Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Autophagy Behavior in Post-myocardial Infarction Injury

Author(s): Basheer Abdullah Marzoog*

Volume 23, Issue 1, 2023

Published on: 22 May, 2023

Page: [2 - 10] Pages: 9

DOI: 10.2174/1871529X23666230503123612

Price: $65

Abstract

Myocardial infarction and its sequalae remain the leading cause of death worldwide. Myocardial infarction (MI) survivors continue to live a poor quality of life due to extinguished heart failure. The post-MI period involves several changes at the cellular and subcellular levels, of which autophagy dysfunction. Autophagy is involved in the regulation of post-MI changes. Physiologically, autophagy preserves intracellular homeostasis by regulating energy expenditure and sources. Furthermore, dysregulated autophagy is considered the hallmark of the post-MI pathophysiological changes, which leads to the known short and long post-MI reperfusion injury sequalae. Autophagy induction strengthens self-defense mechanisms of protection against energy deprivation through economic energy sources and uses alternative sources of energy through the degradation of intracellular components of the cardiomyocyte. The protective mechanism against post-MI injury includes the enhancement of autophagy combined with hypothermia, which induces autophagy. However, several factors regulate autophagy, including starvation, nicotinamide adenine dinucleotide (NAD+), Sirtuins, other natural foods and pharmacological agents. Autophagy dysregulation involves genetics, epigenetics, transcription factors, small noncoding RNAs, small molecules, and special microenvironment. Autophagy therapeutic effects are signaling pathway-dependent and MI stage dependent. The paper covers recent advances in the molecular physiopathology of autophagy in post-MI injury and its potential target as a future therapeutic strategy.

Graphical Abstract

[1]
Marzoog, B.A.; Vlasova, T.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt. J. Med. Hum. Genet., 2022, 23(1), 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[2]
Marek-Iannucci, S.; Thomas, A.; Hou, J.; Crupi, A.; Sin, J.; Taylor, D.J.; Czer, L.S.; Esmailian, F.; Mentzer, R.M., Jr; Andres, A.M.; Gottlieb, R.A. Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Sci. Rep., 2019, 9(1), 10001.
[http://dx.doi.org/10.1038/s41598-019-46452-w] [PMID: 31292486]
[3]
Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[4]
Alabas, O.A.; Jernberg, T.; Pujades-Rodriguez, M.; Rutherford, M.J.; West, R.M.; Hall, M.; Timmis, A.; Lindahl, B.; Fox, K.A.A.; Hemingway, H.; Gale, C.P. Statistics on mortality following acute myocardial infarction in 842 897 Europeans. Cardiovasc. Res., 2020, 116(1), 149-157.
[http://dx.doi.org/10.1093/cvr/cvz197] [PMID: 31350550]
[5]
Rubattu, S.; Minno, A. Di; Anzai, A.; Ko, S.; Fukuda, K. Immune and inflammatory networks in myocardial infarction: Current research and its potential implications for the clinic. Int. J. Mol. Sci., 2022, 23, 5214.
[http://dx.doi.org/10.3390/ijms23095214]
[6]
Bajpai, G.; Bredemeyer, A.; Li, W.; Zaitsev, K.; Koenig, A.L.; Lokshina, I.; Mohan, J.; Ivey, B.; Hsiao, H.M.; Weinheimer, C.; Kovacs, A.; Epelman, S.; Artyomov, M.; Kreisel, D.; Lavine, K.J. Tissue Resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res., 2019, 124(2), 263-278.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314028] [PMID: 30582448]
[7]
Mentkowski, K.I.; Euscher, L.M.; Patel, A.; Alevriadou, B.R.; Lang, J.K. Monocyte recruitment and fate specification after myocardial infarction. Am. J. Physiol. Cell Physiol., 2020, 319(5), C797-C806.
[http://dx.doi.org/10.1152/ajpcell.00330.2020] [PMID: 32877204]
[8]
Dai, S.; Xu, Q.; Liu, S.; Yu, B.; Liu, J.; Tang, J. Role of autophagy and its signaling pathways in ischemia/reperfusion injury. Am. J. Transl. Res., 2017, 9(10), 4470-4480.
[PMID: 29118909]
[9]
Peng, W.; Liu, Y.; Xu, W.; Xia, Q. Role of beclin 1-dependent autophagy in cardioprotection of ischemic preconditioning. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2013, 33(1), 51-56.
[http://dx.doi.org/10.1007/s11596-013-1070-6] [PMID: 23392707]
[10]
Sun, W.; Lu, H.; Dong, S.; Li, R.; Chu, Y.; Wang, N.; Zhao, Y.; Zhang, Y.; Wang, L.; Sun, L.; Lu, D. Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury. Cell Commun. Signal., 2021, 19(1), 107.
[http://dx.doi.org/10.1186/s12964-021-00786-z] [PMID: 34732218]
[11]
Liu, W.; Sun, J.; Guo, Y.; Liu, N.; Ding, X.; Zhang, X.; Chi, J.; Kang, N.; Liu, Y.; Yin, X. Calhex231 ameliorates myocardial fibrosis post myocardial infarction in rats through the autophagy-NLRP3 inflammasome pathway in macrophages. J. Cell. Mol. Med., 2020, 24(22), 13440-13453.
[http://dx.doi.org/10.1111/jcmm.15969] [PMID: 33043596]
[12]
Fernandes, R.O.; De Castro, A.L.; Bonetto, J.H.P.; Ortiz, V.D.; Müller, D.D.; Campos-Carraro, C.; Barbosa, S.; Neves, L.T.; Xavier, L.L.; Schenkel, P.C.; Singal, P.; Khaper, N.; da Rosa Araujo, A.S.; Belló-Klein, A. Sulforaphane effects on postinfarction cardiac remodeling in rats: Modulation of redox-sensitive prosurvival and proapoptotic proteins. J. Nutr. Biochem., 2016, 34, 106-117.
[http://dx.doi.org/10.1016/j.jnutbio.2016.05.004] [PMID: 27288935]
[13]
Dash, R.; Mitsutake, Y.; Pyun, W.B.; Dawoud, F.; Lyons, J.; Tachibana, A.; Yahagi, K.; Matsuura, Y.; Kolodgie, F.D.; Virmani, R.; McConnell, M.V.; Illindala, U.; Ikeno, F.; Yeung, A. Dose-dependent cardioprotection of moderate (32°C) versus mild (35°C) therapeutic hypothermia in porcine acute myocardial infarction. JACC Cardiovasc. Interv., 2018, 11(2), 195-205.
[http://dx.doi.org/10.1016/j.jcin.2017.08.056] [PMID: 29348013]
[14]
Shi, J.; Dai, W.; Kloner, R.A. Therapeutic hypothermia reduces the inflammatory response following ischemia/reperfusion injury in rat hearts. Ther. Hypothermia Temp. Manag., 2017, 7(3), 162-170.
[http://dx.doi.org/10.1089/ther.2016.0042] [PMID: 28338422]
[15]
Erlinge, D.; Götberg, M.; Noc, M.; Lang, I.; Holzer, M.; Clemmensen, P.; Jensen, U.; Metzler, B.; James, S.; Bøtker, H.E.; Omerovic, E.; Koul, S.; Engblom, H.; Carlsson, M.; Arheden, H.; Östlund, O.; Wallentin, L.; Klos, B.; Harnek, J.; Olivecrona, G.K. Therapeutic hypothermia for the treatment of acute myocardial infarction-combined analysis of the RAPID MI-ICE and the CHILL-MI trials. Ther. Hypothermia Temp. Manag., 2015, 5(2), 77-84.
[http://dx.doi.org/10.1089/ther.2015.0009] [PMID: 25985169]
[16]
Erlinge, D.; Götberg, M.; Grines, C.; Dixon, S.; Baran, K.; Kandzari, D.; Olivecrona, G.K. A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction. EuroIntervention, 2013, 8(12), 1435-1440.
[http://dx.doi.org/10.4244/EIJV8I12A217] [PMID: 23164721]
[17]
Park, C.W.; Hong, S.M.; Kim, E.S.; Kwon, J.H.; Kim, K.T.; Nam, H.G.; Choi, K.Y. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy, 2013, 9(3), 345-360.
[http://dx.doi.org/10.4161/auto.23072] [PMID: 23291726]
[18]
Kandadi, M.; Hu, N.; Ren, J. ULK1 plays a critical role in AMPK-mediated myocardial autophagy and contractile dysfunction following acute alcohol challenge. Curr. Pharm. Des., 2013, 19(27), 4874-4887.
[http://dx.doi.org/10.2174/1381612811319270010] [PMID: 23448468]
[19]
Hamacher-Brady, A.; Brady, N.R.; Gottlieb, R.A.; Gustafsson, Å.B. Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy, 2006, 2(4), 307-309.
[http://dx.doi.org/10.4161/auto.2947] [PMID: 16874059]
[20]
Ohsumi, Y. Historical landmarks of autophagy research. Cell Res., 2014, 24(1), 9-23.
[http://dx.doi.org/10.1038/cr.2013.169] [PMID: 24366340]
[21]
Yan, C.; Li, Y.; Tian, X.; Zhu, N.; Song, H.; Zhang, J.; Sun, M.; Han, Y. CREG1 ameliorates myocardial fibrosis associated with autophagy activation and Rab7 expression. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(2), 353-364.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.027] [PMID: 25774384]
[22]
Wu, J.; Li, X.; Zhu, G.; Zhang, Y.; He, M.; Zhang, J. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp. Cell Res., 2016, 341(1), 42-53.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.014] [PMID: 26825654]
[23]
Bromage, D.I.; Godec, T.R.; Pujades-Rodriguez, M.; Gonzalez-Izquierdo, A.; Denaxas, S.; Hemingway, H.; Yellon, D.M. Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: a cohort study. Cardiovasc. Diabetol., 2019, 18(1), 168.
[http://dx.doi.org/10.1186/s12933-019-0972-4] [PMID: 31815634]
[24]
Elmadhun, N.Y.; Sabe, A.A.; Lassaletta, A.D.; Chu, L.M.; Sellke, F.W. Metformin mitigates apoptosis in ischemic myocardium. J. Surg. Res., 2014, 192(1), 50-58.
[http://dx.doi.org/10.1016/j.jss.2014.05.005] [PMID: 24969550]
[25]
Luo, F.; Das, A.; Chen, J.; Wu, P.; Li, X.; Fang, Z. Metformin in patients with and without diabetes: A paradigm shift in cardiovascular disease management. Cardiovasc. Diabetol., 2019, 18(1), 54.
[http://dx.doi.org/10.1186/s12933-019-0860-y] [PMID: 31029144]
[26]
Basnet, S.; Kozikowski, A.; Makaryus, A.N.; Pekmezaris, R.; Zeltser, R.; Akerman, M.; Lesser, M.; Wolf-Klein, G. Metformin and myocardial injury in patients with diabetes and ST-segment elevation myocardial infarction: A propensity score matched analysis. J. Am. Heart Assoc., 2015, 4(10), e002314.
[http://dx.doi.org/10.1161/JAHA.115.002314] [PMID: 26494519]
[27]
Calvert, J.W.; Gundewar, S.; Jha, S.; Greer, J.J.M.; Bestermann, W.H.; Tian, R.; Lefer, D.J. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes, 2008, 57(3), 696-705.
[http://dx.doi.org/10.2337/db07-1098] [PMID: 18083782]
[28]
Alfaro, I.E.; Albornoz, A.; Molina, A.; Moreno, J.; Cordero, K.; Criollo, A.; Budini, M. Chaperone mediated autophagy in the crosstalk of neurodegenerative diseases and metabolic disorders. Front. Endocrinol., 2019, 9(JAN), 778.
[http://dx.doi.org/10.3389/fendo.2018.00778] [PMID: 30766511]
[29]
Zheng, Y.; Gu, S.; Li, X.; Tan, J.; Liu, S.; Jiang, Y.; Zhang, C.; Gao, L.; Yang, H.T. Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis., 2017, 8(2), e2577.
[http://dx.doi.org/10.1038/cddis.2017.7] [PMID: 28151484]
[30]
Sciarretta, S.; Zhai, P.; Shao, D.; Maejima, Y.; Robbins, J.; Volpe, M.; Condorelli, G.; Sadoshima, J. Rheb is a critical regulator of autophagy during myocardial ischemia: Pathophysiological implications in obesity and metabolic syndrome. Circulation, 2012, 125(9), 1134-1146.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.078212] [PMID: 22294621]
[31]
Ke, J.; Yao, B.; Li, T.; Cui, S.; Ding, H. A2 adenosine receptor-mediated cardioprotection against reperfusion injury in rat hearts is associated with autophagy downregulation. J. Cardiovasc. Pharmacol., 2015, 66(1), 25-34.
[http://dx.doi.org/10.1097/FJC.0000000000000239] [PMID: 25706370]
[32]
Akkoc, Y.; Gozuacik, D. MicroRNAs as major regulators of the autophagy pathway. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(5), 118662.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118662] [PMID: 32001304]
[33]
Su, M.; Wang, J.; Wang, C.; Wang, X.; Dong, W.; Qiu, W.; Wang, Y.; Zhao, X.; Zou, Y.; Song, L.; Zhang, L.; Hui, R. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ., 2015, 22(6), 986-999.
[http://dx.doi.org/10.1038/cdd.2014.187] [PMID: 25394488]
[34]
Ouyang, F.; Huang, H.; Zhang, M.; Chen, M.; Huang, H.; Huang, F.; Zhou, S. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int. J. Mol. Med., 2016, 37(3), 679-689.
[http://dx.doi.org/10.3892/ijmm.2016.2474] [PMID: 26847839]
[35]
Wei, P.; Yang, X.J.; Fu, Q.; Han, B.; Ling, L.; Bai, J.; Zong, B.; Jiang, C.Y. Intermedin attenuates myocardial infarction through activation of autophagy in a rat model of ischemic heart failure via both cAMP and MAPK/ERK1/2 pathways. Int. J. Clin. Exp. Pathol., 2015, 8(9), 9836-9844.
[PMID: 26617693]
[36]
Sciarretta, S.; Zhai, P.; Shao, D.; Zablocki, D.; Nagarajan, N.; Terada, L.S.; Volpe, M.; Sadoshima, J. Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway. Circ. Res., 2013, 113(11), 1253-1264.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301787] [PMID: 24081881]
[37]
Aoyagi, T.; Kusakari, Y.; Xiao, C.Y.; Inouye, B.T.; Takahashi, M.; Scherrer-Crosbie, M.; Rosenzweig, A.; Hara, K.; Matsui, T. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(1), H75-H85.
[http://dx.doi.org/10.1152/ajpheart.00241.2012] [PMID: 22561297]
[38]
Ren, J.; Zhang, Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol. Sci., 2018, 39(12), 1064-1076.
[http://dx.doi.org/10.1016/j.tips.2018.10.005] [PMID: 30458935]
[39]
Minowa-Nozawa, A.; Nozawa, T.; Okamoto-Furuta, K.; Kohda, H.; Nakagawa, I. Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J., 2017, 36(18), 2790-2807.
[http://dx.doi.org/10.15252/embj.201796463] [PMID: 28848034]
[40]
Matoba, K.; Kotani, T.; Tsutsumi, A.; Tsuji, T.; Mori, T.; Noshiro, D.; Sugita, Y.; Nomura, N.; Iwata, S.; Ohsumi, Y.; Fujimoto, T.; Nakatogawa, H.; Kikkawa, M.; Noda, N.N. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol., 2020, 27(12), 1185-1193.
[http://dx.doi.org/10.1038/s41594-020-00518-w] [PMID: 33106658]
[41]
Manjithaya, R.; Nazarko, T.Y.; Farré, J.C.; Subramani, S. Molecular mechanism and physiological role of pexophagy. FEBS Lett., 2010, 584(7), 1367-1373.
[http://dx.doi.org/10.1016/j.febslet.2010.01.019] [PMID: 20083110]
[42]
Aoki, Y.; Kanki, T.; Hirota, Y.; Kurihara, Y.; Saigusa, T.; Uchiumi, T.; Kang, D. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell, 2011, 22(17), 3206-3217.
[http://dx.doi.org/10.1091/mbc.e11-02-0145] [PMID: 21757540]
[43]
Manjithaya, R.; Jain, S.; Farré, J.C.; Subramani, S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J. Cell Biol., 2010, 189(2), 303-310.
[http://dx.doi.org/10.1083/jcb.200909154] [PMID: 20385774]
[44]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[45]
Bairwa, S.C.; Parajuli, N.; Dyck, J.R.B. The role of AMPK in cardiomyocyte health and survival. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(12), 2199-2210.
[http://dx.doi.org/10.1016/j.bbadis.2016.07.001] [PMID: 27412473]
[46]
Wang, B.; Nie, J.; Wu, L.; Hu, Y.; Wen, Z.; Dong, L.; Zou, M.H.; Chen, C.; Wang, D.W. AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ. Res., 2018, 122(5), 712-729.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312317] [PMID: 29284690]
[47]
Nah, J.; Miyamoto, S.; Sadoshima, J. Mitophagy as a protective mechanism against myocardial stress. Compr. Physiol., 2017, 7(4), 1407-1424.
[http://dx.doi.org/10.1002/cphy.c170005] [PMID: 28915329]
[48]
Callegari, S.; Oeljeklaus, S.; Warscheid, B.; Dennerlein, S.; Thumm, M.; Rehling, P.; Dudek, J. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Autophagy, 2017, 13(1), 201-211.
[http://dx.doi.org/10.1080/15548627.2016.1254852] [PMID: 27846363]
[49]
Li, Y.; Chen, C.; Yao, F.; Su, Q.; Liu, D.; Xue, R.; Dai, G.; Fang, R.; Zeng, J.; Chen, Y.; Huang, H.; Ma, Y.; Li, W.; Zhang, L.; Liu, C.; Dong, Y. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch. Biochem. Biophys., 2014, 558, 79-86.
[http://dx.doi.org/10.1016/j.abb.2014.06.023] [PMID: 25009141]
[50]
Xu, J.; Qin, X.; Cai, X.; Yang, L.; Xing, Y.; Li, J.; Zhang, L.; Tang, Y.; Liu, J.; Zhang, X.; Gao, F. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(2), 262-270.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.012] [PMID: 24859228]
[51]
Wang, X.; Guo, Z.; Ding, Z.; Mehta, J.L. Inflammation, autophagy, and apoptosis after myocardial infarction. J. Am. Heart Assoc., 2018, 7(9), e008024.
[http://dx.doi.org/10.1161/JAHA.117.008024] [PMID: 29680826]
[52]
Li, M.; Wang, Y.; Qi, Z.; Yuan, Z.; Lv, S.; Zheng, Y.; Yan, Z.; Wang, M.; Fu, H.; Fan, X.; Ji, N.; Liu, M.; Fang, Z. QishenYiqi dripping pill protects against myocardial ischemia/reperfusion injury via suppressing excessive autophagy and NLRP3 inflammasome based on network pharmacology and experimental pharmacology. Front. Pharmacol., 2022, 13, 981206.
[http://dx.doi.org/10.3389/fphar.2022.981206] [PMID: 36164369]
[53]
Travers, J.G.; Kamal, F.A.; Robbins, J.; Yutzey, K.E.; Blaxall, B.C. Cardiac fibrosis. Circ. Res., 2016, 118(6), 1021-1040.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306565] [PMID: 26987915]
[54]
Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Temirkhanova, K.; Saparov, A. Novel therapies for the treatment of cardiac fibrosis following myocardial infarction. Biomedicines, 2022, 10, 2178.
[http://dx.doi.org/10.3390/biomedicines10092178]
[55]
Yi, W.; Zhu, R.; Hou, X.; Wu, F.; Feng, R. Integrated analysis reveals S100a8/a9 regulates autophagy and apoptosis through the MAPK and PI3K-AKT signaling pathway in the early stage of myocardial infarction. Cells, 2022, 11(12), 1911.
[http://dx.doi.org/10.3390/cells11121911] [PMID: 35741040]
[56]
Dai, Y.; Chen, Y.; Wei, G.; Li, Z.; Li, X.; Zha, L. Ivabradine protects rats against myocardial infarction through reinforcing autophagy via inhibiting PI3K/AKT/mTOR/p70S6K pathway. Bioengineered, 2021, 12(1)
[http://dx.doi.org/10.1080/21655979.2021.1925008]
[57]
Li, H.G.; Tian, W.H.; Qin, C.L.; Ye, R.R.; Liu, D.H.; Liu, H.W. Uhrf1 regulates H3K9me2 modification of mTOR to inhibit the effect of autophagy in myocardial ischemia-reperfusion injury. Aging, 2021, 13(7), 9704-9718.
[http://dx.doi.org/10.18632/aging.202722] [PMID: 33744855]
[58]
Yang, L.; Wang, H.; Shen, Q.; Feng, L.; Jin, H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis., 2017, 8(10), e3073.
[http://dx.doi.org/10.1038/cddis.2017.464] [PMID: 28981093]
[59]
Tong, Z.; Li, G.; Su, C.; Zhou, L.; Zhang, L.; Chen, Q.; Xia, Q. L-Borneol 7-O-[β-D-Apiofuranosyl-(1 → 6)]-β-D-Glucopyranoside alleviates myocardial ischemia-reperfusion injury in rats and hypoxic/reoxygenated injured myocardial cells via regulating the PI3K/AKT/mTOR signaling pathway. J. Immunol. Res., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/5758303] [PMID: 35600046]
[60]
Gurusamy, N.; Lekli, I.; Mukherjee, S.; Ray, D.; Ahsan, M.K.; Gherghiceanu, M.; Popescu, L.M.; Das, D.K. Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res., 2010, 86(1), 103-112.
[http://dx.doi.org/10.1093/cvr/cvp384] [PMID: 19959541]
[61]
Peserico, D.; Stranieri, C.; Garbin, U.; Mozzini, C. C.; Danese, E.; Cominacini, L.; Fratta Pasini, A.M. Ezetimibe prevents ischemia/reperfusion-induced oxidative stress and up-regulates Nrf2/ARE and UPR signaling pathways. Antioxidants, 2020, 9(4), 349.
[http://dx.doi.org/10.3390/antiox9040349] [PMID: 32340270]
[62]
Ye, J.; Lu, S.; Wang, M.; Ge, W.; Liu, H.; Qi, Y.; Fu, J.; Zhang, Q.; Zhang, B.; Sun, G.; Sun, X. Hydroxysafflor yellow a protects against myocardial ischemia/reperfusion injury via suppressing NLRP3 inflammasome and activating autophagy. Front. Pharmacol., 2020, 11, 1170.
[http://dx.doi.org/10.3389/fphar.2020.01170] [PMID: 32848777]
[63]
Santoso, M.R.; Ikeda, G.; Tada, Y.; Jung, J.H.; Vaskova, E.; Sierra, R.G.; Gati, C.; Goldstone, A.B.; von Bornstaedt, D.; Shukla, P.; Wu, J.C.; Wakatsuki, S.; Woo, Y.J.; Yang, P.C. Exosomes from induced pluripotent stem cell–derived cardiomyocytes promote autophagy for myocardial repair. J. Am. Heart Assoc., 2020, 9(6), e014345.
[http://dx.doi.org/10.1161/JAHA.119.014345] [PMID: 32131688]
[64]
Zhang, X.; Wang, Q.; Wang, X.; Chen, X.; Shao, M.; Zhang, Q.; Guo, D.; Wu, Y.; Li, C.; Wang, W.; Wang, Y. Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway. Biomed. Pharmacother., 2019, 112, 108599.
[http://dx.doi.org/10.1016/j.biopha.2019.108599] [PMID: 30798134]
[65]
Mao, S.; Chen, P.; Li, T.; Guo, L.; Zhang, M. Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: Role of sirt1. Front. Physiol., 2018, 9(MAY), 589.
[http://dx.doi.org/10.3389/fphys.2018.00589] [PMID: 29872406]
[66]
Yang, K.; Xu, C.; Li, X.; Jiang, H. Combination of D942 with curcumin protects cardiomyocytes from ischemic damage through promoting autophagy. J. Cardiovasc. Pharmacol. Ther., 2013, 18(6), 570-581.
[http://dx.doi.org/10.1177/1074248413503495] [PMID: 24057865]
[67]
Marzoog, B.A.; Vlasova, T.I. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Obes. Metab., 2022, 18(4), 465-470.
[http://dx.doi.org/10.14341/omet12778]
[68]
Marzoog, B.A. Transcription Factors-the essence of heart regeneration: A potential novel therapeutic strategy. Curr. Mol. Med., 2023, 23(3), 232-238.
[http://dx.doi.org/10.2174/1566524022666220216123650] [PMID: 35170408]
[69]
Liu, C.Y.; Zhang, Y.H.; Li, R.B.; Zhou, L.Y.; An, T.; Zhang, R.C.; Zhai, M.; Huang, Y.; Yan, K.W.; Dong, Y.H.; Ponnusamy, M.; Shan, C.; Xu, S.; Wang, Q.; Zhang, Y.H.; Zhang, J.; Wang, K. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat. Commun., 2018, 9(1), 29.
[http://dx.doi.org/10.1038/s41467-017-02280-y] [PMID: 29295976]
[70]
Zhao, Z.; Sun, W.; Guo, Z.; Liu, B.; Yu, H.; Zhang, J. Long noncoding RNAs in myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/8889123] [PMID: 33884101]
[71]
Marzoog, B.A.; Vlasova, T.I. The metabolic syndrome puzzles; possible pathogenesis and management. Curr. Diabetes Rev., 2022, 18.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[72]
Marzoog, B. Anticoagulant status under COVID-19: The potential pathophysiological mechanism. J. Appl. Hematol., 2022, 13(4), 167.
[http://dx.doi.org/10.4103/joah.joah_154_21]
[73]
Marzoog, B.A.; Vlasova, T.I. Membrane lipids under norm and pathology. European Journal of Clinical and Experimental Medicine, 2021, 19(1), 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[74]
Marzoog, B.A.; Vlasova, T.I. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett., 2022, 43(2), 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[75]
Marzoog, B.A. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat. Cell Biol., 2023.
[http://dx.doi.org/10.5115/acb.22.190]
[76]
Marzoog, B.A. Recent advances in molecular biology of metabolic syndrome pathophysiology: Endothelial dysfunction as a potential therapeutic target. J. Diabetes Metab. Disord., 2022, 21(2), 1903-1911.
[http://dx.doi.org/10.1007/s40200-022-01088-y] [PMID: 36065330]
[77]
Marzoog, B.A. Autophagy in cancer cell transformation: A potential novel therapeutic strategy. Curr. Cancer Drug Targets, 2022, 22(9), 749-756.
[http://dx.doi.org/10.2174/1568009622666220428102741] [PMID: 36062863]
[78]
Abdullah Marzoog, B. Autophagy as an anti-senescent in aging neurocytes. Curr. Mol. Med., 2023, 23.
[http://dx.doi.org/10.2174/1566524023666230120102718] [PMID: 36683318]
[79]
Marzoog, B.A.; Alexandrovich, K.O.; Nikolaevich, T.M.; Vladimirovich, K.S. Post-coronary artery bypass graft complications; potential causes and risk factors. medRxiv, 2023.
[http://dx.doi.org/10.1101/2022.12.29.22284005]
[80]
Marzoog, B. Lipid behavior in metabolic syndrome pathophysiology. Curr. Diabetes Rev., 2022, 18(6), e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[81]
Marzoog, B.A. Local lung fibroblast autophagy in the context of lung fibrosis pathogenesis. Curr. Respir. Med. Rev., 2023, 19(1), 6-11.
[http://dx.doi.org/10.2174/1573398X19666221130141600]
[82]
Abdullah Marzoog, B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. Emir. Med. J., 2022, 4.
[http://dx.doi.org/10.2174/04666221128110145]
[83]
Marzoog, B.A. Coagulopathy and brain injury pathogenesis in post-Covid-19 syndrome. Cardiovasc. Hematol. Agents Med. Chem., 2022, 20(3), 178-188.
[http://dx.doi.org/10.2174/1871525720666220405124021] [PMID: 35382728]
[84]
Marzoog, B.A. Endothelial cell autophagy in the context of disease development. Anat. Cell Biol., 2023, 56(1), 16-24.
[http://dx.doi.org/10.5115/acb.22.098] [PMID: 36267005]
[85]
Marzoog, B.A. Pulmonary fibrosis; Risk factors and molecular triggers, insight for neo therapeutic approach. Curr. Respir. Med. Rev., 2022, 18(4), 259-266.
[http://dx.doi.org/10.2174/1573398X18666220806124019]
[86]
Liu, Z.; Hu, K.; Chen, Y.S.; Huang, Y.J.; Hu, Q.; Zeng, W.; Cao, Y.; Xiao, Q.; Zhang, X.K. JAK2/STAT3 inhibition attenuates intestinal ischemia–reperfusion injury via promoting autophagy: In vitro and in vivo study. Mol. Biol. Rep., 2022, 49(4), 2857-2867.
[http://dx.doi.org/10.1007/s11033-021-07099-x] [PMID: 35067814]
[87]
Sun, X-J.; Mao, J-R. Role of Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in cardioprotection of exercise preconditioning. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(15), 4975-4986.
[http://dx.doi.org/10.26355/eurrev_201808_15638] [PMID: 30070334]
[88]
Chen, L.; Zhao, L.; Samanta, A.; Mahmoudi, S.M.; Buehler, T.; Cantilena, A.; Vincent, R.J.; Girgis, M.; Breeden, J.; Asante, S.; Xuan, Y.T.; Dawn, B. STAT3 balances myocyte hypertrophy vis-à-vis autophagy in response to Angiotensin II by modulating the AMPKα/mTOR axis. PLoS One, 2017, 12(7), e0179835.
[http://dx.doi.org/10.1371/journal.pone.0179835] [PMID: 28686615]
[89]
Hernández, J.S.; Barreto-Torres, G.; Kuznetsov, A.V.; Khuchua, Z.; Javadov, S. Crosstalk between AMPK activation and angiotensin II -induced hypertrophy in cardiomyocytes: The role of mitochondria. J. Cell. Mol. Med., 2014, 18(4), 709-720.
[http://dx.doi.org/10.1111/jcmm.12220] [PMID: 24444314]
[90]
Wu, X.; He, L.; Chen, F.; He, X.; Cai, Y.; Zhang, G.; Yi, Q.; He, M.; Luo, J. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One, 2014, 9(11), e112891.
[http://dx.doi.org/10.1371/journal.pone.0112891] [PMID: 25409294]
[91]
McCormick, J.; Suleman, N.; Scarabelli, T.M.; Knight, R.A.; Latchman, D.S.; Stephanou, A. STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy. J. Cell. Mol. Med., 2012, 16(2), 386-393.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01323.x] [PMID: 21447043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy