-Gilil SMA, Bedair AH, et al. Synthesis, biological activity and molecular modeling study of new Schiff bases incorporated with indole moiety. Z Naturforsch C J Biosci 2017; 72(11-12): 467-75.
[http://dx.doi.org/10.1515/znc-2017-0025] [PMID: 28525356]
[83]
Liu HB, Lauro G, O’Connor RD, et al. Tulongicin, an antibacterial tri-indole alkaloid from a deep-water Topsentia sp. Sponge. J Nat Prod 2017; 80(9): 2556-60.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00452] [PMID: 28837335]
[84]
Rajaraman D, Sundararajan G, Loganath NK, Krishnasamy K. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies. J Mol Struct 2017; 1127: 597-610.
[http://dx.doi.org/10.1016/j.molstruc.2016.08.021]
[85]
Hussain AZ, Meeran MN, Sankar A. Synthesis, characterization and antimicrobial activity of spiro-4-thiazolidione derivatives from 5-substituted indole-2,3-dione. Der Pharma Chem 2016; 8(2): 292-6.
[http://dx.doi.org/10.7598/cst2016.1202]
[86]
Namasivayam V, Vanangamudi M, Kramer VG, et al. The journey of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) from lab to clinic. J Med Chem 2019; 62(10): 4851-83.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00843] [PMID: 30516990]
[87]
Zhou G, Chu S, Nemati A, et al. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur J Med Chem 2019; 161: 533-42.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.048] [PMID: 30390441]
[88]
Liu YP, Liu QL, Zhang XL, et al. Bioactive monoterpene indole alkaloids from Nauclea officinalis. Bioorg Chem 2019; 83: 1-5.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.013] [PMID: 30339860]
[89]
El-Hussieny M, El-Sayed NF, Ewies EF, Ibrahim NM, Mahran MRH, Fouad MA. Synthesis, molecular docking and biological evaluation of 2-(Thiophen-2-Yl)-1H-indoles as potent hiv-1 non-nucleoside reverse transcriptase inhibitors. Elsevier Inc. 2020; Vol. 95.
[http://dx.doi.org/10.1016/j.bioorg.2019.103521]
[90]
Zhao T, Meng Q, Kang D, et al. Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing. Eur J Med Chem 2019; 182: 111619.
[http://dx.doi.org/10.1016/j.ejmech.2019.111619] [PMID: 31434039]
[91]
Debnath B, Wang P, Yang L, Zheng Y, Ganguly S. Synthesis and biological evaluation of novel (2-Oxo-3-(Arylimino) Indolin-1-Yl)-N-Aryl propanamides as anti-human immunodeficiency agents. Asian J Pharm Clin Res 2018; 11(12): 318-24.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i12.27288]
[92]
Dousson C, Alexandre FR, Amador A, et al. Discovery of the Aryl-phospho-indole IDX899, a highly potent anti-HIV Non-nucleoside reverse transcriptase inhibitor. J Med Chem 2016; 59(5): 1891-8.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01430] [PMID: 26804933]
[93]
Patel PA, Kvaratskhelia N, Mansour Y, et al. Indole-based allosteric inhibitors of HIV-1 integrase. Bioorg Med Chem Lett 2016; 26(19): 4748-52.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.037] [PMID: 27568085]
[94]
Han X, Wu H, Wang W, et al. Synthesis and SARs of indole-based α-amino acids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Org Biomol Chem 2014; 12(41): 8308-17.
[http://dx.doi.org/10.1039/C4OB01333F] [PMID: 25209054]
[95]
Sanna G, Madeddu S, Giliberti G, et al. Synthesis and biological evaluation of novel indole-derived thioureas. Molecules 2018; 23(10): 2554.
[http://dx.doi.org/10.3390/molecules23102554] [PMID: 30301264]
[96]
Kasralikar HM, Jadhavar SC, Bhusare SR. Synthesis and molecular docking studies of oxochromenyl xanthenone and indolyl xanthenone derivatives as anti-HIV-1 RT inhibitors. Bioorg Med Chem Lett 2015; 25(18): 3882-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.050] [PMID: 26243372]
[97]
Schols D, Ruchko EA, Lavrenov SN, Kachala VV, Nawrozkij MB, Babushkin AS. Structural analogs of umifenovir 2*. The synthesis and antiHIV activity study of new regioisomeric (trans-2-phenylcyclopropyl)-1H-indole derivatives. Chem Heterocycl Compd 2015; 51(11-12): 978-83.
[http://dx.doi.org/10.1007/s10593-016-1807-9]
[98]
Ashok P, Lu CL, Chander S, Zheng YT, Murugesan S. Design, Synthesis, and Biological Evaluation of 1-(thiophen-2-yl)-9 H -pyrido[3,4- b]indole derivatives as anti-HIV-1 Agents. Chem Biol Drug Des 2015; 85(6): 722-8.
[http://dx.doi.org/10.1111/cbdd.12456] [PMID: 25328020]
[99]
Che Z, Tian Y, Liu S, Hu M, Chen G. Synthesis and in vitro anti-HIV-1 evaluation of some N-arylsulfonyl-3-formylindoles. Braz J Pharm Sci 2018; 54(3): 1-8.
[http://dx.doi.org/10.1590/s2175-97902018000317044]
[100]
Famiglini V, La Regina G, Coluccia A, et al. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 2014; 57(23): 9945-57.
[http://dx.doi.org/10.1021/jm5011622] [PMID: 25418038]
[101]
Elshemy HAH, Zaki MA, Mohamed EI, Khan SI, Lamie PF. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorg Chem 2020; 97: 103673.
[http://dx.doi.org/10.1016/j.bioorg.2020.103673] [PMID: 32106041]
[102]
Luthra T, Nayak AK, Bose S, Chakrabarti S, Gupta A, Sen S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur J Med Chem 2019; 168: 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019] [PMID: 30798050]
[103]
Vasconcelos SNS, Meissner KA, Ferraz WR, Trossini GHG, Wrenger C, Stefani HA. Indole-3-glyoxyl tyrosine: synthesis and antimalarial activity against Plasmodium falciparum. Future Med Chem 2019; 11(6): 525-38.
[http://dx.doi.org/10.4155/fmc-2018-0246] [PMID: 30916995]
[104]
Santos SA, Lukens AK, Coelho L, et al. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. Eur J Med Chem 2015; 102: 320-33.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.047] [PMID: 26295174]
[105]
Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res 2017; 124: 126-45.
[http://dx.doi.org/10.1016/j.phrs.2017.08.002] [PMID: 28803136]
[106]
Shaker AMM, Abdelall EKA, Abdellatif KRA, Abdel-Rahman HM. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem 2020; 14(1): 23.
[http://dx.doi.org/10.1186/s13065-020-00675-5] [PMID: 32259135]
[107]
Al-Ostoot FH, Geetha DV, Mohammed YHE, Akhileshwari P, Sridhar MA, Khanum SA. Design-based synthesis, molecular docking analysis of an anti-inflammatory drug, and geometrical optimization and interaction energy studies of an indole acetamide derivative. J Mol Struct 2020; 1202: 127244.
[http://dx.doi.org/10.1016/j.molstruc.2019.127244]
[108]
Huang Y, Zhang B, Li J, et al. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur J Med Chem 2019; 180: 41-50.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.004] [PMID: 31299586]
[109]
Song Z, Zhou Y, Zhang W, et al. Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur J Med Chem 2019; 171: 54-65.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.022] [PMID: 30909020]
[110]
Abraham R, Prakash P, Mahendran K, Ramanathan M. A novel series of N-acyl substituted indole-linked benzimidazoles and naph-thoimidazoles as potential anti inflammatory, anti biofilm and anti microbial agents. Microb Pathog 2018; 114(114): 409-13.
[http://dx.doi.org/10.1016/j.micpath.2017.12.021] [PMID: 29233780]
[111]
Amin NH, El-Saadi MT, Hefny AA, Abdelazeem AH, Elshemy HAH, Abdellatif KRA. Anti-inflammatory indomethacin analogs endowed with preferential COX-2 inhibitory activity. Future Med Chem 2018; 10(21): 2521-35.
[http://dx.doi.org/10.4155/fmc-2018-0224] [PMID: 30518260]
[112]
Ugwu DI, Okoro UC, Ukoha PO, Gupta A, Okafor SN. Novel anti-inflammatory and analgesic agents: Synthesis, molecular docking and Moringa oleifera studies. J Enzyme Inhib Med Chem 2018; 33(1): 405-15.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[113]
Prajapati TR. Synthesis and anti-inflammatory activity of some newer potential isoxazoline derivatives of indole. Int J Environm Reha-bilit Conserv 2018; (2): 87-93.
[http://dx.doi.org/10.31786/09756272.18.9.2.213]
[114]
Kumar S, Aggarwal R, Kumar V, et al. Solvent-free synthesis of bacillamide analogues as novel cytotoxic and anti-inflammatory agents. Eur J Med Chem 2016; 123: 718-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.033] [PMID: 27521588]
[115]
Liu Z, Tang L, Zhu H, et al. Design, synthesis, and structure–activity relationship study of novel indole-2-carboxamide derivatives as anti-inflammatory agents for the treatment of sepsis. J Med Chem 2016; 59(10): 4637-50.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02006] [PMID: 27142640]
[116]
Gonçalves GA, Spillere AR, et al. das Neves GM, Natural and synthetic coumarins as antileishmanial agents: A review. Eur J Med Chem 2020; 203: 112514.
[http://dx.doi.org/10.1016/j.ejmech.2020.112514] [PMID: 32668302]
[117]
Ashok P, Chander S, Smith TK, Prakash SR, Jha PN, Sankaranarayanan M. Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorg Chem 2019; 84: 98-105.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.037] [PMID: 30500524]
[118]
Porwal S, Gupta S, Chauhan PMS. gem -Dithioacetylated indole derivatives as novel antileishmanial agents. Bioorg Med Chem Lett 2017; 27(20): 4643-6.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.018] [PMID: 28927767]
[119]
Félix MB, de Souza ER, de Lima MCA, et al. Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg Med Chem 2016; 24(18): 3972-7.
[http://dx.doi.org/10.1016/j.bmc.2016.04.057] [PMID: 27515718]
[120]
Shah U, Patel S, Patel M, Upadhayay J. Molecular docking and] in silico ADMET study reveals flavonoids as a potential inhibitor of aromatase. Lett Drug Des Discov 2017; 14(11): 1267-76.
[http://dx.doi.org/10.2174/1570180814666170327161908]
[121]
Fantacuzzi M, De Filippis B, Gallorini M, et al. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur J Med Chem 2020; 185: 111815.
[http://dx.doi.org/10.1016/j.ejmech.2019.111815] [PMID: 31732252]
[122]
Taha M, Imran S, Rahim F, Wadood A, Khan KM. Oxindole based oxadiazole hybrid analogs: Novel α -glucosidase inhibitors. Bioorg Chem 2018; 76: 273-80.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.001] [PMID: 29223804]
[123]
Islam MS, Barakat A, Al-Majid AM, et al. Catalytic asymmetric synthesis of indole derivatives as novel α-glucosidase inhibitors] in vitro. Bioorg Chem 2018; 79: 350-4.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.004] [PMID: 29807208]
[124]
Eshun-Wilson L, Zhang R, Portran D, et al. Effects of α-tubulin acetylation on microtubule structure and stability. Proc Natl Acad Sci USA 2019; 116(21): 10366-71.
[http://dx.doi.org/10.1073/pnas.1900441116] [PMID: 31072936]
[125]
Diao PC, Jian XE, Chen P, et al. Design, synthesis and biological evaluation of novel indole-based oxalamide and aminoacetamide derivatives as tubulin polymerization inhibitors. Bioorg Med Chem Lett 2020; 30(2): 126816.
[http://dx.doi.org/10.1016/j.bmcl.2019.126816] [PMID: 31753698]
[126]
Li W, Shuai W, Sun H, et al. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur J Med Chem 2019; 163: 428-42.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.070] [PMID: 30530194]
[127]
Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM. Studying hepatitis C virus: Making the best of a bad virus. J Virol 2007; 81(17): 8853-67.
[http://dx.doi.org/10.1128/JVI.00753-07] [PMID: 17522203]
[128]
Zoidis G, Giannakopoulou E, Stevaert A, et al. Novel indole-flutimide heterocycles with activity against influenza PA endonuclease and hepatitis C virus. MedChemComm 2016; 7(3): 447-56.
[http://dx.doi.org/10.1039/C5MD00439J]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy