Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Epilepsy, Immunity and Neuropsychiatric Disorders

Author(s): Francesco Fortunato, Alessia Giugno, Ilaria Sammarra, Angelo Labate and Antonio Gambardella*

Volume 21, Issue 8, 2023

Published on: 14 November, 2022

Page: [1714 - 1735] Pages: 22

DOI: 10.2174/1570159X20666220706094651

Price: $65

Abstract

Several studies have focused on the emerging role of immunity and inflammation in a wide range of neurological disorders. Autoimmune diseases involving central nervous system share well defined clinical features including epileptic seizures and additional neuropsychiatric symptoms, like cognitive and psychiatric disturbances. The growing evidence about the role of immunity in the pathophysiologic mechanisms underlying these conditions lead to the concept of autoimmune epilepsy. This relatively-new term has been introduced to highlight the etiological and prognostic implications of immunity in epileptogenesis. In this review, we aim to discuss the role of autoimmunity in epileptogenesis and its clinical, neurophysiological, neuroimaging and therapeutic implications. Moreover, we wish to address the close relationship between immunity and additional symptoms, particularly cognitive and psychiatric features, which deeply impact clinical outcomes in these patients. To assess these aspects, we first analyzed Rasmussen’s encephalitis. Subsequently, we have covered autoimmune encephalitis, particularly those associated with autoantibodies against surface neuronal antigens, as these autoantibodies express a direct immune-mediated mechanism, different from those against intracellular antigens. Then, we discussed the connection between systemic immune disorders and neurological manifestations. This review aims to highlight the need to expand knowledge about the role of inflammation and autoimmunity in the pathophysiology of neurological disorders and the importance to early recognize these clinical entities. Indeed, early identification may result in faster recovery and a better prognosis.

Keywords: Epilepsy/Seizures, immunity, autoimmune encephalitis, neuro-inflammation, neuropsychiatric disorders, immunotherapy

Graphical Abstract

[1]
Steriade, C.; Britton, J.; Dale, R.C.; Gadoth, A.; Irani, S.R.; Linnoila, J.; McKeon, A.; Shao, X.Q.; Venegas, V.; Bien, C.G. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: Conceptual definitions. Epilepsia, 2020, 61(7), 1341-1351.
[http://dx.doi.org/10.1111/epi.16571] [PMID: 32544279]
[2]
Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; Nordli, D.R.; Perucca, E.; Tomson, T.; Wiebe, S.; Zhang, Y.H.; Zuberi, S.M. ILAE classification of the epilepsies: Position paper of the ILAE commission for classification and terminology. Epilepsia, 2017, 58(4), 512-521.
[http://dx.doi.org/10.1111/epi.13709] [PMID: 28276062]
[3]
Dubey, D.; Singh, J.; Britton, J.W.; Pittock, S.J.; Flanagan, E.P.; Lennon, V.A.; Tillema, J.M.; Wirrell, E.; Shin, C.; So, E.; Cascino, G.D.; Wingerchuk, D.M.; Hoerth, M.T.; Shih, J.J.; Nickels, K.C.; McKeon, A. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia, 2017, 58(7), 1181-1189.
[http://dx.doi.org/10.1111/epi.13797] [PMID: 28555833]
[4]
Steriade, C.; Gillinder, L.; Rickett, K.; Hartel, G.; Higdon, L.; Britton, J.; French, J. Discerning the role of autoimmunity and autoantibodies in epilepsy: A review. JAMA Neurol., 2021, 78(11), 1383-1390.
[http://dx.doi.org/10.1001/jamaneurol.2021.3113] [PMID: 34515743]
[5]
Steriade, C.; Titulaer, M.J.; Vezzani, A.; Sander, J.W.; Thijs, R.D. The association between systemic autoimmune disorders and epilepsy and its clinical implications. Brain, 2021, 144(2), 372-390.
[http://dx.doi.org/10.1093/brain/awaa362] [PMID: 33221878]
[6]
Iorio, R.; Assenza, G.; Tombini, M.; Colicchio, G.; Della Marca, G.; Benvenga, A.; Damato, V.; Rossini, P.M.; Vollono, C.; Plantone, D.; Marti, A.; Batocchi, A.P.; Evoli, A. The detection of neural autoantibodies in patients with antiepileptic-drug-resistant epilepsy predicts response to immunotherapy. Eur. J. Neurol., 2015, 22(1), 70-78.
[http://dx.doi.org/10.1111/ene.12529] [PMID: 25112548]
[7]
Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol., 2019, 15(8), 459-472.
[http://dx.doi.org/10.1038/s41582-019-0217-x] [PMID: 31263255]
[8]
McKnight, K.; Jiang, Y.; Hart, Y.; Cavey, A.; Wroe, S.; Blank, M.; Shoenfeld, Y.; Vincent, A.; Palace, J.; Lang, B. Serum antibodies in epilepsy and seizure-associated disorders. Neurology, 2005, 65(11), 1730-1736.
[http://dx.doi.org/10.1212/01.wnl.0000187129.66353.13] [PMID: 16344514]
[9]
Rasmussen, T.; Olszewski, J.; Lloydsmith, D. Focal seizures due to chronic localized encephalitis. Neurology, 1958, 8(6), 435-445.
[http://dx.doi.org/10.1212/WNL.8.6.435] [PMID: 13566382]
[10]
Quek, A.M.; Britton, J.W.; McKeon, A.; So, E.; Lennon, V.A.; Shin, C.; Klein, C.; Watson, R.E., Jr; Kotsenas, A.L.; Lagerlund, T.D.; Cascino, G.D.; Worrell, G.A.; Wirrell, E.C.; Nickels, K.C.; Aksamit, A.J.; Noe, K.H.; Pittock, S.J. Autoimmune epilepsy: Clinical characteristics and response to immunotherapy. Arch. Neurol., 2012, 69(5), 582-593.
[http://dx.doi.org/10.1001/archneurol.2011.2985] [PMID: 22451162]
[11]
Dubey, D.; Alqallaf, A.; Hays, R.; Freeman, M.; Chen, K.; Ding, K.; Agostini, M.; Vernino, S. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol., 2017, 74(4), 397-402.
[http://dx.doi.org/10.1001/jamaneurol.2016.5429] [PMID: 28166327]
[12]
Varadkar, S.; Bien, C.G.; Kruse, C.A.; Jensen, F.E.; Bauer, J.; Pardo, C.A.; Vincent, A.; Mathern, G.W.; Cross, J.H. Rasmussen’s encephalitis: Clinical features, pathobiology, and treatment advances. Lancet Neurol., 2014, 13(2), 195-205.
[http://dx.doi.org/10.1016/S1474-4422(13)70260-6] [PMID: 24457189]
[13]
Gambardella, A.; Andermann, F.; Shorvon, S.; Le Piane, E.; Aguglia, U. Limited chronic focal encephalitis: Another variant of Rasmussen syndrome? Neurology, 2008, 70(5), 374-377.
[http://dx.doi.org/10.1212/01.wnl.0000298723.96653.99] [PMID: 18227418]
[14]
Bien, C.G.; Tiemeier, H.; Sassen, R.; Kuczaty, S.; Urbach, H.; von Lehe, M.; Becker, A.J.; Bast, T.; Herkenrath, P.; Karenfort, M.; Kruse, B.; Kurlemann, G.; Rona, S.; Schubert-Bast, S.; Vieker, S.; Vlaho, S.; Wilken, B.; Elger, C.E. Rasmussen encephalitis: Incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia, 2013, 54(3), 543-550.
[http://dx.doi.org/10.1111/epi.12042] [PMID: 23216622]
[15]
Thomas, J.E.; Reagan, T.J.; Klass, D.W. Epilepsia partialis continua. A review of 32 cases. Arch. Neurol., 1977, 34(5), 266-275.
[http://dx.doi.org/10.1001/archneur.1977.00500170020003] [PMID: 404996]
[16]
Hart, Y.M.; Andermann, F.; Fish, D.R.; Dubeau, F.; Robitaille, Y.; Rasmussen, T.; Berkovic, S.; Marino, R.; Yakoubian, E.M.; Spillane, K.; Scaravilli, F. Chronic encephalitis and epilepsy in adults and adolescents: A variant of Rasmussen’s syndrome? Neurology, 1997, 48(2), 418-424.
[http://dx.doi.org/10.1212/WNL.48.2.418] [PMID: 9040732]
[17]
Bien, C.G.; Granata, T.; Antozzi, C.; Cross, J.H.; Dulac, O.; Kurthen, M.; Lassmann, H.; Mantegazza, R.; Villemure, J.G.; Spreafico, R.; Elger, C.E. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement. Brain, 2005, 128(Pt 3), 454-471.
[http://dx.doi.org/10.1093/brain/awh415] [PMID: 15689357]
[18]
Doniselli, F.M.; Deleo, F.; Criscuolo, S.; Stabile, A.; Pastori, C.; Di Giacomo, R.; Didato, G.; Chiapparini, L.; Villani, F. MRI in late-onset rasmussen encephalitis: A long-term follow-up study. Diagnostics (Basel), 2022, 12(2), 502.
[http://dx.doi.org/10.3390/diagnostics12020502] [PMID: 35204592]
[19]
Pardo, C.A.; Vining, E.P.; Guo, L.; Skolasky, R.L.; Carson, B.S.; Freeman, J.M. The pathology of Rasmussen syndrome: Stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia, 2004, 45(5), 516-526.
[http://dx.doi.org/10.1111/j.0013-9580.2004.33103.x] [PMID: 15101833]
[20]
Rogers, S.W.; Andrews, P.I.; Gahring, L.C.; Whisenand, T.; Cauley, K.; Crain, B.; Hughes, T.E.; Heinemann, S.F.; McNamara, J.O. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science, 1994, 265(5172), 648-651.
[http://dx.doi.org/10.1126/science.8036512] [PMID: 8036512]
[21]
Wiendl, H.; Bien, C.G.; Bernasconi, P.; Fleckenstein, B.; Elger, C.E.; Dichgans, J.; Mantegazza, R.; Melms, A. GluR3 antibodies: Prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology, 2001, 57(8), 1511-1514.
[http://dx.doi.org/10.1212/WNL.57.8.1511] [PMID: 11673604]
[22]
Mantegazza, R.; Bernasconi, P.; Baggi, F.; Spreafico, R.; Ragona, F.; Antozzi, C.; Bernardi, G.; Granata, T. Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J. Neuroimmunol., 2002, 131(1-2), 179-185.
[http://dx.doi.org/10.1016/S0165-5728(02)00261-8] [PMID: 12458050]
[23]
Bien, C.G.; Bauer, J.; Deckwerth, T.L.; Wiendl, H.; Deckert, M.; Wiestler, O.D.; Schramm, J.; Elger, C.E.; Lassmann, H. Destruction of neurons by cytotoxic T cells: A new pathogenic mechanism in Rasmussen’s encephalitis. Ann. Neurol., 2002, 51(3), 311-318.
[http://dx.doi.org/10.1002/ana.10100] [PMID: 11891826]
[24]
Tang, C.; Luan, G.; Li, T. Rasmussen’s encephalitis: Mechanisms update and potential therapy target. Ther. Adv. Chronic Dis., 2020, 11, 2040622320971413.
[http://dx.doi.org/10.1177/2040622320971413] [PMID: 33294146]
[25]
Watson, R.; Jiang, Y.; Bermudez, I.; Houlihan, L.; Clover, L.; McKnight, K.; Cross, J.H.; Hart, I.K.; Roubertie, A.; Valmier, J.; Hart, Y.; Palace, J.; Beeson, D.; Vincent, A.; Lang, B. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology, 2004, 63(1), 43-50.
[http://dx.doi.org/10.1212/01.WNL.0000132651.66689.0F] [PMID: 15249609]
[26]
Rose, N.R.; Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol. Today, 1993, 14(9), 426-430.
[http://dx.doi.org/10.1016/0167-5699(93)90244-F] [PMID: 8216719]
[27]
Fauser, S.; Elger, C.E.; Woermann, F.; Bien, C.G. Rasmussen encephalitis: Predisposing factors and their potential role in unilaterality. Epilepsia, 2022, 63(1), 108-119.
[http://dx.doi.org/10.1111/epi.17131] [PMID: 34820830]
[28]
Bahi-Buisson, N.; Nabbout, R.; Plouin, P.; Bulteau, C.; Delalande, O.; Hertz Pannier, L.; Dulac, O.; Chiron, C. Recent advances in pathogenic concepts and therapeutic strategies in Rasmussen’s encephalitis. Rev. Neurol. (Paris), 2005, 161(4), 395-405.
[http://dx.doi.org/10.1016/S0035-3787(05)85069-6] [PMID: 15924075]
[29]
Thilo, B.; Stingele, R.; Knudsen, K.; Boor, R.; Bien, C.G.; Deuschl, G.; Lang, N. A case of Rasmussen encephalitis treated with rituximab. Nat. Rev. Neurol., 2009, 5(8), 458-462.
[http://dx.doi.org/10.1038/nrneurol.2009.98] [PMID: 19657347]
[30]
Leach, J.P.; Chadwick, D.W.; Miles, J.B.; Hart, I.K. Improvement in adult-onset Rasmussen’s encephalitis with long-term immunomodulatory therapy. Neurology, 1999, 52(4), 738-742.
[http://dx.doi.org/10.1212/WNL.52.4.738] [PMID: 10078719]
[31]
Pellegrin, S.; Baldeweg, T.; Pujar, S.; D’Arco, F.; Cantalupo, G.; Varadkar, S.; Cross, J.H. Immunomodulation with azathioprine therapy in Rasmussen syndrome: A multimodal evaluation. Neurology, 2021, 96(2), e267-e279.
[http://dx.doi.org/10.1212/WNL.0000000000011004] [PMID: 33046614]
[32]
Kim, J.S.; Park, E.K.; Shim, K.W.; Kim, D.S. Hemispherotomy and functional hemispherectomy: Indications and outcomes. J. Epilepsy Res., 2018, 8(1), 1-5.
[http://dx.doi.org/10.14581/jer.18001] [PMID: 30090755]
[33]
Liu, D.; Guan, Y.; Zhou, J.; Zhai, F.; Chen, L.; Li, T.; Wang, M.; Luan, G. The influencing factors and changes of cognitive function within 40 Rasmussen encephalitis patients that received a hemispherectomy. Neurol. Res., 2022, 1-8.
[http://dx.doi.org/10.1080/01616412.2022.2039526] [PMID: 35172696]
[34]
Orsini, A.; Foiadelli, T.; Carli, N.; Costagliola, G.; Masini, B.; Bonuccelli, A.; Savasta, S.; Peroni, D.; Consolini, R.; Striano, P. Rasmussen’s encephalitis: From immune pathogenesis towards targeted-therapy. Seizure, 2020, 81, 76-83.
[http://dx.doi.org/10.1016/j.seizure.2020.07.023] [PMID: 32769034]
[35]
Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; Glaser, C.A.; Honnorat, J.; Höftberger, R.; Iizuka, T.; Irani, S.R.; Lancaster, E.; Leypoldt, F.; Prüss, H.; Rae-Grant, A.; Reindl, M.; Rosenfeld, M.R.; Rostásy, K.; Saiz, A.; Venkatesan, A.; Vincent, A.; Wandinger, K.P.; Waters, P.; Dalmau, J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol., 2016, 15(4), 391-404.
[http://dx.doi.org/10.1016/S1474-4422(15)00401-9] [PMID: 26906964]
[36]
Dubey, D.; Pittock, S.J.; Kelly, C.R.; McKeon, A.; Lopez-Chiriboga, A.S.; Lennon, V.A.; Gadoth, A.; Smith, C.Y.; Bryant, S.C.; Klein, C.J.; Aksamit, A.J.; Toledano, M.; Boeve, B.F.; Tillema, J.M.; Flanagan, E.P. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann. Neurol., 2018, 83(1), 166-177.
[http://dx.doi.org/10.1002/ana.25131] [PMID: 29293273]
[37]
Armangue, T.; Spatola, M.; Vlagea, A.; Mattozzi, S.; Cárceles-Cordon, M.; Martinez-Heras, E.; Llufriu, S.; Muchart, J.; Erro, M.E.; Abraira, L.; Moris, G.; Monros-Giménez, L.; Corral-Corral, Í.; Montejo, C.; Toledo, M.; Bataller, L.; Secondi, G.; Ariño, H.; Martínez-Hernández, E.; Juan, M.; Marcos, M.A.; Alsina, L.; Saiz, A.; Rosenfeld, M.R.; Graus, F.; Dalmau, J.; Aguilera-Albesa, S.; Amado-Puentes, A.; Arjona-Padillo, A.; Arrabal, L.; Arratibel, I.; Aznar-Laín, G.; Bellas-Lamas, P.; Bermejo, T.; Boyero-Durán, S.; Camacho, A.; Campo, A.; Campos, D.; Cantarín-Extremera, V.; Carnero, C.; Conejo-Moreno, D.; Dapena, M.; Dacruz-Álvarez, D.; Delgadillo-Chilavert, V.; Deyà, A.; Estela-Herrero, J.; Felipe, A.; Fernández-Cooke, E.; Fernández-Ramos, J.; Fortuny, C.; García-Monco, J.C.; Gili, T.; González-Álvarez, V.; Guerri, R.; Guillén, S.; Hedrera-Fernández, A.; López, M.; López-Laso, E.; Lorenzo-Ruiz, M.; Madruga, M.; Málaga-Diéguez, I.; Martí-Carrera, I.; Martínez-Lacasa, X.; Martín-Viota, L.; Martín, G.L.; Martínez-González, M-J.; Moreira, A.; Miranda-Herrero, M.C.; Monge, L.; Muñoz-Cabello, B.; Navarro-Morón, J.; Neth, O.; Noguera-Julian, A.; Nuñez-Enamorado, N.; Pomar, V.; Portillo-Cuenca, J.C.; Poyato, M.; Prieto, L.; Querol, L.; Rodríguez-Rodríguez, E.; Sarria-Estrada, S.; Sierra, C.; Soler-Palacín, P.; Soto-Insuga, V.; Toledo-Bravo, L.; Tomás, M.; Torres-Torres, C.; Turón, E.; Zabalza, A. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis. Lancet Neurol., 2018, 17(9), 760-772.
[http://dx.doi.org/10.1016/S1474-4422(18)30244-8] [PMID: 30049614]
[38]
Gu, Y.; Zhong, M.; He, L.; Li, W.; Huang, Y.; Liu, J.; Chen, Y.; Xiao, Z. Epidemiology of antibody-positive autoimmune encephalitis in Southwest China: A multicenter study. Front. Immunol., 2019, 10, 2611.
[http://dx.doi.org/10.3389/fimmu.2019.02611] [PMID: 31781111]
[39]
Falip, M.; Jaraba, S.; Rodríguez-Bel, L.; Castañer, S.; Mora, J.; Arroyo, P.; Miro, J.; Sala-Padró, J.; Martínez-Yélamos, S.; Casasnovas, C.; Gascon-Bayarri, J.; Real, E.; Morandeira, F.; Vidal, N.; Veciana, M.; Saiz, A.; Carreño, M. Seizures and epilepsy of autoimmune origin: A long-term prospective study. Seizure, 2020, 81, 157-165.
[http://dx.doi.org/10.1016/j.seizure.2020.07.019] [PMID: 32818871]
[40]
Qiao, S.; Wu, H.K.; Liu, L.L.; Zhang, R.R.; Wang, M.L.; Han, T.; Zhang, S.C.; Liu, X.W. Characteristics and prognosis of autoimmune encephalitis in the East of China: A multi-center study. Front. Neurol., 2021, 12, 642078.
[http://dx.doi.org/10.3389/fneur.2021.642078] [PMID: 34135845]
[41]
Shojima, Y.; Nishioka, K.; Watanabe, M.; Jo, T.; Tanaka, K.; Takashima, H.; Noda, K.; Okuma, Y.; Urabe, T.; Yokoyama, K.; Hattori, N. Clinical characterization of definite autoimmune limbic encephalitis: A 30-case series. Intern. Med., 2019, 58(23), 3369-3378.
[http://dx.doi.org/10.2169/internalmedicine.3029-19] [PMID: 31434821]
[42]
Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; Aguilar, E.; Gresa-Arribas, N.; Ryan-Florance, N.; Torrents, A.; Saiz, A.; Rosenfeld, M.R.; Balice-Gordon, R.; Graus, F.; Dalmau, J. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol., 2013, 12(2), 157-165.
[http://dx.doi.org/10.1016/S1474-4422(12)70310-1] [PMID: 23290630]
[43]
Broadley, J.; Wesselingh, R.; Seneviratne, U.; Kyndt, C.; Beech, P.; Buzzard, K.; Nesbitt, C.; D’Souza, W.; Brodtmann, A.; Kalincik, T.; Butzkueven, H.; O’Brien, T.J.; Monif, M. Peripheral immune cell ratios and clinical outcomes in seropositive autoimmune encephalitis: A study by the australian autoimmune encephalitis consortium. Front. Immunol., 2021, 11, 597858.
[http://dx.doi.org/10.3389/fimmu.2020.597858] [PMID: 33519810]
[44]
Harutyunyan, G.; Hauer, L.; Dünser, M.W.; Moser, T.; Pikija, S.; Leitinger, M.; Novak, H.F.; Aichhorn, W.; Trinka, E.; Sellner, J. Risk factors for intensive care unit admission in patients with autoimmune encephalitis. Front. Immunol., 2017, 8, 835.
[http://dx.doi.org/10.3389/fimmu.2017.00835] [PMID: 28804482]
[45]
Zeng, Z.; Wang, C.; Wang, B.; Wang, N.; Yang, Y.; Guo, S.; Du, Y. Prediction of neutrophil-to-lymphocyte ratio in the diagnosis and progression of autoimmune encephalitis. Neurosci. Lett., 2019, 694, 129-135.
[http://dx.doi.org/10.1016/j.neulet.2018.12.003] [PMID: 30521947]
[46]
van Sonderen, A.; Thijs, R.D.; Coenders, E.C.; Jiskoot, L.C.; Sanchez, E.; de Bruijn, M.A.; van Coevorden-Hameete, M.H.; Wirtz, P.W.; Schreurs, M.W.; Sillevis, S.P.A.; Titulaer, M.J. Anti-LGI1 encephalitis: Clinical syndrome and long-term follow-up. Neurology, 2016, 87(14), 1449-1456.
[http://dx.doi.org/10.1212/WNL.0000000000003173] [PMID: 27590293]
[47]
Uy, C.E.; Binks, S.; Irani, S.R. Autoimmune encephalitis: Clinical spectrum and management. Pract. Neurol., 2021, 21(5), 412-423.
[http://dx.doi.org/10.1136/practneurol-2020-002567] [PMID: 34108243]
[48]
Dalmau, J.; Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med., 2018, 378(9), 840-851.
[http://dx.doi.org/10.1056/NEJMra1708712] [PMID: 29490181]
[49]
Dalmau, J.; Tüzün, E.; Wu, H.Y.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; Mason, W.; Sansing, L.H.; Dichter, M.A.; Rosenfeld, M.R.; Lynch, D.R. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol., 2007, 61(1), 25-36.
[http://dx.doi.org/10.1002/ana.21050] [PMID: 17262855]
[50]
Gifreu, A.; Falip, M.; Sala-Padró, J.; Mongay, N.; Morandeira, F.; Camins, Á.; Naval-Baudin, P.; Veciana, M.; Fernández, M.; Pedro, J.; Garcia, B.; Arroyo, P.; Simó, M. Risk of developing epilepsy after autoimmune encephalitis. Brain Sci., 2021, 11(9), 1182.
[http://dx.doi.org/10.3390/brainsci11091182] [PMID: 34573203]
[51]
Camdessanché, J.P.; Streichenberger, N.; Cavillon, G.; Rogemond, V.; Jousserand, G.; Honnorat, J.; Convers, P.; Antoine, J.C. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur. J. Neurol., 2011, 18(6), 929-931.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03180.x] [PMID: 20722705]
[52]
Ferlazzo, E.; Gasparini, S.; Sueri, C.; Aguglia, U. Status epilepticus of inflammatory etiology: A cohort study. Neurology, 2016, 86(11), 1076-1077.
[http://dx.doi.org/10.1212/WNL.0000000000002508] [PMID: 26976517]
[53]
Husari, K.S.; Dubey, D. Autoimmune epilepsy. Neurotherapeutics, 2019, 16(3), 685-702.
[http://dx.doi.org/10.1007/s13311-019-00750-3] [PMID: 31240596]
[54]
Moise, A.M.; Karakis, I.; Herlopian, A.; Dhakar, M.; Hirsch, L.J.; Cotsonis, G.; LaRoche, S.; Cabrera, K.C.M.; Westover, B.; Rodriguez, A. Continuous EEG findings in autoimmune encephalitis. J. Clin. Neurophysiol., 2021, 38(2), 124-129.
[PMID: 31800465]
[55]
Limotai, C.; Denlertchaikul, C.; Saraya, A.W.; Jirasakuldej, S. Predictive values and specificity of electroencephalographic findings in autoimmune encephalitis diagnosis. Epilepsy Behav., 2018, 84, 29-36.
[http://dx.doi.org/10.1016/j.yebeh.2018.04.007] [PMID: 29738958]
[56]
Körtvelyessy, P.; Prüss, H.; Thurner, L.; Maetzler, W.; Vittore-Welliong, D.; Schultze-Amberger, J.; Heinze, H.J.; Reinhold, D.; Leypoldt, F.; Schreiber, S.; Bittner, D. Biomarkers of neurodegeneration in autoimmune-mediated encephalitis. Front. Neurol., 2018, 9, 668.
[http://dx.doi.org/10.3389/fneur.2018.00668] [PMID: 30283395]
[57]
Wang, S.; Zhang, J.; Liang, J.; Song, H.; Ji, X. Treatable causes of adult-onset rapid cognitive impairment. Clin. Neurol. Neurosurg., 2019, 187, 105575.
[http://dx.doi.org/10.1016/j.clineuro.2019.105575] [PMID: 31715517]
[58]
Goudot, M.; Frismand, S.; Hopes, L.; Verger, A.; Joubert, B.; Honnorat, J.; Tyvaert, L. Recurrent seizures of autoimmune origin: Emerging phenotypes. J. Neurol., 2021, 268(8), 3000-3010.
[http://dx.doi.org/10.1007/s00415-021-10457-1] [PMID: 33638022]
[59]
Giannoccaro, M.P.; Gastaldi, M.; Rizzo, G.; Jacobson, L.; Vacchiano, V.; Perini, G.; Capellari, S.; Franciotta, D.; Costa, A.; Liguori, R.; Vincent, A. Antibodies to neuronal surface antigens in patients with a clinical diagnosis of neurodegenerative disorder. Brain Behav. Immun., 2021, 96, 106-112.
[http://dx.doi.org/10.1016/j.bbi.2021.05.017] [PMID: 34022370]
[60]
Harris, L.; Griem, J.; Gummery, A.; Marsh, L.; Defres, S.; Bhojak, M.; Das, K.; Easton, A.; Solomon, T.; Kopelman, M. Neuropsychological and psychiatric outcomes in encephalitis: A multi-centre case-control study. PLoS One, 2020, 15(3), e0230436.
[http://dx.doi.org/10.1371/journal.pone.0230436] [PMID: 32210460]
[61]
Li, C.; Pang, X.; Shi, K.; Long, Q.; Liu, J.; Zheng, J. The insula is a hub for functional brain network in patients with anti-N-methyl-D-aspartate receptor encephalitis. Front. Neurosci., 2021, 15, 642390.
[http://dx.doi.org/10.3389/fnins.2021.642390] [PMID: 33790737]
[62]
Witt, J.A.; Helmstaedter, C. Neuropsychological evaluations in limbic encephalitis. Brain Sci., 2021, 11(5), 576.
[http://dx.doi.org/10.3390/brainsci11050576] [PMID: 33947002]
[63]
Shah, K.; Iloh, N.; Tabares, P.; Nnadi, C.; Sharif, Z.; Macaluso, C. Limbic encephalitis and psychosis. Gen. Hosp. Psychiatry, 2013, 35(6), 682.e1-682.e2.
[http://dx.doi.org/10.1016/j.genhosppsych.2013.05.005] [PMID: 23835082]
[64]
Heekin, R.D.; Catalano, M.C.; Frontera, A.T.; Catalano, G. Anti-NMDA receptor encephalitis in a patient with previous psychosis and neurological abnormalities: A diagnostic challenge. Case Rep. Psychiatry, 2015, 2015, 253891.
[http://dx.doi.org/10.1155/2015/253891] [PMID: 26199781]
[65]
Pollak, T.A.; Lennox, B.R.; Müller, S.; Benros, M.E.; Prüss, H.; Tebartz van Elst, L.; Klein, H.; Steiner, J.; Frodl, T.; Bogerts, B.; Tian, L.; Groc, L.; Hasan, A.; Baune, B.T.; Endres, D.; Haroon, E.; Yolken, R.; Benedetti, F.; Halaris, A.; Meyer, J.H.; Stassen, H.; Leboyer, M.; Fuchs, D.; Otto, M.; Brown, D.A.; Vincent, A.; Najjar, S.; Bechter, K. Autoimmune psychosis: An international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry, 2020, 7(1), 93-108.
[http://dx.doi.org/10.1016/S2215-0366(19)30290-1] [PMID: 31669058]
[66]
Räuber, S.; Heming, M.; Repple, J.; Ruland, T.; Kuelby, R.; Schulte-Mecklenbeck, A.; Gross, C.C.; Arolt, V.; Baune, B.; Hahn, T.; Dannlowski, U.; Meuth, S.G.; Melzer, N.; Wiendl, H.; Meyer Zu Hörste, G. Cerebrospinal fluid flow cytometry distinguishes psychosis spectrum disorders from differential diagnoses. Mol. Psychiatry, 2021, 26(12), 7661-7670.
[http://dx.doi.org/10.1038/s41380-021-01244-5] [PMID: 34363013]
[67]
Vitaliani, R.; Mason, W.; Ances, B.; Zwerdling, T.; Jiang, Z.; Dalmau, J. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann. Neurol., 2005, 58(4), 594-604.
[http://dx.doi.org/10.1002/ana.20614] [PMID: 16178029]
[68]
Gable, M.S.; Sheriff, H.; Dalmau, J.; Tilley, D.H.; Glaser, C.A. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin. Infect. Dis., 2012, 54(7), 899-904.
[http://dx.doi.org/10.1093/cid/cir1038] [PMID: 22281844]
[69]
Yu, Y.; Wu, Y.; Cao, X.; Li, J.; Liao, X.; Wei, J.; Huang, W. The clinical features and prognosis of Anti-NMDAR encephalitis depends on blood brain barrier integrity. Mult. Scler. Relat. Disord., 2021, 47, 102604.
[http://dx.doi.org/10.1016/j.msard.2020.102604] [PMID: 33130468]
[70]
Huang, X.X.; Zhang, S.; Yan, L.L.; Tang, Y.; Wu, J. Influential factors and predictors of anti-N-methyl-D-aspartate receptor encephalitis associated with severity at admission. Neurol. Sci., 2021, 42(9), 3835-3841.
[http://dx.doi.org/10.1007/s10072-021-05060-1] [PMID: 33483886]
[71]
Raja, P.; Shamick, B.; Nitish, L.K.; Holla, V.V.; Pal, P.K.; Mahadevan, A.; Thomas, P.T.; Maya, B.; Saini, J.; Shantala, H.; Netravathi, M. Clinical characteristics, treatment and long-term prognosis in patients with anti-NMDAR encephalitis. Neurol. Sci., 2021, 42(11), 4683-4696.
[http://dx.doi.org/10.1007/s10072-021-05174-6] [PMID: 33728548]
[72]
Planagumà, J.; Leypoldt, F.; Mannara, F.; Gutiérrez-Cuesta, J.; Martín-García, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; Lakadamyali, M.; Graus, F.; Maldonado, R.; Dalmau, J. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain, 2015, 138(Pt 1), 94-109.
[http://dx.doi.org/10.1093/brain/awu310] [PMID: 25392198]
[73]
Feng, J.; Fan, S.; Sun, Y.; Ren, H.; Guan, H.; Wang, J. Comprehensive B-cell immune repertoire analysis of anti-NMDAR encephalitis and anti-LGI1 encephalitis. Front. Immunol., 2021, 12, 717598.
[http://dx.doi.org/10.3389/fimmu.2021.717598] [PMID: 34691026]
[74]
Belforte, J.E.; Zsiros, V.; Sklar, E.R.; Jiang, Z.; Yu, G.; Li, Y.; Quinlan, E.M.; Nakazawa, K. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci., 2010, 13(1), 76-83.
[http://dx.doi.org/10.1038/nn.2447] [PMID: 19915563]
[75]
Al-Diwani, A.; Handel, A.; Townsend, L.; Pollak, T.; Leite, M.I.; Harrison, P.J.; Lennox, B.R.; Okai, D.; Manohar, S.G.; Irani, S.R. The psychopathology of NMDAR-antibody encephalitis in adults: A systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry, 2019, 6(3), 235-246.
[http://dx.doi.org/10.1016/S2215-0366(19)30001-X] [PMID: 30765329]
[76]
Warren, N.; Flavell, J.; O’Gorman, C.; Swayne, A.; Blum, S.; Kisely, S.; Siskind, D. Screening for anti-NMDAR encephalitis in psychiatry. J. Psychiatr. Res., 2020, 125, 28-32.
[http://dx.doi.org/10.1016/j.jpsychires.2020.03.007] [PMID: 32203736]
[77]
Liu, X.; Yan, B.; Wang, R.; Li, C.; Chen, C.; Zhou, D.; Hong, Z. Seizure outcomes in patients with anti-NMDAR encephalitis: A follow-up study. Epilepsia, 2017, 58(12), 2104-2111.
[http://dx.doi.org/10.1111/epi.13929] [PMID: 29098690]
[78]
de Bruijn, M.; van Sonderen, A. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABA(B)R encephalitis. Neurology, 2019, 92(19), e2185-e2196.
[http://dx.doi.org/10.1212/WNL.0000000000007475] [PMID: 30979857]
[79]
Novy, J.; Allenbach, G.; Bien, C.G.; Guedj, E.; Prior, J.O.; Rossetti, A.O. FDG-PET hyperactivity pattern in anti-NMDAr encephalitis. J. Neuroimmunol., 2016, 297, 156-158.
[http://dx.doi.org/10.1016/j.jneuroim.2016.05.016] [PMID: 27397089]
[80]
Liu, X.; Zhang, L.; Chen, C.; Gong, X.; Lin, J.; An, D.; Zhou, D.; Hong, Z. Long-term cognitive and neuropsychiatric outcomes in patients with anti-NMDAR encephalitis. Acta Neurol. Scand., 2019, 140(6), 414-421.
[http://dx.doi.org/10.1111/ane.13160] [PMID: 31483852]
[81]
Titulaer, M.J.; Höftberger, R.; Iizuka, T.; Leypoldt, F.; McCracken, L.; Cellucci, T.; Benson, L.A.; Shu, H.; Irioka, T.; Hirano, M.; Singh, G.; Cobo Calvo, A.; Kaida, K.; Morales, P.S.; Wirtz, P.W.; Yamamoto, T.; Reindl, M.; Rosenfeld, M.R.; Graus, F.; Saiz, A.; Dalmau, J. Overlapping demyelinating syndromes and anti–N-methyl-D-aspartate receptor encephalitis. Ann. Neurol., 2014, 75(3), 411-428.
[http://dx.doi.org/10.1002/ana.24117] [PMID: 24700511]
[82]
Martinez-Hernandez, E.; Guasp, M.; García-Serra, A.; Maudes, E.; Ariño, H.; Sepulveda, M.; Armangué, T.; Ramos, A.P.; Ben-Hur, T.; Iizuka, T.; Saiz, A.; Graus, F.; Dalmau, J. Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology, 2020, 94(22), e2302-e2310.
[http://dx.doi.org/10.1212/WNL.0000000000009239] [PMID: 32161029]
[83]
Ariño, H.; Armangué, T.; Petit-Pedrol, M.; Sabater, L.; Martinez-Hernandez, E.; Hara, M.; Lancaster, E.; Saiz, A.; Dalmau, J.; Graus, F. Anti-LGI1-associated cognitive impairment: Presentation and long-term outcome. Neurology, 2016, 87(8), 759-765.
[http://dx.doi.org/10.1212/WNL.0000000000003009] [PMID: 27466467]
[84]
Li, X.; Yuan, J.; Liu, L.; Hu, W. Antibody-LGI 1 autoimmune encephalitis manifesting as rapidly progressive dementia and hyponatremia: A case report and literature review. BMC Neurol., 2019, 19(1), 19.
[http://dx.doi.org/10.1186/s12883-019-1251-4] [PMID: 30732585]
[85]
Cui, L.L.; Boltze, J.; Zhang, Y. Positive LGI1 antibodies in CSF and relapse relate to worse outcome in anti-LGI1 encephalitis. Front. Immunol., 2021, 12, 772096.
[http://dx.doi.org/10.3389/fimmu.2021.772096] [PMID: 34975858]
[86]
Finke, C.; Prüss, H.; Heine, J.; Reuter, S.; Kopp, U.A.; Wegner, F.; Then Bergh, F.; Koch, S.; Jansen, O.; Münte, T.; Deuschl, G.; Ruprecht, K.; Stöcker, W.; Wandinger, K.P.; Paul, F.; Bartsch, T. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol., 2017, 74(1), 50-59.
[http://dx.doi.org/10.1001/jamaneurol.2016.4226] [PMID: 27893017]
[87]
Liu, X.; Shan, W.; Zhao, X.; Ren, J.; Ren, G.; Chen, C.; Shi, W.; Lv, R.; Li, Z.; Liu, Y.; Ai, L.; Wang, Q. The clinical value of 18 F-FDG-PET in autoimmune encephalitis associated with LGI1 antibody. Front. Neurol., 2020, 11, 418.
[http://dx.doi.org/10.3389/fneur.2020.00418] [PMID: 32581996]
[88]
Petit-Pedrol, M.; Sell, J.; Planagumà, J.; Mannara, F.; Radosevic, M.; Haselmann, H.; Ceanga, M.; Sabater, L.; Spatola, M.; Soto, D.; Gasull, X.; Dalmau, J.; Geis, C. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain, 2018, 141(11), 3144-3159.
[http://dx.doi.org/10.1093/brain/awy253] [PMID: 30346486]
[89]
Dubey, D.; Britton, J.; McKeon, A.; Gadoth, A.; Zekeridou, A.; Lopez Chiriboga, S.A.; Devine, M.; Cerhan, J.H.; Dunlay, K.; Sagen, J.; Ramberger, M.; Waters, P.; Irani, S.R.; Pittock, S.J. Randomized placebo-controlled trial of intravenous immunoglobulin in autoimmune LGI1/CASPR2 epilepsy. Ann. Neurol., 2020, 87(2), 313-323.
[http://dx.doi.org/10.1002/ana.25655] [PMID: 31782181]
[90]
Patterson, K.R.; Dalmau, J.; Lancaster, E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann. Neurol., 2018, 83(1), 40-51.
[http://dx.doi.org/10.1002/ana.25120] [PMID: 29244234]
[91]
van Sonderen, A.; Ariño, H.; Petit-Pedrol, M.; Leypoldt, F.; Körtvélyessy, P.; Wandinger, K.P.; Lancaster, E.; Wirtz, P.W.; Schreurs, M.W.; Sillevis, S.P.A.; Graus, F.; Dalmau, J.; Titulaer, M.J. The clinical spectrum of Caspr2 antibody-associated disease. Neurology, 2016, 87(5), 521-528.
[http://dx.doi.org/10.1212/WNL.0000000000002917] [PMID: 27371488]
[92]
Joubert, B.; Gobert, F.; Thomas, L.; Saint-Martin, M.; Desestret, V.; Convers, P.; Rogemond, V.; Picard, G.; Ducray, F.; Psimaras, D.; Antoine, J.C.; Delattre, J.Y.; Honnorat, J. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm., 2017, 4(4), e371.
[http://dx.doi.org/10.1212/NXI.0000000000000371] [PMID: 28638854]
[93]
Cretin, B.; Bilger, M.; Philippi, N.; Blanc, F. CASPR2 antibody encephalitis presenting as transient epileptic amnesia. Seizure, 2020, 81, 175-177.
[http://dx.doi.org/10.1016/j.seizure.2020.08.010] [PMID: 32829261]
[94]
Sánchez-Ordúz, L. Gállego, Pérez-Larraya, J.; Grisanti, F.; Centeno, M.; Arbizu, J. Caspr2 antibody-associated limbic encephalitis: contribution of visual aided analysis of 18F-FDG PET images using normal database comparison. Rev. Esp. Med. Nucl. Imagen Mol., 2020, 39(2), 92-95.
[http://dx.doi.org/10.1016/j.remnie.2019.11.003] [PMID: 31784408]
[95]
Ünverengil, G.; Vanli Yavuz, E.N.; Tüzün, E.; Erdağ, E.; Kabadayi, S.; Bilgiç, B.; Baykan, B. Brain infiltration of immune cells in CASPR2-antibody associated mesial temporal lobe epilepsy with hippocampal sclerosis. Noro Psikiyatri Arsivi, 2016, 53(4), 344-347.
[http://dx.doi.org/10.5152/npa.2016.15932] [PMID: 28360810]
[96]
Jia, Y.; Shi, H.; Ye, J.; Wang, Y. Clinical characteristics of patients double positive for CASPR2 and LGI1-antibodies. Clin. Neurol. Neurosurg., 2020, 197, 106187.
[http://dx.doi.org/10.1016/j.clineuro.2020.106187] [PMID: 32911250]
[97]
Benucci, M.; Tramacere, L.; Infantino, M.; Manfredi, M.; Grossi, V.; Damiani, A.; Gobbi, F.L.; Piccininni, M.; Zaccara, G.; Cincotta, M. Efficacy of tocilizumab in limbic encephalitis with Anti-CASPR2 antibodies. Case Rep. Neurol. Med., 2020, 2020, 5697670.
[http://dx.doi.org/10.1155/2020/5697670] [PMID: 32110453]
[98]
Lancaster, E.; Lai, M.; Peng, X.; Hughes, E.; Constantinescu, R.; Raizer, J.; Friedman, D.; Skeen, M.B.; Grisold, W.; Kimura, A.; Ohta, K.; Iizuka, T.; Guzman, M.; Graus, F.; Moss, S.J.; Balice-Gordon, R.; Dalmau, J. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: Case series and characterisation of the antigen. Lancet Neurol., 2010, 9(1), 67-76.
[http://dx.doi.org/10.1016/S1474-4422(09)70324-2] [PMID: 19962348]
[99]
Zhu, F.; Shan, W.; Lv, R.; Li, Z.; Wang, Q. Clinical characteristics of anti-GABA-B receptor encephalitis. Front. Neurol., 2020, 11, 403.
[http://dx.doi.org/10.3389/fneur.2020.00403] [PMID: 32508739]
[100]
Yang, M.; Lian, Y. Clinical features and early recognition of 242 cases of autoimmune encephalitis. Front. Neurol., 2022, 12, 803752.
[http://dx.doi.org/10.3389/fneur.2021.803752] [PMID: 35095744]
[101]
Vlachou, S. GABAB receptors and cognitive processing in health and disease. Curr. Top. Behav. Neurosci., 2022, 52, 291-329.
[http://dx.doi.org/10.1007/7854_2021_231] [PMID: 34382179]
[102]
van Coevorden-Hameete, M.H.; de Bruijn, M.A.A.M.; de Graaff, E.; Bastiaansen, D.A.E.M.; Schreurs, M.W.J.; Demmers, J.A.A.; Ramberger, M.; Hulsenboom, E.S.P.; Nagtzaam, M.M.P.; Boukhrissi, S.; Veldink, J.H.; Verschuuren, J.J.G.M.; Hoogenraad, C.C.; Sillevis Smitt, P.A.E.; Titulaer, M.J. The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain, 2019, 142(6), 1631-1643.
[http://dx.doi.org/10.1093/brain/awz094] [PMID: 31009048]
[103]
Peddawad, D.; Singh, M.K. Duodenal neuroendocrine tumour presenting as GABA B receptor autoimmune encephalitis. Case Rep. Neurol. Med., 2019, 2019, 3428918.
[http://dx.doi.org/10.1155/2019/3428918] [PMID: 31929924]
[104]
Ji, C.; Wu, D.; Chen, Z.; Wang, K. The long-term outcome of neuropsychological function is favorable in patients with non-malignancy related anti-GABABR encephalitis: A case series. BMC Neurol., 2021, 21(1), 87.
[http://dx.doi.org/10.1186/s12883-021-02111-0] [PMID: 33622267]
[105]
Lin, J.; Li, C.; Li, A.; Liu, X.; Chen, C.; Gong, X.; Zhou, D.; Hong, Z. Long-term cognitive and neuropsychiatric outcomes of anti-GABABR encephalitis patients: A prospective study. J. Neuroimmunol., 2021, 351, 577471.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577471] [PMID: 33418181]
[106]
Wen, X.; Wang, B., III; Wang, C.; Han, C.; Guo, S. A Retrospective study of patients with GABABR encephalitis: Therapy, disease activity and prognostic factors. Neuropsychiatr. Dis. Treat., 2021, 17, 99-110.
[http://dx.doi.org/10.2147/NDT.S289942] [PMID: 33500619]
[107]
Jiang, C.; Zhu, M.; Wei, D.; Duan, H.; Zhang, Y.; Feng, X. SCLC and anti-GABABR encephalitis: A retrospective analysis of 60 cases in China. Thorac. Cancer, 2022, 13(6), 804-810.
[http://dx.doi.org/10.1111/1759-7714.14323] [PMID: 35132785]
[108]
Ronchi, N.R.; Silva, G.D. Comparison of the clinical syndromes of anti-GABAa versus anti-GABAb associated autoimmune encephalitis: A systematic review. J. Neuroimmunol., 2022, 363, 577804.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577804] [PMID: 34995918]
[109]
Spatola, M.; Petit-Pedrol, M.; Simabukuro, M.M.; Armangue, T.; Castro, F.J.; Barcelo Artigues, M.I.; Julià, B.M.R.; Benson, L.; Gorman, M.; Felipe, A.; Caparó, O.R.L.; Rosenfeld, M.R.; Graus, F.; Dalmau, J. Investigations in GABAA receptor antibody-associated encephalitis. Neurology, 2017, 88(11), 1012-1020.
[http://dx.doi.org/10.1212/WNL.0000000000003713] [PMID: 28202703]
[110]
Höftberger, R.; van Sonderen, A.; Leypoldt, F.; Houghton, D.; Geschwind, M.; Gelfand, J.; Paredes, M.; Sabater, L.; Saiz, A.; Titulaer, M.J.; Graus, F.; Dalmau, J. Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology, 2015, 84(24), 2403-2412.
[http://dx.doi.org/10.1212/WNL.0000000000001682] [PMID: 25979696]
[111]
Laurido-Soto, O.; Brier, M.R.; Simon, L.E.; McCullough, A.; Bucelli, R.C.; Day, G.S. Patient characteristics and outcome associations in AMPA receptor encephalitis. J. Neurol., 2019, 266(2), 450-460.
[http://dx.doi.org/10.1007/s00415-018-9153-8] [PMID: 30560455]
[112]
Ricken, G.; Zrzavy, T.; Macher, S.; Altmann, P.; Troger, J.; Falk, K.K.; Kiefer, A.; Fichtenbaum, A.; Mitulovic, G.; Kubista, H.; Wandinger, K.P.; Rommer, P.; Bartsch, T.; Berger, T.; Weber, J.; Leypoldt, F.; Höftberger, R. Autoimmune global amnesia as manifestation of AMPAR encephalitis and neuropathologic findings. Neurol. Neuroimmunol. Neuroinflamm., 2021, 8(4), e1019.
[http://dx.doi.org/10.1212/NXI.0000000000001019] [PMID: 34016735]
[113]
Spatola, M.; Stojanova, V.; Prior, J.O.; Dalmau, J.; Rossetti, A.O. Serial brain 18FDG-PET in anti-AMPA receptor limbic encephalitis. J. Neuroimmunol., 2014, 271(1-2), 53-55.
[http://dx.doi.org/10.1016/j.jneuroim.2014.04.002] [PMID: 24793897]
[114]
Wei, Y.C.; Tseng, J.R.; Wu, C.L.; Su, F.C.; Weng, W.C.; Hsu, C.C.; Chang, K.H.; Wu, C.F.; Hsiao, I.T.; Lin, C.P. Different FDG-PET metabolic patterns of anti-AMPAR and anti-NMDAR encephalitis: Case report and literature review. Brain Behav., 2020, 10(3), e01540.
[http://dx.doi.org/10.1002/brb3.1540] [PMID: 31985135]
[115]
Hara, M.; Ariño, H.; Petit-Pedrol, M.; Sabater, L.; Titulaer, M.J.; Martinez-Hernandez, E.; Schreurs, M.W.; Rosenfeld, M.R.; Graus, F.; Dalmau, J. DPPX antibody-associated encephalitis: Main syndrome and antibody effects. Neurology, 2017, 88(14), 1340-1348.
[http://dx.doi.org/10.1212/WNL.0000000000003796] [PMID: 28258082]
[116]
Micieli, J.A.; Newman, N.J.; Kase, C.S.; Biousse, V. Teaching video neuro images: Opsoclonus in anti-DPPX encephalitis. Neurology, 2019, 92(19), e2298.
[http://dx.doi.org/10.1212/WNL.0000000000007463] [PMID: 31061220]
[117]
Escudero, D.; Guasp, M.; Ariño, H.; Gaig, C.; Martínez-Hernández, E.; Dalmau, J.; Graus, F. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology, 2017, 89(14), 1471-1475.
[http://dx.doi.org/10.1212/WNL.0000000000004541] [PMID: 28878050]
[118]
Miao, A.; Shi, Y.; Wang, X.; Ge, J.; Yu, C. Clinical features and prognosis in Chinese patients with dipeptidyl-peptidase-like protein 6 antibody-associated encephalitis. Front. Neurol., 2022, 12, 817896.
[http://dx.doi.org/10.3389/fneur.2021.817896] [PMID: 35095748]
[119]
Deuel, L.M.; Yu, C.H.; Vaughan, C.L.; Piquet, A.L. Oro-bucco-lingual dyskinesia, weight loss, and cognitive decline in anti-DPPX antibody-mediated encephalitis. Mov. Disord. Clin. Pract. (Hoboken), 2020, 7(S3)(Suppl. 3), S80-S82.
[http://dx.doi.org/10.1002/mdc3.13058] [PMID: 33015231]
[120]
Tobin, W.O.; Lennon, V.A.; Komorowski, L.; Probst, C.; Clardy, S.L.; Aksamit, A.J.; Appendino, J.P.; Lucchinetti, C.F.; Matsumoto, J.Y.; Pittock, S.J.; Sandroni, P.; Tippmann-Peikert, M.; Wirrell, E.C.; McKeon, A. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology, 2014, 83(20), 1797-1803.
[http://dx.doi.org/10.1212/WNL.0000000000000991] [PMID: 25320100]
[121]
Piepgras, J.; Höltje, M.; Michel, K.; Li, Q.; Otto, C.; Drenckhahn, C.; Probst, C.; Schemann, M.; Jarius, S.; Stöcker, W.; Balint, B.; Meinck, H.M.; Buchert, R.; Dalmau, J.; Ahnert-Hilger, G.; Ruprecht, K. Anti-DPPX encephalitis: Pathogenic effects of antibodies on gut and brain neurons. Neurology, 2015, 85(10), 890-897.
[http://dx.doi.org/10.1212/WNL.0000000000001907] [PMID: 26291285]
[122]
Zhou, Q.; Zhu, X.; Meng, H.; Zhang, M.; Chen, S. Anti-dipeptidyl-peptidase-like protein 6 encephalitis, a rare cause of reversible rapid progressive dementia and insomnia. J. Neuroimmunol., 2020, 339, 577114.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577114] [PMID: 31775073]
[123]
Doherty, L.; Gold, D.; Solnes, L.; Probasco, J.; Venkatesan, A. Anti-DPPX encephalitis: Prominent nystagmus reflected by extraocular muscle FDG-PET avidity. Neurol. Neuroimmunol. Neuroinflamm., 2017, 4(4), e361.
[http://dx.doi.org/10.1212/NXI.0000000000000361] [PMID: 28626782]
[124]
Honorat, J.A.; Komorowski, L.; Josephs, K.A.; Fechner, K.; St Louis, E.K.; Hinson, S.R.; Lederer, S.; Kumar, N.; Gadoth, A.; Lennon, V.A.; Pittock, S.J.; McKeon, A. IgLON5 antibody: Neurological accompaniments and outcomes in 20 patients. Neurol. Neuroimmunol. Neuroinflamm., 2017, 4(5), e385.
[http://dx.doi.org/10.1212/NXI.0000000000000385] [PMID: 28761904]
[125]
Schöberl, F.; Levin, J.; Remi, J.; Goldschagg, N.; Eren, O.; Okamura, N.; Unterrainer, M.; Rominger, A.; Albert, N.; Brendel, M. IgLON5: A case with predominant cerebellar tau deposits and leptomeningeal inflammation. Neurology, 2018, 91(4), 180-182.
[http://dx.doi.org/10.1212/WNL.0000000000005859] [PMID: 29970401]
[126]
Ni, Y.; Shen, D.; Zhang, Y.; Song, Y.; Gao, Y.; Zhou, Q.; He, L.; Yin, D.; Wang, Y.; Song, F.; Chen, M.; Lian, Y.; Chen, Y.; Zhao, X.; Zhang, X.; Chen, X.; Wang, Y.; Zhang, L.; Mo, N.; Lv, D.; Liu, J.; Mao, Z.; Peng, L.; Chen, S. Expanding the clinical spectrum of anti-IgLON5 disease: A multicenter retrospective study. Eur. J. Neurol., 2022, 29(1), 267-276.
[http://dx.doi.org/10.1111/ene.15117] [PMID: 34543501]
[127]
Macher, S.; Milenkovic, I.; Zrzavy, T.; Höftberger, R.; Seidel, S.; Berger-Sieczkowski, E.; Berger, T.; Rommer, P.S.; Wiest, G. Ocular motor abnormalities in Anti-IgLON5 disease. Front. Immunol., 2021, 12, 753856.
[http://dx.doi.org/10.3389/fimmu.2021.753856] [PMID: 34659261]
[128]
González-Ávila, C.; Casado, L.; Muro, G.I.; Villacieros-Álvarez, J.; Vivancos, J.; Quintas, S. Altered ioflupane single-photon emission computed tomography in anti-IgLON5 disease: A new case mimicking probable progressive supranuclear palsy and review of the literature. Eur. J. Neurol., 2021, 28(4), 1392-1395.
[http://dx.doi.org/10.1111/ene.14634] [PMID: 33175431]
[129]
Gaig, C.; Graus, F.; Compta, Y.; Högl, B.; Bataller, L.; Brüggemann, N.; Giordana, C.; Heidbreder, A.; Kotschet, K.; Lewerenz, J.; Macher, S.; Martí, M.J.; Montojo, T.; Pérez-Pérez, J.; Puertas, I.; Seitz, C.; Simabukuro, M.; Téllez, N.; Wandinger, K.P.; Iranzo, A.; Ercilla, G.; Sabater, L.; Santamaría, J.; Dalmau, J. Clinical manifestations of the anti-IgLON5 disease. Neurology, 2017, 88(18), 1736-1743.
[http://dx.doi.org/10.1212/WNL.0000000000003887] [PMID: 28381508]
[130]
Tüzün, E.; Dalmau, J. Limbic encephalitis and variants: Classification, diagnosis and treatment. Neurologist, 2007, 13(5), 261-271.
[http://dx.doi.org/10.1097/NRL.0b013e31813e34a5] [PMID: 17848866]
[131]
Sillevis Smitt, P.; Grefkens, J.; de Leeuw, B.; van den Bent, M.; van Putten, W.; Hooijkaas, H.; Vecht, C. Survival and outcome in 73 anti-Hu positive patients with paraneoplastic encephalomyelitis/sensory neuronopathy. J. Neurol., 2002, 249(6), 745-753.
[http://dx.doi.org/10.1007/s00415-002-0706-4] [PMID: 12111309]
[132]
Heine, J.; Ly, L.T.; Lieker, I.; Slowinski, T.; Finke, C.; Prüss, H.; Harms, L. Immunoadsorption or plasma exchange in the treatment of autoimmune encephalitis: A pilot study. J. Neurol., 2016, 263(12), 2395-2402.
[http://dx.doi.org/10.1007/s00415-016-8277-y] [PMID: 27604620]
[133]
Bien, C.G.; Vincent, A.; Barnett, M.H.; Becker, A.J.; Blümcke, I.; Graus, F.; Jellinger, K.A.; Reuss, D.E.; Ribalta, T.; Schlegel, J.; Sutton, I.; Lassmann, H.; Bauer, J. Immunopathology of autoantibody-associated encephalitides: Clues for pathogenesis. Brain, 2012, 135(Pt 5), 1622-1638.
[http://dx.doi.org/10.1093/brain/aws082] [PMID: 22539258]
[134]
Shavit, Y.B.; Graus, F.; Probst, A.; Rene, R.; Steck, A.J. Epilepsia partialis continua: A new manifestation of anti-Hu-associated paraneoplastic encephalomyelitis. Ann. Neurol., 1999, 45(2), 255-258.
[http://dx.doi.org/10.1002/1531-8249(199902)45:2<255:AID-ANA18>3.0.CO;2-N] [PMID: 9989630]
[135]
Roberts, W.K.; Darnell, R.B. Neuroimmunology of the paraneoplastic neurological degenerations. Curr. Opin. Immunol., 2004, 16(5), 616-622.
[http://dx.doi.org/10.1016/j.coi.2004.07.009] [PMID: 15342008]
[136]
Voltz, R.; Gultekin, S.H.; Rosenfeld, M.R.; Gerstner, E.; Eichen, J.; Posner, J.B.; Dalmau, J. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N. Engl. J. Med., 1999, 340(23), 1788-1795.
[http://dx.doi.org/10.1056/NEJM199906103402303] [PMID: 10362822]
[137]
Dalmau, J.; Graus, F.; Villarejo, A.; Posner, J.B.; Blumenthal, D.; Thiessen, B.; Saiz, A.; Meneses, P.; Rosenfeld, M.R. Clinical analysis of anti-Ma2-associated encephalitis. Brain, 2004, 127(Pt 8), 1831-1844.
[http://dx.doi.org/10.1093/brain/awh203] [PMID: 15215214]
[138]
Sahashi, K.; Sakai, K.; Mano, K.; Hirose, G. Anti-Ma2 antibody related paraneoplastic limbic/brain stem encephalitis associated with breast cancer expressing Ma1, Ma2, and Ma3 mRNAs. J. Neurol. Neurosurg. Psychiatry, 2003, 74(9), 1332-1335.
[http://dx.doi.org/10.1136/jnnp.74.9.1332] [PMID: 12933950]
[139]
Dalmau, J.; Rosenfeld, M.R. Paraneoplastic syndromes of the CNS. Lancet Neurol., 2008, 7(4), 327-340.
[http://dx.doi.org/10.1016/S1474-4422(08)70060-7] [PMID: 18339348]
[140]
Fang, B.; McKeon, A.; Hinson, S.R.; Kryzer, T.J.; Pittock, S.J.; Aksamit, A.J.; Lennon, V.A. Autoimmune glial fibrillary acidic protein astrocytopathy: A novel meningoencephalomyelitis. JAMA Neurol., 2016, 73(11), 1297-1307.
[http://dx.doi.org/10.1001/jamaneurol.2016.2549] [PMID: 27618707]
[141]
Iorio, R.; Damato, V.; Evoli, A.; Gessi, M.; Gaudino, S.; Di Lazzaro, V.; Spagni, G.; Sluijs, J.A.; Hol, E.M. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: A case series of 22 patients. J. Neurol. Neurosurg. Psychiatry, 2018, 89(2), 138-146.
[http://dx.doi.org/10.1136/jnnp-2017-316583] [PMID: 28951498]
[142]
Amanat, M.; Thijs, R.D.; Salehi, M.; Sander, J.W. Seizures as a clinical manifestation in somatic autoimmune disorders. Seizure, 2019, 64, 59-64.
[http://dx.doi.org/10.1016/j.seizure.2018.11.012] [PMID: 30562654]
[143]
Ong, M.S.; Kohane, I.S.; Cai, T.; Gorman, M.P.; Mandl, K.D. Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol., 2014, 71(5), 569-574.
[http://dx.doi.org/10.1001/jamaneurol.2014.188] [PMID: 24687183]
[144]
Devinsky, O.; Schein, A.; Najjar, S. Epilepsy associated with systemic autoimmune disorders. Epilepsy Curr., 2013, 13(2), 62-68.
[http://dx.doi.org/10.5698/1535-7597-13.2.62] [PMID: 23646005]
[145]
Vincent, A.; Crino, P.B. Systemic and neurologic autoimmune disorders associated with seizures or epilepsy. Epilepsia, 2011, 52(Suppl. 3), 12-17.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03030.x] [PMID: 21542840]
[146]
Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; Jayne, D.; Cervera, R.; Costedoat-Chalumeau, N.; Diamond, B.; Gladman, D.D.; Hahn, B.; Hiepe, F.; Jacobsen, S.; Khanna, D.; Lerstrøm, K.; Massarotti, E.; McCune, J.; Ruiz-Irastorza, G.; Sanchez-Guerrero, J.; Schneider, M.; Urowitz, M.; Bertsias, G.; Hoyer, B.F.; Leuchten, N.; Tani, C.; Tedeschi, S.K.; Touma, Z.; Schmajuk, G.; Anic, B.; Assan, F.; Chan, T.M.; Clarke, A.E.; Crow, M.K.; Czirják, L.; Doria, A.; Graninger, W.; Halda-Kiss, B.; Hasni, S.; Izmirly, P.M.; Jung, M.; Kumánovics, G.; Mariette, X.; Padjen, I.; Pego-Reigosa, J.M.; Romero-Diaz, J.; Rúa-Figueroa Fernández, Í.; Seror, R.; Stummvoll, G.H.; Tanaka, Y.; Tektonidou, M.G.; Vasconcelos, C.; Vital, E.M.; Wallace, D.J.; Yavuz, S.; Meroni, P.L.; Fritzler, M.J.; Naden, R.; Dörner, T.; Johnson, S.R. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol., 2019, 71(9), 1400-1412.
[http://dx.doi.org/10.1002/art.40930] [PMID: 31385462]
[147]
Kampylafka, E.I.; Alexopoulos, H.; Kosmidis, M.L.; Panagiotakos, D.B.; Vlachoyiannopoulos, P.G.; Dalakas, M.C.; Moutsopoulos, H.M.; Tzioufas, A.G. Incidence and prevalence of major central nervous system involvement in systemic lupus erythematosus: a 3-year prospective study of 370 patients. PLoS One, 2013, 8(2), e55843.
[http://dx.doi.org/10.1371/journal.pone.0055843] [PMID: 23424638]
[148]
Hanly, J.G.; Urowitz, M.B.; Su, L.; Gordon, C.; Bae, S.C.; Sanchez-Guerrero, J.; Romero-Diaz, J.; Wallace, D.J.; Clarke, A.E.; Ginzler, E.; Merrill, J.T.; Isenberg, D.A.; Rahman, A.; Petri, M.; Fortin, P.R.; Gladman, D.; Bruce, I.N.; Steinsson, K.; Dooley, M.; Khamashta, M.A.; Alarcón, G.S.; Fessler, B.J.; Ramsey-Goldman, R.; Manzi, S.; Zoma, A.A.; Sturfelt, G.K.; Nived, O.; Aranow, C.; Mackay, M.; Ramos-Casals, M.; van Vollenhoven, R.; Kalunian, K.C.; Ruiz-Irastorza, G.; Lim, S.; Kamen, D.L.; Peschken, C.A.; Inanc, M.; Theriault, C.; Thompson, K.; Farewell, V. Seizure disorders in systemic lupus erythematosus results from an international, prospective, inception cohort study. Ann. Rheum. Dis., 2012, 71(9), 1502-1509.
[http://dx.doi.org/10.1136/annrheumdis-2011-201089] [PMID: 22492779]
[149]
Adelöw, C.; Andersson, T.; Ahlbom, A.; Tomson, T. Unprovoked seizures in multiple sclerosis and systemic lupus erythematosus: A population-based case-control study. Epilepsy Res., 2012, 101(3), 284-287.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.04.005] [PMID: 22575230]
[150]
González-Duarte, A.; Cantú-Brito, C.G.; Ruano-Calderón, L.; García-Ramos, G. Clinical description of seizures in patients with systemic lupus erythematosus. Eur. Neurol., 2008, 59(6), 320-323.
[http://dx.doi.org/10.1159/000121423] [PMID: 18408374]
[151]
Appenzeller, S.; Cendes, F.; Costallat, L.T. Epileptic seizures in systemic lupus erythematosus. Neurology, 2004, 63(10), 1808-1812.
[http://dx.doi.org/10.1212/01.WNL.0000144178.32208.4F] [PMID: 15557494]
[152]
Toyota, T.; Akamatsu, N.; Tanaka, A.; Shouzaki, T.; Tsuji, S.; Saito, K.; Tanaka, Y. Mesial temporal lobe epilepsy as a neuropsychiatric syndrome of systemic lupus erythematosus. Epilepsia, 2013, 54(3), e33-e36.
[http://dx.doi.org/10.1111/epi.12012] [PMID: 23126460]
[153]
Lisnevskaia, L.; Murphy, G.; Isenberg, D. Systemic lupus erythematosus. Lancet, 2014, 384(9957), 1878-1888.
[http://dx.doi.org/10.1016/S0140-6736(14)60128-8] [PMID: 24881804]
[154]
Schwartz, N.; Stock, A.D.; Putterman, C. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nat. Rev. Rheumatol., 2019, 15(3), 137-152.
[http://dx.doi.org/10.1038/s41584-018-0156-8] [PMID: 30659245]
[155]
Ramsey-Goldman, R.; Alarcón, G.S.; McGwin, G.; Petri, M.; Vilá, L.M.; Edberg, J.C.; Reveille, J.D.; Kimberly, R.P. Time to seizure occurrence and damage in PROFILE, a multi-ethnic systemic lupus erythematosus cohort. Lupus, 2008, 17(3), 177-184.
[http://dx.doi.org/10.1177/0961203307086639] [PMID: 18372357]
[156]
Plog, B.A.; Nedergaard, M. The glymphatic system in central nervous system health and disease: Past, present, and future. Annu. Rev. Pathol., 2018, 13(1), 379-394.
[http://dx.doi.org/10.1146/annurev-pathol-051217-111018] [PMID: 29195051]
[157]
Ho, R.C.; Thiaghu, C.; Ong, H.; Lu, Y.; Ho, C.S.; Tam, W.W.; Zhang, M.W. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun. Rev., 2016, 15(2), 124-138.
[http://dx.doi.org/10.1016/j.autrev.2015.10.003] [PMID: 26497108]
[158]
Borowoy, A.M.; Pope, J.E.; Silverman, E.; Fortin, P.R.; Pineau, C.; Smith, C.D.; Arbillaga, H.; Gladman, D.; Urowitz, M.; Zummer, M.; Hudson, M.; Tucker, L.; Peschken, C. Neuropsychiatric lupus: the prevalence and autoantibody associations depend on the definition: Results from the 1000 faces of lupus cohort. Semin. Arthritis Rheum., 2012, 42(2), 179-185.
[http://dx.doi.org/10.1016/j.semarthrit.2012.03.011] [PMID: 22595642]
[159]
Andrade, R.M.; Alarcón, G.S.; González, L.A.; Fernández, M.; Apte, M.; Vilá, L.M.; McGwin, G., Jr; Reveille, J.D. Seizures in patients with systemic lupus erythematosus: Data from LUMINA, a multiethnic cohort (LUMINA LIV). Ann. Rheum. Dis., 2008, 67(6), 829-834.
[http://dx.doi.org/10.1136/ard.2007.077594] [PMID: 17875548]
[160]
Hawro, T.; Bogucki, A.; Krupińska-Kun, M.; Maurer, M.; Woźniacka, A. Intractable headaches, ischemic stroke, and seizures are linked to the presence of anti-β2GPI antibodies in patients with systemic lupus erythematosus. PLoS One, 2015, 10(3), e0119911.
[http://dx.doi.org/10.1371/journal.pone.0119911] [PMID: 25781014]
[161]
DeGiorgio, L.A.; Konstantinov, K.N.; Lee, S.C.; Hardin, J.A.; Volpe, B.T.; Diamond, B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med., 2001, 7(11), 1189-1193.
[http://dx.doi.org/10.1038/nm1101-1189] [PMID: 11689882]
[162]
Moscavitch, S.D.; Szyper-Kravitz, M.; Shoenfeld, Y. Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: The olfactory and immune system interrelationship. Clin. Immunol., 2009, 130(3), 235-243.
[http://dx.doi.org/10.1016/j.clim.2008.10.010] [PMID: 19097945]
[163]
Huang, X.; Magder, L.S.; Petri, M. Predictors of incident seizure in systemic lupus erythematosus. J. Rheumatol., 2016, 43(3), 565-575.
[http://dx.doi.org/10.3899/jrheum.150135] [PMID: 26773115]
[164]
Hopia, L.; Andersson, M.; Svenungsson, E.; Khademi, M.; Piehl, F.; Tomson, T. Epilepsy in systemic lupus erythematosus: Prevalence and risk factors. Eur. J. Neurol., 2020, 27(2), 297-307.
[http://dx.doi.org/10.1111/ene.14077] [PMID: 31454130]
[165]
Spies, M.C.; Gutjahr-Holland, J.A.; Bertouch, J.V.; Sammel, A.M. Prevalence of neuropsychiatric lupus in psychosis patients who have tested positive for antinuclear antibodies. Arthritis Care Res. (Hoboken), 2022, 74(3), 427-432.
[http://dx.doi.org/10.1002/acr.24472] [PMID: 33002303]
[166]
Liang, R.; Zheng, L.; Ji, T.; Zheng, J.; Liu, J.; Yuan, C.; Huang, Q.; Yang, M. Elevated serum free IL-18 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Lupus, 2022, 31(2), 187-193.
[http://dx.doi.org/10.1177/09612033211069853] [PMID: 35042378]
[167]
Huang, Q.; Shen, S.; Qu, H.; Huang, Y.; Wu, D.; Jiang, H.; Yuan, C. Expression of HMGB1 and TLR4 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Ann. Transl. Med., 2020, 8(1), 9.
[http://dx.doi.org/10.21037/atm.2019.12.44] [PMID: 32055600]
[168]
Bautista, J.F.; Kelly, J.A.; Harley, J.B.; Gray-McGuire, C. Addressing genetic heterogeneity in complex disease: Finding seizure genes in systemic lupus erythematosus. Epilepsia, 2008, 49(3), 527-530.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01453.x] [PMID: 18070094]
[169]
Ceccarelli, F.; Perricone, C.; Borgiani, P.; Ciccacci, C.; Rufini, S.; Cipriano, E.; Alessandri, C.; Spinelli, F.R.; Sili, S.A.; Novelli, G.; Valesini, G.; Conti, F. Genetic factors in systemic lupus erythematosus: Contribution to disease phenotype. J. Immunol. Res., 2015, 2015, 745647.
[http://dx.doi.org/10.1155/2015/745647] [PMID: 26798662]
[170]
Appenzeller, S.; Pike, G.B.; Clarke, A.E. Magnetic resonance imaging in the evaluation of central nervous system manifestations in systemic lupus erythematosus. Clin. Rev. Allergy Immunol., 2008, 34(3), 361-366.
[http://dx.doi.org/10.1007/s12016-007-8060-z] [PMID: 18084729]
[171]
Govoni, M.; Bortoluzzi, A.; Padovan, M.; Silvagni, E.; Borrelli, M.; Donelli, F.; Ceruti, S.; Trotta, F. The diagnosis and clinical management of the neuropsychiatric manifestations of lupus. J. Autoimmun., 2016, 74, 41-72.
[http://dx.doi.org/10.1016/j.jaut.2016.06.013] [PMID: 27427403]
[172]
Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr; Forsgren, L.; French, J.A.; Glynn, M.; Hesdorffer, D.C.; Lee, B.I.; Mathern, G.W.; Moshé, S.L.; Perucca, E.; Scheffer, I.E.; Tomson, T.; Watanabe, M.; Wiebe, S. ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 2014, 55(4), 475-482.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[173]
Uribe-San-Martín, R.; Ciampi, E.; Cruz, J.P.; Vásquez, M.; Cárcamo, C. Refractory epilepsy associated with anti-ribosomal P antibodies successfully treated with topiramate. J. Neuroimmunol., 2020, 340, 577144.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577144] [PMID: 31954282]
[174]
Bertsias, G.K.; Boumpas, D.T. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat. Rev. Rheumatol., 2010, 6(6), 358-367.
[http://dx.doi.org/10.1038/nrrheum.2010.62] [PMID: 20458332]
[175]
Popescu, A.; Kao, A.H. Neuropsychiatric systemic lupus erythematosus. Curr. Neuropharmacol., 2011, 9(3), 449-457.
[http://dx.doi.org/10.2174/157015911796557984] [PMID: 22379459]
[176]
Barile-Fabris, L.; Ariza-Andraca, R.; Olguín-Ortega, L.; Jara, L.J.; Fraga-Mouret, A.; Miranda-Limón, J.M.; Fuentes de la Mata, J.; Clark, P.; Vargas, F.; Alocer-Varela, J. Controlled clinical trial of IV cyclophosphamide versus IV methylprednisolone in severe neurological manifestations in systemic lupus erythematosus. Ann. Rheum. Dis., 2005, 64(4), 620-625.
[http://dx.doi.org/10.1136/ard.2004.025528] [PMID: 15769918]
[177]
Tokunaga, M.; Saito, K.; Kawabata, D.; Imura, Y.; Fujii, T.; Nakayamada, S.; Tsujimura, S.; Nawata, M.; Iwata, S.; Azuma, T.; Mimori, T.; Tanaka, Y. Efficacy of rituximab (anti-CD20) for refractory systemic lupus erythematosus involving the central nervous system. Ann. Rheum. Dis., 2007, 66(4), 470-475.
[http://dx.doi.org/10.1136/ard.2006.057885] [PMID: 17107983]
[178]
Mok, C.C.; Lau, C.S.; Wong, R.W. Treatment of lupus psychosis with oral cyclophosphamide followed by azathioprine maintenance: an open-label study. Am. J. Med., 2003, 115(1), 59-62.
[http://dx.doi.org/10.1016/S0002-9343(03)00135-9] [PMID: 12867236]
[179]
Lu, F.; Lu, H.; Xie, M.; Li, S.; Zu, Y.; Zhou, J.; Yu, J.; Wang, S.; Ruan, Y.; Wen, C.; Xu, Z. Limited preventive effect of prednisone on neuropsychiatric symptoms in murine systemic lupus erythematosus. Inflammopharmacology, 2019, 27(3), 511-520.
[http://dx.doi.org/10.1007/s10787-019-00587-4] [PMID: 30911862]
[180]
Zhou, J.; Lu, F.; Li, S.; Xie, M.; Lu, H.; Xie, Z.; Wu, D.; Wang, S.; Wen, C.; Xu, Z.H. Analysis of brain metabolites by gas chromatography-mass spectrometry reveals the risk-benefit concerns of prednisone in MRL/lpr lupus mice. Inflammopharmacology, 2020, 28(2), 425-435.
[http://dx.doi.org/10.1007/s10787-019-00668-4] [PMID: 31786803]
[181]
Dafoulas, G.E.; Toulis, K.A.; Mccorry, D.; Kumarendran, B.; Thomas, G.N.; Willis, B.H.; Gokhale, K.; Gkoutos, G.; Narendran, P.; Nirantharakumar, K. Type 1 diabetes mellitus and risk of incident epilepsy: A population-based, open-cohort study. Diabetologia, 2017, 60(2), 258-261.
[http://dx.doi.org/10.1007/s00125-016-4142-x] [PMID: 27796422]
[182]
Chou, I.C.; Wang, C.H.; Lin, W.D.; Tsai, F.J.; Lin, C.C.; Kao, C.H. Risk of epilepsy in type 1 diabetes mellitus: A population-based cohort study. Diabetologia, 2016, 59(6), 1196-1203.
[http://dx.doi.org/10.1007/s00125-016-3929-0] [PMID: 27030312]
[183]
Mastrangelo, M.; Tromba, V.; Silvestri, F.; Costantino, F. Epilepsy in children with type 1 diabetes mellitus: Pathophysiological basis and clinical hallmarks. Eur. J. Paediatr. Neurol., 2019, 23(2), 240-247.
[http://dx.doi.org/10.1016/j.ejpn.2018.12.006] [PMID: 30600130]
[184]
Falip, M.; Carreño, M.; Miró, J.; Saiz, A.; Villanueva, V.; Quílez, A.; Molins, A.; Barceló, I.; Sierra, A.; Graus, F. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur. J. Neurol., 2012, 19(6), 827-833.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03609.x] [PMID: 22353320]
[185]
International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun., 2018, 9(1), 5269.
[http://dx.doi.org/10.1038/s41467-018-07524-z] [PMID: 30531953]
[186]
Poulton, C.J.; Schot, R.; Kia, S.K.; Jones, M.; Verheijen, F.W.; Venselaar, H.; de Wit, M.C.; de Graaff, E.; Bertoli-Avella, A.M.; Mancini, G.M. Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am. J. Hum. Genet., 2011, 89(2), 265-276.
[http://dx.doi.org/10.1016/j.ajhg.2011.07.006] [PMID: 21835305]
[187]
Yorulmaz, H.; Kaptan, E.; Seker, F.B.; Oztas, B. Type 1 diabetes exacerbates blood-brain barrier alterations during experimental epileptic seizures in an animal model. Cell Biochem. Funct., 2015, 33(5), 285-292.
[http://dx.doi.org/10.1002/cbf.3113] [PMID: 26011758]
[188]
Aguiar, T.S.; Dantas, J.R.; Cabral, D.B.; Rêgo, C.C.S.; Zajdenverg, L.; Salles, G.F.; Alves-Leon, S.V.; Rodacki, M.; Lima, M.A. Association between high titers of glutamic acid decarboxylase antibody and epilepsy in patients with type 1 diabetes mellitus: A cross-sectional study. Seizure, 2019, 71, 318-321.
[http://dx.doi.org/10.1016/j.seizure.2019.09.003] [PMID: 31525611]
[189]
Mäkelä, K.M.; Hietaharju, A.; Brander, A.; Peltola, J. Clinical management of epilepsy with glutamic acid decarboxylase antibody positivity: The interplay between immunotherapy and anti-epileptic drugs. Front. Neurol., 2018, 9, 579.
[http://dx.doi.org/10.3389/fneur.2018.00579] [PMID: 30057567]
[190]
Lacruz Ballester, L.; Fernandez-Fournier, M.; Puertas Muñoz, I.; Rodriguez Fraga, O.; Lastras Fernandez-Escandon, C.; Rodriguez de Rivera Garrido, F.J.; Alba Suarez, E.M.; Tallon Barranco, A. Serum glutamate decarboxylase antibodies and neurological disorders: When to suspect their association? Neurol. Sci., 2022, 43(1), 633-641.
[http://dx.doi.org/10.1007/s10072-021-05281-4] [PMID: 33914193]
[191]
Aye, T.; Reiss, A.L.; Kesler, S.; Hoang, S.; Drobny, J.; Park, Y.; Schleifer, K.; Baumgartner, H.; Wilson, D.M.; Buckingham, B.A. The feasibility of detecting neuropsychologic and neuroanatomic effects of type 1 diabetes in young children. Diabetes Care, 2011, 34(7), 1458-1462.
[http://dx.doi.org/10.2337/dc10-2164] [PMID: 21562318]
[192]
Trovato, C.M.; Raucci, U.; Valitutti, F.; Montuori, M.; Villa, M.P.; Cucchiara, S.; Parisi, P. Neuropsychiatric manifestations in celiac disease. Epilepsy Behav., 2019, 99, 106393.
[http://dx.doi.org/10.1016/j.yebeh.2019.06.036] [PMID: 31479999]
[193]
Ludvigsson, J.F.; Zingone, F.; Tomson, T.; Ekbom, A.; Ciacci, C. Increased risk of epilepsy in biopsy-verified celiac disease: A population-based cohort study. Neurology, 2012, 78(18), 1401-1407.
[http://dx.doi.org/10.1212/WNL.0b013e3182544728] [PMID: 22517096]
[194]
Canova, C.; Ludvigsson, J.; Barbiellini Amidei, C.; Zanier, L.; Zingone, F. The risk of epilepsy in children with celiac disease: A population-based cohort study. Eur. J. Neurol., 2020, 27(6), 1089-1095.
[http://dx.doi.org/10.1111/ene.14160] [PMID: 31994800]
[195]
Julian, T.; Hadjivassiliou, M.; Zis, P. Gluten sensitivity and epilepsy: A systematic review. J. Neurol., 2019, 266(7), 1557-1565.
[http://dx.doi.org/10.1007/s00415-018-9025-2] [PMID: 30167878]
[196]
Russo, E. The gut microbiota as a biomarker in epilepsy. Neurobiol. Dis., 2022, 163, 105598.
[http://dx.doi.org/10.1016/j.nbd.2021.105598] [PMID: 34942335]
[197]
Boscolo, S.; Lorenzon, A.; Sblattero, D.; Florian, F.; Stebel, M.; Marzari, R.; Not, T.; Aeschlimann, D.; Ventura, A.; Hadjivassiliou, M.; Tongiorgi, E. Anti transglutaminase antibodies cause ataxia in mice. PLoS One, 2010, 5(3), e9698.
[http://dx.doi.org/10.1371/journal.pone.0009698] [PMID: 20300628]
[198]
Gobbi, G. Coeliac disease, epilepsy and cerebral calcifications. Brain Dev., 2005, 27(3), 189-200.
[http://dx.doi.org/10.1016/j.braindev.2004.05.003] [PMID: 15737700]
[199]
Hadjivassiliou, M.; Aeschlimann, P.; Sanders, D.S.; Mäki, M.; Kaukinen, K.; Grünewald, R.A.; Bandmann, O.; Woodroofe, N.; Haddock, G.; Aeschlimann, D.P. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology, 2013, 80(19), 1740-1745.
[http://dx.doi.org/10.1212/WNL.0b013e3182919070] [PMID: 23576621]
[200]
Ferlazzo, E.; Polidoro, S.; Gobbi, G.; Gasparini, S.; Sueri, C.; Cianci, V.; Sofia, V.; Giuliano, L.; Giallonardo, A.T.; Di Bonaventura, C.; Casciato, S.; Messana, T.; Coppola, A.; Striano, S.; Bilo, L.; Monoriti, M.; Genovese, G.; Sarica, P.; Arcudi, L.; Aguglia, U. Epilepsy, cerebral calcifications, and gluten-related disorders: Are anti-transglutaminase 6 antibodies the missing link? Seizure, 2019, 73, 17-20.
[http://dx.doi.org/10.1016/j.seizure.2019.10.012] [PMID: 31698178]
[201]
Labate, A.; Gambardella, A.; Messina, D.; Tammaro, S.; Le Piane, E.; Pirritano, D.; Cosco, C.; Doldo, P.; Mazzei, R.; Oliveri, R.L.; Bosco, D.; Zappia, M.; Valentino, P.; Aguglia, U.; Quattrone, A. Silent celiac disease in patients with childhood localization-related epilepsies. Epilepsia, 2001, 42(9), 1153-1155.
[http://dx.doi.org/10.1046/j.1528-1157.2001.45700.x] [PMID: 11580763]
[202]
Campagna, G.; Pesce, M.; Tatangelo, R.; Rizzuto, A.; La Fratta, I.; Grilli, A. The progression of coeliac disease: Its neurological and psychiatric implications. Nutr. Res. Rev., 2017, 30(1), 25-35.
[http://dx.doi.org/10.1017/S0954422416000214] [PMID: 27976606]
[203]
Swartwood, S.; Wilkes, J.; Bonkowsky, J.L.; Trandafir, C.C. Celiac disease in children: An association with drug-resistant epilepsy. Pediatr. Neurol., 2021, 120, 12-17.
[http://dx.doi.org/10.1016/j.pediatrneurol.2021.03.003] [PMID: 33962344]
[204]
Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol. J., 2019, 7(5), 583-613.
[http://dx.doi.org/10.1177/2050640619844125] [PMID: 31210940]
[205]
Laurent, C.; Capron, J.; Quillerou, B.; Thomas, G.; Alamowitch, S.; Fain, O.; Mekinian, A. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT): Characteristics, treatment and outcome in 251 cases from the literature. Autoimmun. Rev., 2016, 15(12), 1129-1133.
[http://dx.doi.org/10.1016/j.autrev.2016.09.008] [PMID: 27639840]
[206]
Schiess, N.; Pardo, C.A. Hashimoto’s encephalopathy. Ann. N. Y. Acad. Sci., 2008, 1142(1), 254-265.
[http://dx.doi.org/10.1196/annals.1444.018] [PMID: 18990131]
[207]
Pfeuffer, S.; Ruck, T.; Rolfes, L.; Pawlowski, M.; Pawlitzki, M.; Wiendl, H.; Kovac, S.; Meuth, S.G. Patients with a relapsing course of steroid-responsive encephalopathy associated with autoimmune thyroiditis exhibit persistent intrathecal CD4+ T-cell activation. Eur. J. Neurol., 2021, 28(4), 1284-1291.
[http://dx.doi.org/10.1111/ene.14657] [PMID: 33230897]
[208]
Adams, A.V.; Mooneyham, G.C.; Van Mater, H.; Gallentine, W. Evaluation of diagnostic criteria for hashimoto encephalopathy among children and adolescents. Pediatr. Neurol., 2020, 107, 41-47.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.12.011] [PMID: 32173161]
[209]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[210]
Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology, 2013, 69, 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.004] [PMID: 22521336]
[211]
Broekaart, D.W.M.; Anink, J.J.; Baayen, J.C.; Idema, S.; de Vries, H.E.; Aronica, E.; Gorter, J.A.; van Vliet, E.A. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia, 2018, 59(10), 1931-1944.
[http://dx.doi.org/10.1111/epi.14550] [PMID: 30194729]
[212]
Tan, T.H.; Perucca, P.; O’Brien, T.J.; Kwan, P.; Monif, M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia, 2021, 62(2), 303-324.
[http://dx.doi.org/10.1111/epi.16788] [PMID: 33316111]
[213]
Spatola, M.; Dalmau, J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr. Opin. Neurol., 2017, 30(3), 345-353.
[http://dx.doi.org/10.1097/WCO.0000000000000449] [PMID: 28234800]
[214]
Nabbout, R.; Vezzani, A.; Dulac, O.; Chiron, C. Acute encephalopathy with inflammation-mediated status epilepticus. Lancet Neurol., 2011, 10(1), 99-108.
[http://dx.doi.org/10.1016/S1474-4422(10)70214-3] [PMID: 21163447]
[215]
Gaspard, N.; Hirsch, L.J.; Sculier, C.; Loddenkemper, T.; van Baalen, A.; Lancrenon, J.; Emmery, M.; Specchio, N.; Farias-Moeller, R.; Wong, N.; Nabbout, R. New-onset refractory status epilepticus (NORSE) and febrile infection-related epilepsy syndrome (FIRES): State of the art and perspectives. Epilepsia, 2018, 59(4), 745-752.
[http://dx.doi.org/10.1111/epi.14022] [PMID: 29476535]
[216]
Hirsch, L.J.; Gaspard, N.; van Baalen, A.; Nabbout, R.; Demeret, S.; Loddenkemper, T.; Navarro, V.; Specchio, N.; Lagae, L.; Rossetti, A.O.; Hocker, S.; Gofton, T.E.; Abend, N.S.; Gilmore, E.J.; Hahn, C.; Khosravani, H.; Rosenow, F.; Trinka, E. Proposed consensus definitions for new-onset refractory status epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and related conditions. Epilepsia, 2018, 59(4), 739-744.
[http://dx.doi.org/10.1111/epi.14016] [PMID: 29399791]
[217]
Sakakibara, T.; Nakagawa, E.; Saito, Y.; Sakuma, H.; Komaki, H.; Sugai, K.; Sasaki, M.; Kurahashi, H.; Hirose, S. Hemiconvulsion-hemiplegia syndrome in a patient with severe myoclonic epilepsy in infancy. Epilepsia, 2009, 50(9), 2158-2162.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02175.x] [PMID: 19563349]
[218]
Beghi, E.; Shorvon, S. Antiepileptic drugs and the immune system. Epilepsia, 2011, 52(Suppl. 3), 40-44.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03035.x] [PMID: 21542845]
[219]
Corvace, F.; Faustmann, T.J.; Faustmann, P.M.; Ismail, F.S. Anti-inflammatory properties of lacosamide in an astrocyte-microglia co-culture model of inflammation. Eur. J. Pharmacol., 2022, 915, 174696.
[http://dx.doi.org/10.1016/j.ejphar.2021.174696] [PMID: 34902360]
[220]
Mani, R.; Monteleone, C.; Schalock, P.C.; Truong, T.; Zhang, X.B.; Wagner, M.L. Rashes and other hypersensitivity reactions associated with antiepileptic drugs: A review of current literature. Seizure, 2019, 71, 270-278.
[http://dx.doi.org/10.1016/j.seizure.2019.07.015] [PMID: 31491658]
[221]
Álvarez-Lario, B.; Bártulos-Iglesias, M.; Colazo-Burlato, M.; Macarrón-Vicente, J. Carbamazepine-induced systemic lupus erythematosus: A case-based review. Eur. J. Rheumatol., 2019, 6(1), 48-54.
[http://dx.doi.org/10.5152/eurjrheum.2018.18046] [PMID: 30388076]
[222]
Molina-Ruiz, A.M.; Lasanta, B.; Barcia, A.; Pérez-Vega, E.; Requena, L. Drug-induced systemic lupus erythematosus in a child after 3 years of treatment with carbamazepine. Australas. J. Dermatol., 2017, 58(1), e20-e22.
[http://dx.doi.org/10.1111/ajd.12393] [PMID: 26424435]
[223]
Himmerich, H.; Bartsch, S.; Hamer, H.; Mergl, R.; Schönherr, J.; Petersein, C.; Munzer, A.; Kirkby, K.C.; Bauer, K.; Sack, U. Modulation of cytokine production by drugs with antiepileptic or mood stabilizer properties in anti-CD3- and anti-Cd40-stimulated blood in vitro. Oxid. Med. Cell. Longev., 2014, 2014, 806162.
[http://dx.doi.org/10.1155/2014/806162] [PMID: 24757498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy