Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration

Author(s): Miriam Sciaccaluga, Gabriele Ruffolo, Eleonora Palma and Cinzia Costa*

Volume 21, Issue 8, 2023

Published on: 05 May, 2023

Page: [1736 - 1754] Pages: 19

DOI: 10.2174/1570159X21666230504160948

Price: $65

Abstract

Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or “disease-modifying” properties.

Graphical Abstract

[1]
Beghi, E. The epidemiology of epilepsy. Neuroepidemiology, 2020, 54(2), 185-191.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[2]
Austin, J.K.; Caplan, R. Behavioral and psychiatric comorbidities in pediatric epilepsy: Toward an integrative model. Epilepsia, 2007, 48(9), 1639-1651.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01154.x] [PMID: 17565593]
[3]
Kanner, A.M. Psychiatric comorbidities in epilepsy: Should they be considered in the classification of epileptic disorders? Epilepsy Behav, 2016, 64(Pt B), 306-308.
[http://dx.doi.org/10.1016/j.yebeh.2016.06.040] [PMID: 27884642]
[4]
Reilly, C.; Atkinson, P.; Das, K.B.; Chin, R.F.M.C.; Aylett, S.E.; Burch, V.; Gillberg, C.; Scott, R.C.; Neville, B.G.R. Neurobehavioral comorbidities in children with active epilepsy: A population-based study. Pediatrics, 2014, 133(6), e1586-e1593.
[http://dx.doi.org/10.1542/peds.2013-3787] [PMID: 24864167]
[5]
Bertelsen, E.N.; Larsen, J.T.; Petersen, L.; Christensen, J.; Dalsgaard, S. Childhood epilepsy, febrile seizures, and subsequent risk of ADHD. Pediatrics, 2016, 138(2), e20154654.
[http://dx.doi.org/10.1542/peds.2015-4654] [PMID: 27412639]
[6]
Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: Current concepts and future perspectives. Lancet Neurol., 2016, 15(1), 106-115.
[http://dx.doi.org/10.1016/S1474-4422(15)00225-2] [PMID: 26549780]
[7]
Seidenberg, M.; Pulsipher, D.T.; Hermann, B. Association of epilepsy and comorbid conditions. Future Neurol., 2009, 4(5), 663-668.
[http://dx.doi.org/10.2217/fnl.09.32] [PMID: 20161538]
[8]
Colmers, P.L.W.; Maguire, J. Network dysfunction in comorbid psychiatric illnesses and epilepsy. Epilepsy Curr., 2020, 20(4), 205-210.
[http://dx.doi.org/10.1177/1535759720934787] [PMID: 32628514]
[9]
Lignani, G.; Baldelli, P.; Marra, V. Homeostatic plasticity in epilepsy. Front. Cell. Neurosci., 2020, 14, 197.
[http://dx.doi.org/10.3389/fncel.2020.00197] [PMID: 32676011]
[10]
Powell, K.L.; Lukasiuk, K.; O’Brien, T.J.; Pitkänen, A. Are alterations in transmitter receptor and ion channel expression responsible for epilepsies? Adv. Exp. Med. Biol., 2014, 813, 211-229.
[http://dx.doi.org/10.1007/978-94-017-8914-1_17] [PMID: 25012379]
[11]
Rao, V.R.; Lowenstein, D.H. Epilepsy. Curr. Biol., 2015, 25(17), R742-R746.
[http://dx.doi.org/10.1016/j.cub.2015.07.072] [PMID: 26325130]
[12]
Pizzo, L.; Jensen, M.; Polyak, A.; Rosenfeld, J.A.; Mannik, K.; Krishnan, A.; McCready, E.; Pichon, O.; Le Caignec, C.; Van Dijck, A.; Pope, K.; Voorhoeve, E.; Yoon, J.; Stankiewicz, P.; Cheung, S.W.; Pazuchanics, D.; Huber, E.; Kumar, V.; Kember, R.L.; Mari, F.; Curró, A.; Castiglia, L.; Galesi, O.; Avola, E.; Mattina, T.; Fichera, M.; Mandarà, L.; Vincent, M.; Nizon, M.; Mercier, S.; Bénéteau, C.; Blesson, S.; Martin-Coignard, D.; Mosca-Boidron, A.L.; Caberg, J.H.; Bucan, M.; Zeesman, S.; Nowaczyk, M.J.M.; Lefebvre, M.; Faivre, L.; Callier, P.; Skinner, C.; Keren, B.; Perrine, C.; Prontera, P.; Marle, N.; Renieri, A.; Reymond, A.; Kooy, R.F.; Isidor, B.; Schwartz, C.; Romano, C.; Sistermans, E.; Amor, D.J.; Andrieux, J.; Girirajan, S. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genet. Med., 2019, 21(4), 816-825.
[http://dx.doi.org/10.1038/s41436-018-0266-3] [PMID: 30190612]
[13]
Perucca, P.; Bahlo, M.; Berkovic, S.F. The genetics of epilepsy. Annu. Rev. Genomics Hum. Genet., 2020, 21(1), 205-230.
[http://dx.doi.org/10.1146/annurev-genom-120219-074937] [PMID: 32339036]
[14]
Rho, J.M.; White, H.S. Brief history of anti‐seizure drug development. Epilepsia Open, 2018, 3(S2), 114-119.
[http://dx.doi.org/10.1002/epi4.12268]
[15]
Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107966] [PMID: 32120063]
[16]
Löscher, W. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: Preclinical and clinical evidence for the treatment or prevention of epilepsy. Front. Pharmacol., 2021, 12, 730257.
[http://dx.doi.org/10.3389/fphar.2021.730257] [PMID: 34776956]
[17]
Calabresi, P.; Picconi, B.; Saulle, E.; Centonze, D.; Hainsworth, A.H.; Bernardi, G. Is pharmacological neuroprotection dependent on reduced glutamate release? Stroke, 2000, 31(3), 766-773.
[http://dx.doi.org/10.1161/01.STR.31.3.766] [PMID: 10700517]
[18]
Rogawski, M.A.; Löscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci., 2004, 5(7), 553-564.
[http://dx.doi.org/10.1038/nrn1430] [PMID: 15208697]
[19]
Pitkänen, A.; Sutula, T.P. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol., 2002, 1(3), 173-181.
[http://dx.doi.org/10.1016/S1474-4422(02)00073-X] [PMID: 12849486]
[20]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[21]
Kapoor, R.; Furby, J.; Hayton, T.; Smith, K.J.; Altmann, D.R.; Brenner, R.; Chataway, J.; Hughes, R.A.C.; Miller, D.H. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol., 2010, 9(7), 681-688.
[http://dx.doi.org/10.1016/S1474-4422(10)70131-9] [PMID: 20621711]
[22]
Schapira, A.H.V.; Olanow, C.W.; Greenamyre, J.T.; Bezard, E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet, 2014, 384(9942), 545-555.
[http://dx.doi.org/10.1016/S0140-6736(14)61010-2] [PMID: 24954676]
[23]
Brooks-Kayal, A. Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 2011, 52(S1), 13-20.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02906.x] [PMID: 21214535]
[24]
Kwan, P.; Schachter, S.C.; Brodie, M.J. Drug-resistant epilepsy. N. Engl. J. Med., 2011, 365(10), 919-926.
[http://dx.doi.org/10.1056/NEJMra1004418] [PMID: 21899452]
[25]
Golyala, A.; Kwan, P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure, 2017, 44, 147-156.
[http://dx.doi.org/10.1016/j.seizure.2016.11.022] [PMID: 28017578]
[26]
Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr; Forsgren, L.; French, J.A.; Glynn, M.; Hesdorffer, D.C.; Lee, B.I.; Mathern, G.W.; Moshé, S.L.; Perucca, E.; Scheffer, I.E.; Tomson, T.; Watanabe, M.; Wiebe, S. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia, 2014, 55(4), 475-482.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[27]
Moavero, R.; Santarone, M.E.; Galasso, C.; Curatolo, P. Cognitive and behavioral effects of new antiepileptic drugs in pediatric epilepsy. Brain Dev., 2017, 39(6), 464-469.
[http://dx.doi.org/10.1016/j.braindev.2017.01.006] [PMID: 28202262]
[28]
Quon, R.J.; Mazanec, M.T.; Schmidt, S.S.; Andrew, A.S.; Roth, R.M.; MacKenzie, T.A.; Sajatovic, M.; Spruill, T.; Jobst, B.C. Antiepileptic drug effects on subjective and objective cognition. Epilepsy Behav, 2020, 104(Pt A), 106906.
[http://dx.doi.org/10.1016/j.yebeh.2020.106906]
[29]
Gillham, R.A.; Williams, N.; Wiedmann, K.; Butler, E.; Larkin, J.G.; Brodie, M.J. Concentration-effect relationships with carbamazepine and its epoxide on psychomotor and cognitive function in epileptic patients. J. Neurol. Neurosurg. Psychiatry, 1988, 51(7), 929-933.
[http://dx.doi.org/10.1136/jnnp.51.7.929] [PMID: 3204401]
[30]
Aldenkamp, A.P.; Krom, M.D.; Reijs, R. Newer antiepileptic drugs and cognitive issues. Epilepsia, 2003, 44(S4), 21-29.
[http://dx.doi.org/10.1046/j.1528-1157.44.s4.3.x] [PMID: 12823566]
[31]
Henske, E.P.; Jóźwiak, S.; Kingswood, J.C.; Sampson, J.R.; Thiele, E.A. Tuberous sclerosis complex. Nat. Rev. Dis. Primers, 2016, 2(1), 16035.
[http://dx.doi.org/10.1038/nrdp.2016.35] [PMID: 27226234]
[32]
Koene, L.M.C.; Grondelle, S.E.; Proietti Onori, M.; Wallaard, I.; Kooijman, N.H.R.M.; Oort, A.; Schreiber, J.; Elgersma, Y. Effects of antiepileptic drugs in a new TSC/mTOR‐dependent epilepsy mouse model. Ann. Clin. Transl. Neurol., 2019, 6(7), 1273-1291.
[http://dx.doi.org/10.1002/acn3.50829] [PMID: 31353861]
[33]
Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; Wojdan, K.; Sijko, K.; Głowacka-Walas, J.; Borkowska, J.; Sadowski, K.; Domańska-Pakieła, D.; Moavero, R.; Hertzberg, C.; Hulshof, H.; Scholl, T.; Benova, B.; Aronica, E.; Ridder, J.; Lagae, L.; Jóźwiak, S.; Anink, J.; Aronica, E.; Benova, B.; Benvenuto, A.; Blazejczyk, M.; Bongaerts, A.; Borkowska, J.; Breuillard, D.; Chmielewski, D.; Curatolo, P.; Dabrowska, M.; Domańska-Pakieła, D.; Feucht, M.; Giannikou, K.; Głowacka-Walas, J.; Hamieh, L.; Harȩza, A.; Hertzberg, C.; Hulshof, H.; Huschner, F.; Iyer, A.; Jansen, A.; Jansen, F.; Janssen, B.; Jaworski, J.; Jùźwiak, S.; Kaczorowska-Frontczak, M.; Kotulska, K.; Krsek, P.; Kwiatkowski, D.; Lagae, L.; Lehmann, K.; Leusman, A.; Maćkowiak, N.; Mills, J.; Moavero, R.; Muelebner, A.; Nabbout, R.; Ridder, J.; Riney, K.; Sadowski, K.; Samueli, S.; Scheldeman, C.; Scholl, T.; Sciuto, A.; Sijko, K.; Słowińska, M.; Tempes, A.; Scheppingen, J.; Verhelle, B.; Vervisch, J.; Urbańska, M.; Weschke, B.; Wojdan, K. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann. Neurol., 2021, 89(2), 304-314.
[http://dx.doi.org/10.1002/ana.25956] [PMID: 33180985]
[34]
Curatolo, P.; Verdecchia, M.; Bombardieri, R. Vigabatrin for tuberous sclerosis complex. Brain Dev., 2001, 23(7), 649-653.
[http://dx.doi.org/10.1016/S0387-7604(01)00290-X] [PMID: 11701271]
[35]
Curatolo, P.; Moavero, R.; van Scheppingen, J.; Aronica, E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev. Neurother., 2018, 18(3), 185-201.
[http://dx.doi.org/10.1080/14737175.2018.1428562] [PMID: 29338461]
[36]
Curatolo, P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr. Neurol., 2015, 52(3), 281-289.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.10.028] [PMID: 25591831]
[37]
Jaworski, J.; Spangler, S.; Seeburg, D.P.; Hoogenraad, C.C.; Sheng, M. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci., 2005, 25(49), 11300-11312.
[http://dx.doi.org/10.1523/JNEUROSCI.2270-05.2005] [PMID: 16339025]
[38]
von der Brelie, C.; Waltereit, R.; Zhang, L.; Beck, H.; Kirschstein, T. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur. J. Neurosci., 2006, 23(3), 686-692.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04594.x] [PMID: 16487150]
[39]
Bockaert, J.; Marin, P. mTOR in brain physiology and pathologies. Physiol. Rev., 2015, 95(4), 1157-1187.
[http://dx.doi.org/10.1152/physrev.00038.2014] [PMID: 26269525]
[40]
Brunklaus, A.; Zuberi, S.M. Dravet syndrome-From epileptic encephalopathy to channelopathy. Epilepsia, 2014, 55(7), 979-984.
[http://dx.doi.org/10.1111/epi.12652] [PMID: 24836964]
[41]
Ruffolo, G.; Cifelli, P.; Roseti, C.; Thom, M.; van Vliet, E.A.; Limatola, C.; Aronica, E.; Palma, E. A novel GABAergic dysfunction in human Dravet syndrome. Epilepsia, 2018, 59(11), 2106-2117.
[http://dx.doi.org/10.1111/epi.14574] [PMID: 30306542]
[42]
Stern, W.M.; Sander, J.W.; Rothwell, J.C.; Sisodiya, S.M. Impaired intracortical inhibition demonstrated in vivo in people with Dravet syndrome. Neurology, 2017, 88(17), 1659-1665.
[http://dx.doi.org/10.1212/WNL.0000000000003868] [PMID: 28356460]
[43]
Fisher, J.L. The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator. Neuropharmacology, 2009, 56(1), 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.004] [PMID: 18585399]
[44]
Laurie, D.J.; Wisden, W.; Seeburg, P.H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci., 1992, 12(11), 4151-4172.
[http://dx.doi.org/10.1523/JNEUROSCI.12-11-04151.1992] [PMID: 1331359]
[45]
Cherubini, E.; Gaiarsa, J.L.; Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci., 1991, 14(12), 515-519.
[http://dx.doi.org/10.1016/0166-2236(91)90003-D] [PMID: 1726341]
[46]
Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci., 2002, 3(9), 728-739.
[http://dx.doi.org/10.1038/nrn920] [PMID: 12209121]
[47]
Talos, D.M.; Sun, H.; Kosaras, B.; Joseph, A.; Folkerth, R.D.; Poduri, A.; Madsen, J.R.; Black, P.M.; Jensen, F.E. Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann. Neurol., 2012, 71(4), 539-551.
[http://dx.doi.org/10.1002/ana.22696] [PMID: 22447678]
[48]
Tang, X.; Kim, J.; Zhou, L.; Wengert, E.; Zhang, L.; Wu, Z.; Carromeu, C.; Muotri, A.R.; Marchetto, M.C.N.; Gage, F.H.; Chen, G. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc. Natl. Acad. Sci., 2016, 113(3), 751-756.
[http://dx.doi.org/10.1073/pnas.1524013113] [PMID: 26733678]
[49]
Ruffolo, G.; Cifelli, P.; Miranda-Lourenço, C.; De Felice, E.; Limatola, C.; Sebastião, A.M.; Diógenes, M.J.; Aronica, E.; Palma, E. Rare diseases of neurodevelopment: Maintain the mystery or use a dazzling tool for investigation? the case of rett syndrome. Neuroscience, 2019, 439, 146-152.
[PMID: 31229630]
[50]
Braat, S.; Kooy, R.F. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron, 2015, 86(5), 1119-1130.
[http://dx.doi.org/10.1016/j.neuron.2015.03.042] [PMID: 26050032]
[51]
Kaila, K.; Price, T.J.; Payne, J.A.; Puskarjov, M.; Voipio, J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci., 2014, 15(10), 637-654.
[http://dx.doi.org/10.1038/nrn3819] [PMID: 25234263]
[52]
Ben-Ari, Y.; Tyzio, R. Is it safe to use a diuretic to treat seizures early in development? Epilepsy Curr., 2011, 11(6), 192-195.
[http://dx.doi.org/10.5698/1535-7511-11.6.192] [PMID: 22131900]
[53]
Ruffolo, G.; Iyer, A.; Cifelli, P.; Roseti, C.; Mühlebner, A.; van Scheppingen, J.; Scholl, T.; Hainfellner, J.A.; Feucht, M.; Krsek, P.; Zamecnik, J.; Jansen, F.E.; Spliet, W.G.M.; Limatola, C.; Aronica, E.; Palma, E. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions. Neurobiol. Dis., 2016, 95, 93-101.
[http://dx.doi.org/10.1016/j.nbd.2016.07.014] [PMID: 27425893]
[54]
Löscher, W.; Kaila, K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology, 2022, 205, 108910.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108910] [PMID: 34883135]
[55]
Soul, J.S.; Bergin, A.M.; Stopp, C.; Hayes, B.; Singh, A.; Fortuno, C.R.; O’Reilly, D.; Krishnamoorthy, K.; Jensen, F.E.; Rofeberg, V.; Dong, M.; Vinks, A.A.; Wypij, D.; Staley, K.J. A pilot randomized, controlled, double‐blind trial of bumetanide to treat neonatal seizures. Ann. Neurol., 2021, 89(2), 327-340.
[http://dx.doi.org/10.1002/ana.25959] [PMID: 33201535]
[56]
Lykke, K.; Töllner, K.; Feit, P.W.; Erker, T.; MacAulay, N.; Löscher, W. The search for NKCC1-selective drugs for the treatment of epilepsy: Structure-function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy Behav., 2016, 59, 42-49.
[http://dx.doi.org/10.1016/j.yebeh.2016.03.021] [PMID: 27088517]
[57]
Tang, X.; Drotar, J.; Li, K.; Clairmont, C.D.; Brumm, A.S.; Sullins, A.J.; Wu, H.; Liu, X.S.; Wang, J.; Gray, N.S.; Sur, M.; Jaenisch, R. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci. Transl. Med., 2019, 11(503), eaau0164.
[http://dx.doi.org/10.1126/scitranslmed.aau0164] [PMID: 31366578]
[58]
Deidda, G.; Parrini, M.; Naskar, S.; Bozarth, I.F.; Contestabile, A.; Cancedda, L. Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome. Nat. Med., 2015, 21(4), 318-326.
[http://dx.doi.org/10.1038/nm.3827] [PMID: 25774849]
[59]
Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol., 2018, 84(11), 2477-2482.
[http://dx.doi.org/10.1111/bcp.13710] [PMID: 30001569]
[60]
Cifelli, P.; Ruffolo, G.; De Felice, E.; Alfano, V.; van Vliet, E.A.; Aronica, E.; Palma, E. Phytocannabinoids in neurological diseases: Could they restore a physiological GABAergic transmission? Int. J. Mol. Sci., 2020, 21(3), 723.
[http://dx.doi.org/10.3390/ijms21030723] [PMID: 31979108]
[61]
Morano, A.; Cifelli, P.; Nencini, P.; Antonilli, L.; Fattouch, J.; Ruffolo, G.; Roseti, C.; Aronica, E.; Limatola, C.; Di Bonaventura, C.; Palma, E.; Giallonardo, A.T. Cannabis in epilepsy: From clinical practice to basic research focusing on the possible role of cannabidivarin. Epilepsia Open, 2016, 1(3-4), 145-151.
[http://dx.doi.org/10.1002/epi4.12015] [PMID: 29588939]
[62]
Steel, D.; Symonds, J.D.; Zuberi, S.M.; Brunklaus, A. Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia, 2017, 58(11), 1807-1816.
[http://dx.doi.org/10.1111/epi.13889] [PMID: 28880996]
[63]
Samanta, D. Management of Lennox-Gastaut syndrome beyond childhood: A comprehensive review. Epilepsy Behav, 2021, 114(PtA), 107612.
[http://dx.doi.org/10.1016/j.yebeh.2020.107612]
[64]
Golub, V.; Reddy, D.S. Cannabidiol therapy for refractory epilepsy and seizure disorders. Adv. Exp. Med. Biol., 2021, 1264, 93-110.
[http://dx.doi.org/10.1007/978-3-030-57369-0_7] [PMID: 33332006]
[65]
Patel, A.D.; Mazurkiewicz-Bełdzińska, M.; Chin, R.F.; Gil-Nagel, A.; Gunning, B.; Halford, J.J.; Mitchell, W.; Scott Perry, M.; Thiele, E.A.; Weinstock, A.; Dunayevich, E.; Checketts, D.; Devinsky, O. Long‐term safety and efficacy of add‐on cannabidiol in patients with Lennox-Gastaut syndrome: Results of a long‐term open‐label extension trial. Epilepsia, 2021, 62(9), 2228-2239.
[http://dx.doi.org/10.1111/epi.17000] [PMID: 34287833]
[66]
Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. N. Engl. J. Med., 2017, 376(21), 2011-2020.
[http://dx.doi.org/10.1056/NEJMoa1611618] [PMID: 28538134]
[67]
Samanta, D. A scoping review on cannabidiol therapy in tuberous sclerosis: Current evidence and perspectives for future development. Epilepsy Behav., 2022, 128, 108577.
[http://dx.doi.org/10.1016/j.yebeh.2022.108577] [PMID: 35151190]
[68]
Hess, E.J.; Moody, K.A.; Geffrey, A.L.; Pollack, S.F.; Skirvin, L.A.; Bruno, P.L.; Paolini, J.L.; Thiele, E.A. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia, 2016, 57(10), 1617-1624.
[http://dx.doi.org/10.1111/epi.13499] [PMID: 27696387]
[69]
Aronica, E.; Boer, K.; Baybis, M.; Yu, J.; Crino, P. Co-expression of cyclin D1 and phosphorylated ribosomal S6 proteins in hemimegalencephaly. Acta Neuropathol., 2007, 114(3), 287-293.
[http://dx.doi.org/10.1007/s00401-007-0225-6] [PMID: 17483958]
[70]
Bakas, T.; van Nieuwenhuijzen, P.S.; Devenish, S.O.; McGregor, I.S.; Arnold, J.C.; Chebib, M. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABA A receptors. Pharmacol. Res., 2017, 119, 358-370.
[http://dx.doi.org/10.1016/j.phrs.2017.02.022] [PMID: 28249817]
[71]
Lattanzi, S.; Trinka, E.; Striano, P.; Rocchi, C.; Salvemini, S.; Silvestrini, M.; Brigo, F. Highly purified cannabidiol for epilepsy treatment: A systematic review of epileptic conditions beyond dravet syndrome and lennox-gastaut syndrome. CNS Drugs, 2021, 35(3), 265-281.
[http://dx.doi.org/10.1007/s40263-021-00807-y] [PMID: 33754312]
[72]
Morano, A.; Fanella, M.; Albini, M.; Cifelli, P.; Palma, E.; Giallonardo, A.T.; Di Bonaventura, C. Cannabinoids in the treatment of epilepsy: Current status and future prospects. Neuropsychiatr. Dis. Treat., 2020, 16, 381-396.
[http://dx.doi.org/10.2147/NDT.S203782] [PMID: 32103958]
[73]
Klepper, J.; Akman, C.; Armeno, M.; Auvin, S.; Cervenka, M.; Cross, H.J.; De Giorgis, V.; Della Marina, A.; Engelstad, K.; Heussinger, N.; Kossoff, E.H.; Leen, W.G.; Leiendecker, B.; Monani, U.R.; Oguni, H.; Neal, E.; Pascual, J.M.; Pearson, T.S.; Pons, R.; Scheffer, I.E.; Veggiotti, P.; Willemsen, M.; Zuberi, S.M.; De Vivo, D.C. Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open, 2020, 5(3), 354-365.
[http://dx.doi.org/10.1002/epi4.12414] [PMID: 32913944]
[74]
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise, T.E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5(1), 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[75]
Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One, 2014, 9(8), e103740.
[http://dx.doi.org/10.1371/journal.pone.0103740] [PMID: 25170769]
[76]
Mazarati, A.; Sankar, R. Common mechanisms underlying epileptogenesis and the comorbidities of epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(7), a022798.
[http://dx.doi.org/10.1101/cshperspect.a022798] [PMID: 27371669]
[77]
Ambrogini, P.; Torquato, P.; Bartolini, D.; Albertini, M.C.; Lattanzi, D.; Di Palma, M.; Marinelli, R.; Betti, M.; Minelli, A.; Cuppini, R.; Galli, F. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1098-1112.
[http://dx.doi.org/10.1016/j.bbadis.2019.01.026] [PMID: 30703511]
[78]
Zimmer, T.S.; Ciriminna, G.; Arena, A.; Anink, J.J.; Korotkov, A.; Jansen, F.E.; Hecke, W.; Spliet, W.G.; Rijen, P.C.; Baayen, J.C.; Idema, S.; Rensing, N.R.; Wong, M.; Mills, J.D.; Vliet, E.A.; Aronica, E. Chronic activation of anti‐oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathol. Appl. Neurobiol., 2020, 46(6), 546-563.
[http://dx.doi.org/10.1111/nan.12596] [PMID: 31869431]
[79]
Zimmer, T.S.; David, B.; Broekaart, D.W.M.; Schidlowski, M.; Ruffolo, G.; Korotkov, A.; van der Wel, N.N.; van Rijen, P.C.; Mühlebner, A.; van Hecke, W.; Baayen, J.C.; Idema, S.; François, L.; van Eyll, J.; Dedeurwaerdere, S.; Kessels, H.W.; Surges, R.; Rüber, T.; Gorter, J.A.; Mills, J.D.; van Vliet, E.A.; Aronica, E. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol., 2021, 142(4), 729-759.
[http://dx.doi.org/10.1007/s00401-021-02348-6] [PMID: 34292399]
[80]
Kim, J.E.; Cho, K.O. Functional nutrients for epilepsy. Nutrients, 2019, 11(6), 1309.
[http://dx.doi.org/10.3390/nu11061309] [PMID: 31185666]
[81]
Pawlik, M.J.; Miziak, B.; Walczak, A.; Konarzewska, A.; Chrościńska-Krawczyk, M.; Albrecht, J.; Czuczwar, S.J. Selected molecular targets for antiepileptogenesis. Int. J. Mol. Sci., 2021, 22(18), 9737.
[http://dx.doi.org/10.3390/ijms22189737] [PMID: 34575901]
[82]
Ambrogini, P.; Minelli, A.; Galati, C.; Betti, M.; Lattanzi, D.; Ciffolilli, S.; Piroddi, M.; Galli, F.; Cuppini, R. Post-seizure α-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus. Mol. Neurobiol., 2014, 50(1), 246-256.
[http://dx.doi.org/10.1007/s12035-014-8648-2] [PMID: 24488645]
[83]
Ambrogini, P.; Albertini, M.C.; Betti, M.; Galati, C.; Lattanzi, D.; Savelli, D.; Di Palma, M.; Saccomanno, S.; Bartolini, D.; Torquato, P.; Ruffolo, G.; Olivieri, F.; Galli, F.; Palma, E.; Minelli, A.; Cuppini, R. Neurobiological correlates of alpha-tocopherol antiepileptogenic effects and microrna expression modulation in a rat model of kainate-induced seizures. Mol. Neurobiol., 2018, 55(10), 7822-7838.
[http://dx.doi.org/10.1007/s12035-018-0946-7] [PMID: 29468563]
[84]
Bowling, F.G. Pyridoxine supply in human development. Semin. Cell Dev. Biol., 2011, 22(6), 611-618.
[http://dx.doi.org/10.1016/j.semcdb.2011.05.003] [PMID: 21664474]
[85]
Rubinos, C.; Bruzzone, M.J.; Blodgett, C.; Tsai, C.; Patel, P.; Hianik, R.; Jadav, R.; Boudesseul, J.; Liu, C.; Zhu, H. Association of serum pyridoxal phosphate levels with established status epilepticus. Neurocrit. Care, 2022, 38(1), 41-51.
[PMID: 36071331]
[86]
Ghatge, M.S.; Al Mughram, M.; Omar, A.M.; Safo, M.K. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie, 2021, 183, 18-29.
[http://dx.doi.org/10.1016/j.biochi.2020.12.025] [PMID: 33421502]
[87]
Ballaz, S.J.; Rebec, G.V. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol. Res., 2019, 146, 104321.
[http://dx.doi.org/10.1016/j.phrs.2019.104321] [PMID: 31229562]
[88]
Castaneda-Arellano, R.; Beas-Zarate, C.; Feria-Velasco, A.I.; Bitar-Alatorre, E.W.; Rivera-Cervantes, M.C. From neurogenesis to neuroprotection in the epilepsy: signalling by erythropoietin. Front. Biosci., 2014, 19(8), 1445-1455.
[http://dx.doi.org/10.2741/4295] [PMID: 24896364]
[89]
Roseti, C.; Cifelli, P.; Ruffolo, G.; Barbieri, E.; Guescini, M.; Esposito, V.; Di Gennaro, G.; Limatola, C.; Giovannelli, A.; Aronica, E.; Palma, E. Erythropoietin increases GABAA currents in human cortex from TLE patients. Neuroscience, 2020, 439, 153-162.
[http://dx.doi.org/10.1016/j.neuroscience.2019.04.013] [PMID: 31047977]
[90]
Jantzie, L.L.; Getsy, P.M.; Firl, D.J.; Wilson, C.G.; Miller, R.H.; Robinson, S. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol. Cell. Neurosci., 2014, 61, 152-162.
[http://dx.doi.org/10.1016/j.mcn.2014.06.009] [PMID: 24983520]
[91]
Lin, T.W.; Harward, S.C.; Huang, Y.Z.; McNamara, J.O. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology, 2020, 167, 107734.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107734] [PMID: 31377199]
[92]
Romoli, M.; Sen, A.; Parnetti, L.; Calabresi, P.; Costa, C. Amyloid-β: A potential link between epilepsy and cognitive decline. Nat. Rev. Neurol., 2021, 17(8), 469-485.
[http://dx.doi.org/10.1038/s41582-021-00505-9] [PMID: 34117482]
[93]
Cretin, B.; Philippi, N.; Dibitonto, L.; Blanc, F. Epilepsy at the prodromal stages of neurodegenerative diseases. Psychol. Neuropsychiatr. Vieil., 2017, 15(1), 75-82.
[http://dx.doi.org/10.1684/pnv.2017.0652] [PMID: 28266344]
[94]
Sen, A.; Jette, N.; Husain, M.; Sander, J.W. Epilepsy in older people. Lancet, 2020, 395(10225), 735-748.
[http://dx.doi.org/10.1016/S0140-6736(19)33064-8] [PMID: 32113502]
[95]
Amatniek, J.C.; Hauser, W.A.; DelCastillo-Castaneda, C.; Jacobs, D.M.; Marder, K.; Bell, K.; Albert, M.; Brandt, J.; Stern, Y. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia, 2006, 47(5), 867-872.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00554.x] [PMID: 16686651]
[96]
Vossel, K.A.; Beagle, A.J.; Rabinovici, G.D.; Shu, H.; Lee, S.E.; Naasan, G.; Hegde, M.; Cornes, S.B.; Henry, M.L.; Nelson, A.B.; Seeley, W.W.; Geschwind, M.D.; Gorno-Tempini, M.L.; Shih, T.; Kirsch, H.E.; Garcia, P.A.; Miller, B.L.; Mucke, L. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol., 2013, 70(9), 1158-1166.
[http://dx.doi.org/10.1001/jamaneurol.2013.136] [PMID: 23835471]
[97]
Novak, A.; Vizjak, K.; Rakusa, M. Cognitive impairment in people with epilepsy. J. Clin. Med., 2022, 11(1), 267.
[http://dx.doi.org/10.3390/jcm11010267] [PMID: 35012007]
[98]
Black, L.C.; Schefft, B.K.; Howe, S.R.; Szaflarski, J.P.; Yeh, H.; Privitera, M.D. The effect of seizures on working memory and executive functioning performance. Epilepsy Behav., 2010, 17(3), 412-419.
[http://dx.doi.org/10.1016/j.yebeh.2010.01.006] [PMID: 20153981]
[99]
Sen, A.; Capelli, V.; Husain, M. Cognition and dementia in older patients with epilepsy. Brain, 2018, 141(6), 1592-1608.
[http://dx.doi.org/10.1093/brain/awy022] [PMID: 29506031]
[100]
Witt, J.A.; Werhahn, K.J.; Krämer, G.; Ruckes, C.; Trinka, E.; Helmstaedter, C. Cognitive-behavioral screening in elderly patients with new-onset epilepsy before treatment. Acta Neurol. Scand., 2014, 130(3), 172-177.
[http://dx.doi.org/10.1111/ane.12260] [PMID: 24796793]
[101]
Kawakami, O.; Koike, Y.; Ando, T.; Sugiura, M.; Kato, H.; Hiraga, K.; Kito, H.; Kondo, H. Incidence of dementia in patients with adult-onset epilepsy of unknown causes. J. Neurol. Sci., 2018, 395, 71-76.
[http://dx.doi.org/10.1016/j.jns.2018.09.010] [PMID: 30292966]
[102]
Liguori, C.; Costa, C.; Franchini, F.; Izzi, F.; Spanetta, M.; Cesarini, E. N.; Di Santo, S.; Manfredi, N.; Farotti, L.; Romoli, M. Cognitive performances in patients affected by late-onset epilepsy with unknown etiology: A 12-month follow-up study. Epilepsy Behav, 2019, 101(Pt A), 106592.
[http://dx.doi.org/10.1016/j.yebeh.2019.106592]
[103]
Costa, C.; Parnetti, L.; D’Amelio, M.; Tozzi, A.; Tantucci, M.; Romigi, A.; Siliquini, S.; Cavallucci, V.; Di Filippo, M.; Mazzocchetti, P.; Liguori, C.; Nobili, A.; Eusebi, P.; Mercuri, N.B.; Calabresi, P. Epilepsy, amyloid-β, and D1 dopamine receptors: A possible pathogenetic link? Neurobiol. Aging, 2016, 48, 161-171.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.025] [PMID: 27701029]
[104]
Costa, C.; Romoli, M.; Calabresi, P. Late onset epilepsy and Alzheimer’s disease: exploring the dual pathogenic role of amyloid-β. Brain, 2018, 141(8), e60.
[http://dx.doi.org/10.1093/brain/awy162] [PMID: 29893897]
[105]
Sciaccaluga, M.; Megaro, A.; Bellomo, G.; Ruffolo, G.; Romoli, M.; Palma, E.; Costa, C. An unbalanced synaptic transmission: Cause or consequence of the amyloid oligomers neurotoxicity? Int. J. Mol. Sci., 2021, 22(11), 5991.
[http://dx.doi.org/10.3390/ijms22115991] [PMID: 34206089]
[106]
Yang, J.W.; Czech, T.; Felizardo, M.; Baumgartner, C.; Lubec, G. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids, 2006, 30(4), 477-493.
[http://dx.doi.org/10.1007/s00726-005-0281-y] [PMID: 16583313]
[107]
Choi, J.; Kim, S.Y.; Kim, H.; Lim, B.C.; Hwang, H.; Chae, J.H.; Kim, K.J.; Oh, S.; Kim, E.Y.; Shin, J.S. Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: Potential prognostic biomarkers? BMC Neurol., 2020, 20(1), 85.
[http://dx.doi.org/10.1186/s12883-020-01662-y] [PMID: 32151248]
[108]
Li, A.; Choi, Y.S.; Dziema, H.; Cao, R.; Cho, H.Y.; Jung, Y.J.; Obrietan, K. Proteomic profiling of the epileptic dentate gyrus. Brain Pathol., 2010, 20(6), 1077-1089.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00414.x] [PMID: 20608933]
[109]
Hussein, A.M.; Eldosoky, M.; El-Shafey, M.; El-Mesery, M.; Ali, A.N.; Abbas, K.M.; Abulseoud, O.A. Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can. J. Physiol. Pharmacol., 2019, 97(1), 37-46.
[http://dx.doi.org/10.1139/cjpp-2018-0266] [PMID: 30308130]
[110]
Morris, M.; Sanchez, P.E.; Verret, L.; Beagle, A.J.; Guo, W.; Dubal, D.; Ranasinghe, K.G.; Koyama, A.; Ho, K.; Yu, G.Q.; Vossel, K.A.; Mucke, L. Network dysfunction in α ‐synuclein transgenic mice and human Lewy body dementia. Ann. Clin. Transl. Neurol., 2015, 2(11), 1012-1028.
[http://dx.doi.org/10.1002/acn3.257] [PMID: 26732627]
[111]
Peters, S.T.; Fahrenkopf, A.; Choquette, J.M.; Vermilyea, S.C.; Lee, M.K.; Vossel, K. Ablating tau reduces hyperexcitability and moderates electroencephalographic slowing in transgenic mice expressing A53T human α-synuclein. Front. Neurol., 2020, 11, 563.
[http://dx.doi.org/10.3389/fneur.2020.00563] [PMID: 32636798]
[112]
Tweedy, C.; Kindred, N.; Curry, J.; Williams, C.; Taylor, J.P.; Atkinson, P.; Randall, F.; Erskine, D.; Morris, C.M.; Reeve, A.K.; Clowry, G.J.; LeBeau, F.E.N. Hippocampal network hyperexcitability in young transgenic mice expressing human mutant alpha-synuclein. Neurobiol. Dis., 2021, 149, 105226.
[http://dx.doi.org/10.1016/j.nbd.2020.105226] [PMID: 33347975]
[113]
Lei, M.; Xu, H.; Li, Z.; Wang, Z.; O’Malley, T.T.; Zhang, D.; Walsh, D.M.; Xu, P.; Selkoe, D.J.; Li, S. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol. Dis., 2016, 85, 111-121.
[http://dx.doi.org/10.1016/j.nbd.2015.10.019] [PMID: 26525100]
[114]
Nygaard, H.B.; Kaufman, A.C.; Sekine-Konno, T.; Huh, L.L.; Going, H.; Feldman, S.J.; Kostylev, M.A.; Strittmatter, S.M. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimers Res. Ther., 2015, 7(1), 25.
[http://dx.doi.org/10.1186/s13195-015-0110-9] [PMID: 25945128]
[115]
Li, L.; Zhang, S.; Zhang, X.; Li, T.; Tang, Y.; Liu, H.; Yang, W.; Le, W. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2013, 10(4), 433-441.
[http://dx.doi.org/10.2174/1567205011310040008] [PMID: 23305067]
[116]
Mark, R.J.; Wesson Ashford, J.; Goodman, Y.; Mattson, M.P. Anticonvulsants attenuate amyloid β-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol. Aging, 1995, 16(2), 187-198.
[http://dx.doi.org/10.1016/0197-4580(94)00150-2] [PMID: 7777136]
[117]
Ziyatdinova, S.; Gurevicius, K.; Kutchiashvili, N.; Bolkvadze, T.; Nissinen, J.; Tanila, H.; Pitkänen, A. Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res., 2011, 94(1-2), 75-85.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.01.003] [PMID: 21300523]
[118]
Ziyatdinova, S.; Viswanathan, J.; Hiltunen, M.; Tanila, H.; Pitkänen, A. Reduction of epileptiform activity by valproic acid in a mouse model of Alzheimer’s disease is not long-lasting after treatment discontinuation. Epilepsy Res., 2015, 112, 43-55.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.02.005] [PMID: 25847338]
[119]
Shi, J.Q.; Wang, B.R.; Tian, Y.Y.; Xu, J.; Gao, L.; Zhao, S.L.; Jiang, T.; Xie, H.G.; Zhang, Y.D. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci. Ther., 2013, 19(11), 871-881.
[http://dx.doi.org/10.1111/cns.12144] [PMID: 23889921]
[120]
Williams, R.S.B.; Bate, C. Valproic acid and its congener propylisopropylacetic acid reduced the amount of soluble amyloid-β oligomers released from 7PA2 cells. Neuropharmacology, 2018, 128, 54-62.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.031] [PMID: 28947378]
[121]
McQuail, J.A.; Beas, B.S.; Kelly, K.B.; Simpson, K.L.; Frazier, C.J.; Setlow, B.; Bizon, J.L. NR2A-Containing NMDARs in the prefrontal cortex are required for working memory and associated with age-related cognitive decline. J. Neurosci., 2016, 36(50), 12537-12548.
[http://dx.doi.org/10.1523/JNEUROSCI.2332-16.2016] [PMID: 27807032]
[122]
Desai, N.S.; Rutherford, L.C.; Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci., 1999, 2(6), 515-520.
[http://dx.doi.org/10.1038/9165] [PMID: 10448215]
[123]
Asztely, F.; Kokaia, M.; Olofsdotter, K.; Örtegren, U.; Lindvall, O. Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. Eur. J. Neurosci., 2000, 12(2), 662-669.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00956.x] [PMID: 10712646]
[124]
Fischer, A.; Sananbenesi, F.; Schrick, C.; Spiess, J.; Radulovic, J. Cyclin-dependent kinase 5 is required for associative learning. J. Neurosci., 2002, 22(9), 3700-3707.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03700.2002] [PMID: 11978846]
[125]
Wu, H.; Lu, M.H.; Wang, W.; Zhang, M.Y.; Zhu, Q.Q.; Xia, Y.Y.; Xu, R.X.; Yang, Y.; Chen, L.H.; Ma, Q.H. Lamotrigine reduces β-site aβpp-cleaving enzyme 1 protein levels through induction of autophagy. J. Alzheimers Dis., 2015, 46(4), 863-876.
[http://dx.doi.org/10.3233/JAD-143162] [PMID: 25854934]
[126]
Zhang, M.Y.; Zheng, C.Y.; Zou, M.M.; Zhu, J.W.; Zhang, Y.; Wang, J.; Liu, C.F.; Li, Q.F.; Xiao, Z.C.; Li, S.; Ma, Q.H.; Xu, R.X. Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol. Aging, 2014, 35(12), 2713-2725.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.009] [PMID: 25044076]
[127]
Gureviciene, I.; Ishchenko, I.; Ziyatdinova, S.; Jin, N.; Lipponen, A.; Gurevicius, K.; Tanila, H. Characterization of epileptic spiking associated with brain amyloidosis in APP/PS1 mice. Front. Neurol., 2019, 10, 1151.
[http://dx.doi.org/10.3389/fneur.2019.01151] [PMID: 31781019]
[128]
Sanchez, P.E.; Zhu, L.; Verret, L.; Vossel, K.A.; Orr, A.G.; Cirrito, J.R.; Devidze, N.; Ho, K.; Yu, G.Q.; Palop, J.J.; Mucke, L. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci., 2012, 109(42), E2895-E2903.
[http://dx.doi.org/10.1073/pnas.1121081109] [PMID: 22869752]
[129]
Lynch, B.A.; Lambeng, N.; Nocka, K.; Kensel-Hammes, P.; Bajjalieh, S.M.; Matagne, A.; Fuks, B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci., 2004, 101(26), 9861-9866.
[http://dx.doi.org/10.1073/pnas.0308208101] [PMID: 15210974]
[130]
Kaminski, R.M.; Matagne, A.; Leclercq, K.; Gillard, M.; Michel, P.; Kenda, B.; Talaga, P.; Klitgaard, H. SV2A protein is a broad-spectrum anticonvulsant target: Functional correlation between protein binding and seizure protection in models of both partial and generalized epilepsy. Neuropharmacology, 2008, 54(4), 715-720.
[http://dx.doi.org/10.1016/j.neuropharm.2007.11.021] [PMID: 18207204]
[131]
Nagarkatti, N.; Deshpande, L.S.; DeLorenzo, R.J. Levetiracetam Inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci. Lett., 2008, 436(3), 289-293.
[http://dx.doi.org/10.1016/j.neulet.2008.02.076] [PMID: 18406528]
[132]
Angehagen, M.; Margineanu, D.G.; Ben-Menachem, E.; Rönnbäck, L.; Hansson, E.; Klitgaard, H. Levetiracetam reduces caffeine-induced Ca2+transients and epileptiform potentials in hippocampal neurons. Neuroreport, 2003, 14(3), 471-475.
[http://dx.doi.org/10.1097/00001756-200303030-00035] [PMID: 12634506]
[133]
Demuro, A.; Parker, I.; Stutzmann, G.E. Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem., 2010, 285(17), 12463-12468.
[http://dx.doi.org/10.1074/jbc.R109.080895] [PMID: 20212036]
[134]
Bezprozvanny, I.; Mattson, M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci., 2008, 31(9), 454-463.
[http://dx.doi.org/10.1016/j.tins.2008.06.005] [PMID: 18675468]
[135]
Leal, S.L.; Landau, S.M.; Bell, R.K.; Jagust, W.J. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. eLife, 2017, 6, e22978.
[http://dx.doi.org/10.7554/eLife.22978] [PMID: 28177283]
[136]
Sendrowski, K.; Sobaniec, W.; Stasiak-Barmuta, A.; Sobaniec, P.; Popko, J. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons. Pharmacol. Rep., 2015, 67(2), 326-331.
[http://dx.doi.org/10.1016/j.pharep.2014.09.013] [PMID: 25712658]
[137]
Sanz-Blasco, S.; Piña-Crespo, J.C.; Zhang, X.; McKercher, S.R.; Lipton, S.A. Levetiracetam inhibits oligomeric Aβ-induced glutamate release from human astrocytes. Neuroreport, 2016, 27(9), 705-709.
[http://dx.doi.org/10.1097/WNR.0000000000000601] [PMID: 27183239]
[138]
Sen, A.; Akinola, M.; Tai, X.Y.; Symmonds, M.; Davis Jones, G.; Mura, S.; Galloway, J.; Hallam, A.; Chan, J.Y.C.; Koychev, I.; Butler, C.; Geddes, J.; Van Der Putt, R.; Thompson, S.; Manohar, S.G.; Frangou, E.; Love, S.; McShane, R.; Husain, M. An Investigation of Levetiracetam in Alzheimer’s Disease (ILiAD): A double-blind, placebo-controlled, randomised crossover proof of concept study. Trials, 2021, 22(1), 508.
[http://dx.doi.org/10.1186/s13063-021-05404-4] [PMID: 34332638]
[139]
Vezzani, A.; Aronica, E.; Mazarati, A.; Pittman, Q.J. Epilepsy and brain inflammation. Exp. Neurol., 2013, 244, 11-21.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.033] [PMID: 21985866]
[140]
Upaganlawar, A.B.; Wankhede, N.L.; Kale, M.B.; Umare, M.D.; Sehgal, A.; Singh, S.; Bhatia, S.; Al-Harrasi, A.; Najda, A.; Nurzyńska-Wierdak, R.; Bungau, S.; Behl, T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed. Pharmacother., 2021, 143, 112146.
[http://dx.doi.org/10.1016/j.biopha.2021.112146] [PMID: 34507113]
[141]
Di Filippo, M.; Picconi, B.; Costa, C.; Bagetta, V.; Tantucci, M.; Parnetti, L.; Calabresi, P. Pathways of neurodegeneration and experimental models of basal ganglia disorders: Downstream effects of mitochondrial inhibition. Eur. J. Pharmacol., 2006, 545(1), 65-72.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.024] [PMID: 16854409]
[142]
Mattson, M.P.; Gleichmann, M.; Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron, 2008, 60(5), 748-766.
[http://dx.doi.org/10.1016/j.neuron.2008.10.010] [PMID: 19081372]
[143]
Dong, X.; Wang, Y.; Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[144]
Papa, S.; De Rasmo, D. Complex I deficiencies in neurological disorders. Trends Mol. Med., 2013, 19(1), 61-69.
[http://dx.doi.org/10.1016/j.molmed.2012.11.005] [PMID: 23265841]
[145]
Costa, C.; Belcastro, V.; Tozzi, A.; Di Filippo, M.; Tantucci, M.; Siliquini, S.; Autuori, A.; Picconi, B.; Spillantini, M.G.; Fedele, E.; Pittaluga, A.; Raiteri, M.; Calabresi, P. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci., 2008, 28(32), 8040-8052.
[http://dx.doi.org/10.1523/JNEUROSCI.1947-08.2008] [PMID: 18685029]
[146]
Costa, C.; Tozzi, A.; Luchetti, E.; Siliquini, S.; Belcastro, V.; Tantucci, M.; Picconi, B.; Ientile, R.; Calabresi, P.; Pisani, F. Electrophysiological actions of zonisamide on striatal neurons: Selective neuroprotection against complex I mitochondrial dysfunction. Exp. Neurol., 2010, 221(1), 217-224.
[http://dx.doi.org/10.1016/j.expneurol.2009.11.002] [PMID: 19913015]
[147]
Biton, V. Clinical pharmacology and mechanism of action of zonisamide. Clin. Neuropharmacol., 2007, 30(4), 230-240.
[http://dx.doi.org/10.1097/wnf.0b013e3180413d7d] [PMID: 17762320]
[148]
Iuvone, T.; Esposito, G.; Esposito, R.; Santamaria, R.; Di Rosa, M.; Izzo, A.A. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J. Neurochem., 2004, 89(1), 134-141.
[http://dx.doi.org/10.1111/j.1471-4159.2003.02327.x] [PMID: 15030397]
[149]
Esposito, G.; De Filippis, D.; Carnuccio, R.; Izzo, A.A.; Iuvone, T. The marijuana component cannabidiol inhibits β-amyloid-induced tau protein hyperphosphorylation through Wnt/β-catenin pathway rescue in PC12 cells. J. Mol. Med., 2006, 84(3), 253-258.
[http://dx.doi.org/10.1007/s00109-005-0025-1] [PMID: 16389547]
[150]
Esposito, G.; Scuderi, C.; Valenza, M.; Togna, G.I.; Latina, V.; De Filippis, D.; Cipriano, M.; Carratù, M.R.; Iuvone, T.; Steardo, L. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One, 2011, 6(12), e28668.
[http://dx.doi.org/10.1371/journal.pone.0028668] [PMID: 22163051]
[151]
Wolf, S.A.; Bick-Sander, A.; Fabel, K.; Leal-Galicia, P.; Tauber, S.; Ramirez-Rodriguez, G.; Müller, A.; Melnik, A.; Waltinger, T.P.; Ullrich, O.; Kempermann, G. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun. Signal., 2010, 8(1), 12.
[http://dx.doi.org/10.1186/1478-811X-8-12] [PMID: 20565726]
[152]
Scuderi, C.; Steardo, L.; Esposito, G. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement. Phytother. Res., 2014, 28(7), 1007-1013.
[http://dx.doi.org/10.1002/ptr.5095] [PMID: 24288245]
[153]
Martín-Moreno, A.M.; Reigada, D.; Ramírez, B.G.; Mechoulam, R.; Innamorato, N.; Cuadrado, A.; de Ceballos, M.L. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol. Pharmacol., 2011, 79(6), 964-973.
[http://dx.doi.org/10.1124/mol.111.071290] [PMID: 21350020]
[154]
Aso, E.; Sánchez-Pla, A.; Vegas-Lozano, E.; Maldonado, R.; Ferrer, I. Cannabis-based medicine reduces multiple pathological processes in AβPP/PS1 mice. J. Alzheimers Dis., 2014, 43(3), 977-991.
[http://dx.doi.org/10.3233/JAD-141014] [PMID: 25125475]
[155]
Watt, G.; Shang, K.; Zieba, J.; Olaya, J.; Li, H.; Garner, B.; Karl, T. Chronic treatment with 50 mg/kg cannabidiol improves cognition and moderately reduces aβ40 levels in 12-month-old male AβPPswe/PS1ΔE9 transgenic mice. J. Alzheimers Dis., 2020, 74(3), 937-950.
[http://dx.doi.org/10.3233/JAD-191242] [PMID: 32116258]
[156]
Schubert, D.; Kepchia, D.; Liang, Z.; Dargusch, R.; Goldberg, J.; Maher, P. Efficacy of cannabinoids in a pre-clinical drug-screening platform for Alzheimer’s Disease. Mol. Neurobiol., 2019, 56(11), 7719-7730.
[http://dx.doi.org/10.1007/s12035-019-1637-8] [PMID: 31104297]
[157]
Dash, R.; Ali, M.C.; Jahan, I.; Munni, Y.A.; Mitra, S.; Hannan, M.A.; Timalsina, B.; Oktaviani, D.F.; Choi, H.J.; Moon, I.S. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res. Rev., 2021, 65, 101209.
[http://dx.doi.org/10.1016/j.arr.2020.101209] [PMID: 33181336]
[158]
Libro, R.; Diomede, F.; Scionti, D.; Piattelli, A.; Grassi, G.; Pollastro, F.; Bramanti, P.; Mazzon, E.; Trubiani, O. Cannabidiol modulates the expression of alzheimer’s disease-related genes in mesenchymal stem cells. Int. J. Mol. Sci., 2016, 18(1), 26.
[http://dx.doi.org/10.3390/ijms18010026] [PMID: 28025562]
[159]
Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim. Biophys. Sin., 2017, 49(10), 853-866.
[http://dx.doi.org/10.1093/abbs/gmx073] [PMID: 28981597]
[160]
Sutula, T.P.; Hagen, J.; Pitkänen, A. Do epileptic seizures damage the brain? Curr. Opin. Neurol., 2003, 16(2), 189-195.
[http://dx.doi.org/10.1097/00019052-200304000-00012] [PMID: 12644748]
[161]
Walker, M.C.; White, H.S.; Sander, J.W.S. Disease modification in partial epilepsy. Brain, 2002, 125(9), 1937-1950.
[http://dx.doi.org/10.1093/brain/awf203] [PMID: 12183340]
[162]
Milward, A.J.; Meldrum, B.S.; Mellanby, J.H. Forebrain ischaemia with CA1 cell loss impairs epileptogenesis in the tetanus toxin limbic seizure model. Brain, 1999, 122(6), 1009-1016.
[http://dx.doi.org/10.1093/brain/122.6.1009] [PMID: 10356055]
[163]
Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol., 2004, 14(3), 311-317.
[http://dx.doi.org/10.1016/j.conb.2004.04.001] [PMID: 15194111]
[164]
Calabresi, P.; Centonze, D.; Pisani, A.; Cupini, L.M.; Bernardi, G. Synaptic plasticity in the ischaemic brain. Lancet Neurol., 2003, 2(10), 622-629.
[http://dx.doi.org/10.1016/S1474-4422(03)00532-5] [PMID: 14505584]
[165]
Calabresi, P.; Cupini, L.M.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann. Neurol., 2003, 53(6), 693-702.
[http://dx.doi.org/10.1002/ana.10603] [PMID: 12783414]
[166]
Costa, C.; Leone, G.; Saulle, E.; Pisani, F.; Bernardi, G.; Calabresi, P. Coactivation of GABA(A) and GABA(B) receptor results in neuroprotection during in vitro ischemia. Stroke, 2004, 35(2), 596-600.
[http://dx.doi.org/10.1161/01.STR.0000113691.32026.06] [PMID: 14726544]
[167]
Calabresi, P.; Marti, M.; Picconi, B.; Saulle, E.; Costa, C.; Centonze, D.; Pisani, F.; Bernardi, G. Lamotrigine and remacemide protect striatal neurons against in vitro ischemia: an electrophysiological study. Exp. Neurol., 2003, 182(2), 461-469.
[http://dx.doi.org/10.1016/S0014-4886(03)00117-1] [PMID: 12895457]
[168]
Costa, C.; Martella, G.; Picconi, B.; Prosperetti, C.; Pisani, A.; Di Filippo, M.; Pisani, F.; Bernardi, G.; Calabresi, P. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke, 2006, 37(5), 1319-1326.
[http://dx.doi.org/10.1161/01.STR.0000217303.22856.38] [PMID: 16574927]
[169]
Lindberger, M.; Tomson, T.; Ståhle, L. Microdialysis sampling of carbamazepine, phenytoin and phenobarbital in subcutaneous extracellular fluid and subdural cerebrospinal fluid in humans: an in vitro and in vivo study of adsorption to the sampling device. Pharmacol. Toxicol., 2002, 91(4), 158-165.
[http://dx.doi.org/10.1034/j.1600-0773.2002.910402.x] [PMID: 12530465]
[170]
Christensen, J.; Højskov, C.S.; Dam, M.; Poulsen, J.H. Plasma concentration of topiramate correlates with cerebrospinal fluid concentration. Ther. Drug Monit., 2001, 23(5), 529-535.
[http://dx.doi.org/10.1097/00007691-200110000-00006] [PMID: 11591899]
[171]
Davis, R.; Peters, D.H.; McTavish, D. Valproic Acid. Drugs, 1994, 47(2), 332-372.
[http://dx.doi.org/10.2165/00003495-199447020-00008] [PMID: 7512905]
[172]
Ren, M.; Leng, Y.; Jeong, M.; Leeds, P.R.; Chuang, D.M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem., 2004, 89(6), 1358-1367.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02406.x] [PMID: 15189338]
[173]
Eyal, S.; Yagen, B.; Sobol, E.; Altschuler, Y.; Shmuel, M.; Bialer, M. The activity of antiepileptic drugs as histone deacetylase inhibitors. Epilepsia, 2004, 45(7), 737-744.
[http://dx.doi.org/10.1111/j.0013-9580.2004.00104.x] [PMID: 15230695]
[174]
Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci., 2012, 90(11-12), 463-468.
[http://dx.doi.org/10.1016/j.lfs.2012.01.001] [PMID: 22285595]
[175]
Zhu, S.; Zhang, Z.; Jia, L.; Zhan, K.; Wang, L.; Song, N.; Liu, Y.; Cheng, Y.; Yang, Y.; Guan, L.; Min, D.; Yang, G. Valproic acid attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-pyroptosis pathways. Neurochem. Int., 2019, 124, 141-151.
[http://dx.doi.org/10.1016/j.neuint.2019.01.003] [PMID: 30611759]
[176]
Naseh, M.; Bayat, M.; Akbari, S.; Vatanparast, J.; Shabani, M.; Haghighi, A.B.; Haghani, M. Neuroprotective effects of sodium valproate on hippocampal cell and volume, and cognitive function in a rat model of focal cerebral ischemia. Physiol. Behav., 2022, 251, 113806.
[http://dx.doi.org/10.1016/j.physbeh.2022.113806] [PMID: 35417732]
[177]
Helmstaedter, C.; Witt, J.A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav., 2013, 26(2), 182-187.
[http://dx.doi.org/10.1016/j.yebeh.2012.11.052] [PMID: 23318473]
[178]
Witt, J.A.; Elger, C.E.; Helmstaedter, C. Adverse cognitive effects of antiepileptic pharmacotherapy: Each additional drug matters. Eur. Neuropsychopharmacol., 2015, 25(11), 1954-1959.
[http://dx.doi.org/10.1016/j.euroneuro.2015.07.027] [PMID: 26296280]
[179]
Ikonomidou, C.; Turski, L. Antiepileptic drugs and brain development. Epilepsy Res., 2010, 88(1), 11-22.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.09.019] [PMID: 19825509]
[180]
Sgobio, C.; Ghiglieri, V.; Costa, C.; Bagetta, V.; Siliquini, S.; Barone, I.; Di Filippo, M.; Gardoni, F.; Gundelfinger, E.D.; Di Luca, M.; Picconi, B.; Calabresi, P. Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment. Biol. Psychiatry, 2010, 67(6), 567-574.
[http://dx.doi.org/10.1016/j.biopsych.2009.11.008] [PMID: 20074705]
[181]
Mazzocchetti, P.; Tantucci, M.; Bastioli, G.; Calabrese, V.; Di Filippo, M.; Tozzi, A.; Calabresi, P.; Costa, C. Lacosamide protects striatal and hippocampal neurons from in vitro ischemia without altering physiological synaptic plasticity. Neuropharmacology, 2018, 135, 424-430.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.040] [PMID: 29614316]
[182]
Mazzocchetti, P.; Mancini, A.; Sciaccaluga, M.; Megaro, A.; Bellingacci, L.; Di Filippo, M.; Cesarini, E.N.; Romoli, M.; Carrano, N.; Gardoni, F.; Tozzi, A.; Calabresi, P.; Costa, C. Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiol. Dis., 2020, 140, 104848.
[http://dx.doi.org/10.1016/j.nbd.2020.104848] [PMID: 32222474]
[183]
Rogawski, M.A.; Tofighy, A.; White, H.S.; Matagne, A.; Wolff, C. Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res., 2015, 110, 189-205.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.11.021] [PMID: 25616473]
[184]
Nakajima, M.; Suda, S.; Sowa, K.; Sakamoto, Y.; Nito, C.; Nishiyama, Y.; Aoki, J.; Ueda, M.; Yokobori, S.; Yamada, M.; Yokota, H.; Okada, T.; Kimura, K. AMPA receptor antagonist perampanel ameliorates post-stroke functional and cognitive impairments. Neuroscience, 2018, 386, 256-264.
[http://dx.doi.org/10.1016/j.neuroscience.2018.06.043] [PMID: 29981363]
[185]
Niu, H.X.; Wang, J.Z.; Wang, D.L.; Miao, J.J.; Li, H.; Liu, Z.G.; Yuan, X.; Liu, W.; Zhou, J.R. The orally active noncompetitive AMPAR antagonist perampanel attenuates focal cerebral ischemia injury in rats. Cell. Mol. Neurobiol., 2018, 38(2), 459-466.
[http://dx.doi.org/10.1007/s10571-017-0489-x] [PMID: 28401316]
[186]
Maggio, N.; Lenz, M.; Vlachos, A. Ischemic long-term-potentiation (iLTP): perspectives to set the threshold of neural plasticity toward therapy. Neural Regen. Res., 2015, 10(10), 1537-1539.
[http://dx.doi.org/10.4103/1673-5374.165215] [PMID: 26692832]
[187]
Takahiro, Hayakawa Yoshihisa Higuchi; Hiroyuki Nigami; Haruo Hattori, Zonisamide reduces hypoxic-ischemic brain damage in neonatal rats irrespective of its anticonvulsive effect. Eur. J. Pharmacol., 1994, 257(1-2), 131-136.
[http://dx.doi.org/10.1016/0014-2999(94)90704-8] [PMID: 8082694]
[188]
Minato, H.; Kikuta, C.; Fujitani, B.; Masuda, Y. Protective effect of zonisamide, an antiepileptic drug, against transient focal cerebral ischemia with middle cerebral artery occlusion-reperfusion in rats. Epilepsia, 1997, 38(9), 975-980.
[http://dx.doi.org/10.1111/j.1528-1157.1997.tb01479.x] [PMID: 9579935]
[189]
Owen, A.J.; Ijaz, S.; Miyashita, H.; Wishart, T.; Howlett, W.; Shuaib, A. Zonisamide as a neuroprotective agent in an adult gerbil model of global forebrain ischemia: a histological, in vivo microdialysis and behavioral study. Brain Res., 1997, 770(1-2), 115-122.
[http://dx.doi.org/10.1016/S0006-8993(97)00789-0] [PMID: 9372210]
[190]
Costa, C.; Tozzi, A.; Siliquini, S.; Galletti, F.; Cardaioli, G.; Tantucci, M.; Pisani, F.; Calabresi, P. A critical role of NO/cGMP/] PKG dependent pathway in hippocampal post-ischemic LTP: Modulation by zonisamide. Neurobiol. Dis., 2011, 44(2), 185-191.
[http://dx.doi.org/10.1016/j.nbd.2011.06.015] [PMID: 21749921]
[191]
Hayakawa, K.; Mishima, K.; Fujiwara, M. Therapeutic potential of non-psychotropic cannabidiol in ischemic stroke. Pharmaceuticals, 2010, 3(7), 2197-2212.
[http://dx.doi.org/10.3390/ph3072197] [PMID: 27713349]
[192]
Mishima, K.; Hayakawa, K.; Abe, K.; Ikeda, T.; Egashira, N.; Iwasaki, K.; Fujiwara, M. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke, 2005, 36(5), 1071-1076.
[http://dx.doi.org/10.1161/01.STR.0000163083.59201.34] [PMID: 15845890]
[193]
Alvarez, F.J.; Lafuente, H.; Carmen, R.M.; Mielgo, V.E.; Gastiasoro, E.; Rueda, M.; Pertwee, R.G.; Castillo, A.I.; Romero, J.; Martínez-Orgado, J. Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr. Res., 2008, 64(6), 653-658.
[http://dx.doi.org/10.1203/PDR.0b013e318186e5dd] [PMID: 18679164]
[194]
Castillo, A.; Tolón, M.R.; Fernández-Ruiz, J.; Romero, J.; Martinez-Orgado, J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiol. Dis., 2010, 37(2), 434-440.
[http://dx.doi.org/10.1016/j.nbd.2009.10.023] [PMID: 19900555]
[195]
Lafuente, H.; Alvarez, F.J.; Pazos, M.R.; Alvarez, A.; Rey-Santano, M.C.; Mielgo, V.; Murgia-Esteve, X.; Hilario, E.; Martinez-Orgado, J. Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatr. Res., 2011, 70(3), 272-277.
[http://dx.doi.org/10.1203/PDR.0b013e3182276b11] [PMID: 21654550]
[196]
Pazos, M.R.; Cinquina, V.; Gómez, A.; Layunta, R.; Santos, M.; Fernández-Ruiz, J.; Martínez-Orgado, J. Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology, 2012, 63(5), 776-783.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.034] [PMID: 22659086]
[197]
Pazos, M.R.; Mohammed, N.; Lafuente, H.; Santos, M.; Martínez-Pinilla, E.; Moreno, E.; Valdizan, E.; Romero, J.; Pazos, A.; Franco, R.; Hillard, C.J.; Alvarez, F.J.; Martínez-Orgado, J. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: Role of 5HT1A and CB2 receptors. Neuropharmacology, 2013, 71, 282-291.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.027] [PMID: 23587650]
[198]
Mechoulam, R.; Peters, M.; Murillo-Rodriguez, E.; Hanuš, L.O. Cannabidiol-recent advances. Chem. Biodivers., 2007, 4(8), 1678-1692.
[http://dx.doi.org/10.1002/cbdv.200790147] [PMID: 17712814]
[199]
Ceprián, M.; Jiménez-Sánchez, L.; Vargas, C.; Barata, L.; Hind, W.; Martínez-Orgado, J. Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology, 2017, 116, 151-159.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.017] [PMID: 28012949]
[200]
Meyer, E.; Bonato, J.M.; Mori, M.A.; Mattos, B.A.; Guimarães, F.S.; Milani, H.; de Campos, A.C.; de Oliveira, R.M.W. Cannabidiol confers neuroprotection in rats in a model of transient global cerebral ischemia: Impact of hippocampal synaptic neuroplasticity. Mol. Neurobiol., 2021, 58(10), 5338-5355.
[http://dx.doi.org/10.1007/s12035-021-02479-7] [PMID: 34302281]
[201]
Bakker, A.; Krauss, G.L.; Albert, M.S.; Speck, C.L.; Jones, L.R.; Stark, C.E.; Yassa, M.A.; Bassett, S.S.; Shelton, A.L.; Gallagher, M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 2012, 74(3), 467-474.
[http://dx.doi.org/10.1016/j.neuron.2012.03.023] [PMID: 22578498]
[202]
Dirani, M.; Nasreddine, W.; Abdulla, F.; Beydoun, A. Seizure control and improvement of neurological dysfunction in Lafora disease with perampanel. Epilepsy Behav. Case Rep., 2014, 2, 164-166.
[http://dx.doi.org/10.1016/j.ebcr.2014.09.003] [PMID: 25667898]
[203]
IJff, D.M.; van Veenendaal, T.M.; Majoie, H.J.M.; de Louw, A.J.A.; Jansen, J.F.A.; Aldenkamp, A.P. Cognitive effects of lacosamide as adjunctive therapy in refractory epilepsy. Acta Neurol. Scand., 2015, 131(6), 347-354.
[http://dx.doi.org/10.1111/ane.12372] [PMID: 25630655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy