Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Ethnopharmacological Uses, Pharmacological Activities, and Therapeutic Applications of Tectochrysin in Medicine: An Important Class of Dietary Flavonoid

Author(s): Dinesh Kumar Patel*

Volume 23, Issue 1, 2023

Published on: 18 August, 2023

Page: [11 - 20] Pages: 10

DOI: 10.2174/1871529X23666230726143243

Price: $65

Abstract

Background: Natural products and their derived pure phytochemicals have enormous potential to treat human disorders and associated secondary complications. Natural products are widely consumed by humans due to their rich phytochemical content, diverse therapeutic potential and cost-effectiveness compared to allopathic medicine. Flavonoids are a well-known class of polyphenolic compounds widely present in the plant kingdom. Tectochrysin is an important class of dietary flavonoids present in foods and fruits. Tectochrysin has anti-tumor, anti-Alzheimer’s, and antimicrobial activities in medicine. Pharmacological studies have signified the biological application of tectochrysin in health sectors for the treatment of hepatic and gastrointestinal complications.

Methods: This current review summarizes the updated scientific information on the medicinal importance and pharmacological activities of tectochrysin. Scientific information on tectochrysin was collected from PubMed, Science Direct, Google Scholar, and Google with some additional resources, including books, dissertations, and scientific reports in the present work. Collected scientific information was further categorized into medicinal uses, pharmacological activities, and analytical aspects in the present paper. Furthermore, detailed pharmacological activities of tectochrysin were discussed in the present work, with analytical aspects used for the separation, isolation and identification of tectochrysin in order to explore its therapeutic potential in medicine.

Results: Phytochemical analysis of propolis, Alpinia oxyphylla and Lychnophora markgravii led to the isolation of tectochrysin. This present work signified the anticancer activity of tectochrysin on prostate cancer, human colon cancer, and breast cancer. Moreover, its anti-osteoporosis, antiinflammatory, anti-oxidant, anti-microbial, anti-diarrheal, and hepatoprotective activity were also discussed in the present work. Further effectiveness of tectochrysin in Alzheimer's disease, SARSCoV- 2, nitric oxide production, aryl hydrocarbon receptor, and age-related diseases was further explored in the present work. It has been found that experimental animal data also supports its antimicrobial, anti-oxidant, and metabolic functions. Analytical data indicated its separation, isolation, and identification in different samples.

Conclusion: Scientific data presented in this review signifies the biological importance and therapeutic potential of tectochrysin in medicine.

Graphical Abstract

[1]
Patel, D.K. Medicinal importance of flavonoid eupatorin in the health sectors: Therapeutic benefit and pharmacological activities through scientific data analysis. Curr Chin Sci, 2021, 1(6), 629-638.
[http://dx.doi.org/10.2174/2210298101666210804141644]
[2]
Patel, D.K. Grandisin and its therapeutic potential and pharmacological activities: A review. Pharmacol Res -. Mod Chinese Med, 2022, 5, 100176.
[3]
Patel, D.K. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications. Pharmacol Res -. Mod Chinese Med, 2022, 5, 100185.
[4]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Patents Anti-Infect. Drug Disc., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[5]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[6]
Patel, D.K. Biological potential and therapeutic benefit of chrysosplenetin: An applications of polymethoxylated flavonoid in medicine from natural sources. Modern Chin Med, 2022, 4, 100155.
[http://dx.doi.org/10.1016/j.prmcm.2022.100155]
[7]
Patel, D.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders. Curr. Bioact. Compd., 2022, 18(3), e240821195804.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[8]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17(3), 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[9]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[10]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[11]
Patel, D.K.; Patel, K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. Pharmacol Res -. Mod Chinese Med, 2022, 5, 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[12]
Patel, D.K. Biological importance of a biflavonoid ‘bilobetin’ in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Infect. Disord. Drug Targets, 2022, 22(5), 22-30.
[PMID: 35319397]
[13]
Patel, D.K. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1974-1981.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[14]
Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal., 2006, 41(4), 1220-1234.
[http://dx.doi.org/10.1016/j.jpba.2006.03.002] [PMID: 16621403]
[15]
Noureddine, H.; Hage-Sleiman, R.; Wehbi, B.; Fayyad-Kazan, H.; Hayar, S.; Traboulssi, M.; Alyamani, O.A.; Faour, W.H.; ElMakhour, Y. Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed. Pharmacother., 2017, 95, 298-307.
[http://dx.doi.org/10.1016/j.biopha.2017.08.067] [PMID: 28850929]
[16]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[17]
McNulty, J.; Nair, J.J.; Bollareddy, E.; Keskar, K.; Thorat, A.; Crankshaw, D.J.; Holloway, A.C.; Khan, G.; Wright, G.D.; Ejim, L. Isolation of flavonoids from the heartwood and resin of Prunus avium and some preliminary biological investigations. Phytochemistry, 2009, 70(17-18), 2040-2046.
[http://dx.doi.org/10.1016/j.phytochem.2009.08.018] [PMID: 19837443]
[18]
Patel, K.; Patel, D.K. Therapeutic benefit and biological importance of ginkgetin in the medicine: medicinal importance, pharmacological activities and analytical aspects. Curr. Bioact. Compd., 2021, 17(9), e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[19]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[20]
Chen, G.; Cui, C.B.; Qi, A.D.; Li, C.W.; Tao, Z.W.; Ren, R. Polyanthumin, a novel cyclobutane chalcone trimmer from Memecylon polyanthum. J. Asian Nat. Prod. Res., 2015, 17(2), 170-177.
[http://dx.doi.org/10.1080/10286020.2014.945439] [PMID: 25434469]
[21]
Križková, L.; Nagy, M.; Polónyi, J.; Ebringer, L. The effect of flavonoids on ofloxacin-induced mutagenicity in euglena gracilis. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1998, 416(1-2), 85-92.
[http://dx.doi.org/10.1016/S1383-5718(98)00080-1] [PMID: 9725994]
[22]
Patel, K.; Patel, D.K. Health beneficial potential of pectolinarigenin on human diseases: An updated review of medicinal importance and pharmacological activity. Nat. Prod. J., 2021, 11(1), 3-12.
[http://dx.doi.org/10.2174/2210315509666191111110901]
[23]
Mahfoudi, R.; Djeridane, A.; Benarous, K.; Gaydou, E.M.; Yousfi, M. Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors. Bioorg. Chem., 2017, 74, 201-211.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.001] [PMID: 28843840]
[24]
Patel, P.P.; Trivedi, N.D. Effect of karanjin on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in Balb/c mice. Indian J. Pharmacol., 2017, 49(2), 161-167.
[PMID: 28706329]
[25]
Xu, J.; Ji, C.; Zhang, Y.; Su, J.; Li, Y.; Tan, N. Inhibitory activity of eudesmane sesquiterpenes from Alpinia oxyphylla on production of nitric oxide. Bioorg. Med. Chem. Lett., 2012, 22(4), 1660-1663.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.114] [PMID: 22277277]
[26]
Zhao, X.; Wei, J.; Shu, X.; Kong, W.; Yang, M. Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS. Chemosphere, 2016, 164, 430-435.
[http://dx.doi.org/10.1016/j.chemosphere.2016.08.122] [PMID: 27599009]
[27]
Miao, Q.; Kong, W.; Zhao, X.; Yang, S.; Yang, M. GC-FID coupled with chemometrics for quantitative and chemical fingerprinting analysis of Alpinia oxyphylla oil. J. Pharm. Biomed. Anal., 2015, 102, 436-442.
[http://dx.doi.org/10.1016/j.jpba.2014.10.014] [PMID: 25459943]
[28]
Li, Y.; Tan, Y.; Cai, H.; Zhang, J. Metabonomic study of the fruits of Alpinia oxyphylla as an effective treatment for chronic renal injury in rats. J. Pharm. Biomed. Anal., 2016, 124, 236-245.
[http://dx.doi.org/10.1016/j.jpba.2016.02.035] [PMID: 26966897]
[29]
Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Comparative pharmacokinetic study of the components in Alpinia oxyphylla Miq.-Schisandra chinensis (Turcz.) Baill. herb pair and its single herb between normal and Alzheimer’s disease rats by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 177, 112874.
[http://dx.doi.org/10.1016/j.jpba.2019.112874] [PMID: 31542420]
[30]
Lee, Y.S.; Sung, Y.Y.; Yuk, H.J.; Son, E.; Lee, S.; Kim, J.S.; Kim, D.S. Anti-hyperuricemic effect of Alpinia oxyphylla seed extract by enhancing uric acid excretion in the kidney. Phytomedicine, 2019, 62, 152975.
[http://dx.doi.org/10.1016/j.phymed.2019.152975] [PMID: 31181404]
[31]
Zhao, X.; Kong, W.; Wei, J.; Yang, M. Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits. Food Chem., 2014, 162, 270-276.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.060] [PMID: 24874387]
[32]
Luo, J.; Lv, X.; Wang, X.; Kong, L. Sesquiterpenoids from the fruits of Alpinia oxyphylla and inhibition of nitric oxide production in lipopolysaccaride-activated macrophages. Phytochem. Lett., 2012, 5(1), 134-138.
[http://dx.doi.org/10.1016/j.phytol.2011.11.009]
[33]
An, L.J.; Guan, S.; Shi, G.F.; Bao, Y.M.; Duan, Y.L.; Jiang, B. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem. Toxicol., 2006, 44(3), 436-443.
[http://dx.doi.org/10.1016/j.fct.2005.08.017] [PMID: 16223555]
[34]
Wang, S.; Zhao, Y.; Zhang, J.; Huang, X.; Wang, Y.; Xu, X.; Zheng, B.; Zhou, X.; Tian, H.; Liu, L.; Mei, Q. Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. J. Ethnopharmacol., 2015, 168, 182-190.
[http://dx.doi.org/10.1016/j.jep.2015.03.066] [PMID: 25861952]
[35]
Liu, A.; Zhao, X.; Li, H.; Liu, Z.; Liu, B.; Mao, X.; Guo, L.; Bi, K.; Jia, Y. 5-Hydroxymethylfurfural, an antioxidant agent from Alpinia oxyphylla Miq. improves cognitive impairment in Aβ1–42 mouse model of Alzheimer’s disease. Int. Immunopharmacol., 2014, 23(2), 719-725.
[http://dx.doi.org/10.1016/j.intimp.2014.10.028] [PMID: 25445965]
[36]
Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Effect of Alpinia oxyphylla—Schisandra chinensis herb pair on inflammation and apoptosis in Alzheimer’s disease mice model. J. Ethnopharmacol., 2019, 237, 28-38.
[http://dx.doi.org/10.1016/j.jep.2019.03.029] [PMID: 30880259]
[37]
He, B.; Xu, F.; Yan, T.; Xiao, F.; Wu, B.; Wang, Y.; Bi, K.; Jia, Y. Tectochrysin from Alpinia Oxyphylla Miq. alleviates Aβ1–42 induced learning and memory impairments in mice. Eur. J. Pharmacol., 2019, 842, 365-372.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.002] [PMID: 30412728]
[38]
Xu, J.J.; Tan, N.H.; Xiong, J.; Adebayo, A.H.; Han, H.J.; Zeng, G.Z.; Ji, C.J.; Zhang, Y.M.; Zhu, M.J. Oxyphyllones A and B, novel sesquiterpenes with an unusual 4,5-secoeudesmane skeleton from Alpinia oxyphylla. Chin. Chem. Lett., 2009, 20(8), 945-948.
[http://dx.doi.org/10.1016/j.cclet.2009.03.029]
[39]
Xu, J-J.; Tan, N-H.; Zeng, G-Z.; Han, H-J.; Peng, Y-F. Two new norsesquiterpenes from the fruits of alpinia oxyphylla. Chin. J. Nat. Med., 2010, 8(1), 6-8.
[http://dx.doi.org/10.3724/SP.J.1009.2010.00006]
[40]
Shi, W.; Zhong, J.; Zhang, Q.; Yan, C. Structural characterization and antineuroinflammatory activity of a novel heteropolysaccharide obtained from the fruits of Alpinia oxyphylla. Carbohydr. Polym., 2020, 229, 115405.
[http://dx.doi.org/10.1016/j.carbpol.2019.115405] [PMID: 31826414]
[41]
He, Z.H.; Ge, W.; Yue, G.G.L.; Lau, C.B.S.; He, M.F.; But, P.P.H. Anti-angiogenic effects of the fruit of alpinia oxyphylla. J. Ethnopharmacol., 2010, 132(2), 443-449.
[http://dx.doi.org/10.1016/j.jep.2010.08.024] [PMID: 20723592]
[42]
Hou, R.; Han, Y.; Fei, Q.; Gao, Y.; Qi, R.; Cai, R.; Qi, Y. Dietary flavone tectochrysin exerts anti-inflammatory action by directly inhibiting MEK1/2 in LPS-primed macrophages. Mol. Nutr. Food Res., 2018, 62(2), 1700288.
[http://dx.doi.org/10.1002/mnfr.201700288] [PMID: 28980448]
[43]
Oh, S.B.; Hwang, C.J.; Song, S.Y.; Jung, Y.Y.; Yun, H.M.; Sok, C.H.; Sung, H.C.; Yi, J.M.; Park, D.H.; Ham, Y.W.; Han, S.B.; Hwang, B.Y.; Hong, J.T. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett., 2014, 353(1), 95-103.
[http://dx.doi.org/10.1016/j.canlet.2014.07.007] [PMID: 25083589]
[44]
Park, M.H.; Hong, J.E.; Park, E.S.; Yoon, H.S.; Seo, D.W.; Hyun, B.K.; Han, S.B.; Ham, Y.W.; Hwang, B.Y.; Hong, J.T. Anticancer effect of tectochrysin in colon cancer cell via suppression of NF-kappaB activity and enhancement of death receptor expression. Mol. Cancer, 2015, 14(1), 124.
[http://dx.doi.org/10.1186/s12943-015-0377-2] [PMID: 26123287]
[45]
Fang, L.; Yan, Y.; Xu, Z.; He, Z.; Zhou, S.; Jiang, X.; Wu, F.; Yuan, X.; Zhang, T.; Yu, D. Tectochrysin ameliorates murine allergic airway inflammation by suppressing Th2 response and oxidative stress. Eur. J. Pharmacol., 2021, 902, 174100.
[http://dx.doi.org/10.1016/j.ejphar.2021.174100] [PMID: 33878335]
[46]
Hui, F.; Qin, X.; Zhang, Q.; Li, R.; Liu, M.; Ren, T.; Zhao, M.; Zhao, Q. Alpinia oxyphylla oil induces apoptosis of hepatocellular carcinoma cells via PI3K/Akt pathway in vitro and in vivo. Biomed. Pharmacother., 2019, 109, 2365-2374.
[http://dx.doi.org/10.1016/j.biopha.2018.11.124] [PMID: 30551496]
[47]
Lu, M.; Tan, L.; Zhou, X.G.; Yang, Z.L.; Zhu, Q.; Chen, J.N.; Luo, H.R.; Wu, G.S. Tectochrysin increases stress resistance and extends the lifespan of caenorhabditis elegans via FOXO/DAF-16. Biogerontology, 2020, 21(5), 669-682.
[http://dx.doi.org/10.1007/s10522-020-09884-w] [PMID: 32506187]
[48]
Lee, S.; Kim, K.S.; Park, Y.; Shin, K.H.; Kim, B.K. In vivo anti-oxidant activities of tectochrysin. Arch. Pharm. Res., 2003, 26(1), 43-46.
[http://dx.doi.org/10.1007/BF03179930] [PMID: 12568357]
[49]
Nicolle, E.; Boumendjel, A.; Macalou, S.; Genoux, E.; Ahmed-Belkacem, A.; Carrupt, P.A.; Di Pietro, A. QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv. Drug Deliv. Rev., 2009, 61(1), 34-46.
[http://dx.doi.org/10.1016/j.addr.2008.10.004] [PMID: 19135106]
[50]
Li, W.W.; Zhang, Z.T. Hexaquacobalt(II) bis(5-hydroxy-7-methoxy-4-oxo-2-phenyl-4 H -chromene-6-sulfonate) tetrahydrate. Acta Crystallogr. C, 2008, 64(4), m176-m178.
[http://dx.doi.org/10.1107/S0108270108006975] [PMID: 18391382]
[51]
Walle, U.K.; Walle, T. Bioavailable flavonoids: Cytochrome P450-mediated metabolism of methoxyflavones. Drug Metab. Dispos., 2007, 35(11), 1985-1989.
[http://dx.doi.org/10.1124/dmd.107.016782] [PMID: 17709371]
[52]
Catchpole, O.; Mitchell, K.; Bloor, S.; Davis, P.; Suddes, A. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells. Fitoterapia, 2015, 106, 167-174.
[http://dx.doi.org/10.1016/j.fitote.2015.09.004] [PMID: 26347954]
[53]
Cao, X-D.; Ding, Z-S.; Jiang, F-S.; Ding, X-H.; Chen, J-Z.; Chen, S-H.; Lv, G.Y. Antitumor constituents from the leaves of carya cathayensis. Nat. Prod. Res., 2012, 26(22), 2089-2094.
[PMID: 22007794]
[54]
Barbarić, M.; Mišković, K.; Bojić, M.; Lončar, M.B.; Smolčić-Bubalo, A.; Debeljak, Ž.; Medić-Šarić, M. Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells. J. Ethnopharmacol., 2011, 135(3), 772-778.
[http://dx.doi.org/10.1016/j.jep.2011.04.015] [PMID: 21515353]
[55]
Wang, Y.; Ke, R-J.; Jiang, P-R.; Ying, J-H.; Lou, E-Z.; Chen, J-Y. The effects of tectochrysin on prostate cancer cells apoptosis and its mechanism. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2019, 35(3), 283-288.
[PMID: 31257814]
[56]
Park, M.H.; Hong, J.E.; Hwang, C.J.; Choi, M.; Choi, J.S.; An, Y.J.; Son, D.J.; Hong, J.T. Synergistic inhibitory effect of cetuximab and tectochrysin on human colon cancer cell growth via inhibition of EGFR signal. Arch. Pharm. Res., 2016, 39(5), 721-729.
[http://dx.doi.org/10.1007/s12272-016-0735-7] [PMID: 27025376]
[57]
Ahmed-Belkacem, A.; Pozza, A.; Muñoz-Martínez, F.; Bates, S.E.; Castanys, S.; Gamarro, F.; Di Pietro, A.; Pérez-Victoria, J.M. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res., 2005, 65(11), 4852-4860.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1817] [PMID: 15930306]
[58]
Gu, Y.; Chen, X.; Wang, Y.; Liu, Y.; Zheng, L.; Li, X.; Wang, R.; Wang, S.; Li, S.; Chai, Y.; Su, J.; Yuan, Y.; Chen, X. Development of 3-mercaptopropyltrimethoxysilane (MPTS)-modified bone marrow mononuclear cell membrane chromatography for screening anti-osteoporosis components from Scutellariae Radix. Acta Pharm. Sin. B, 2020, 10(10), 1856-1865.
[http://dx.doi.org/10.1016/j.apsb.2020.01.019] [PMID: 33163340]
[59]
Omotuyi, I.O.; Nash, O.; Ajiboye, B.O.; Olumekun, V.O.; Oyinloye, B.E.; Osuntokun, O.T.; Olonisakin, A.; Ajayi, A.O.; Olusanya, O.; Akomolafe, F.S.; Adelakun, N. AFRAMOMUM MELEGUETA secondary metabolites exhibit polypharmacology against SARS‐COV‐2 drug targets: in vitro validation of furin inhibition. Phytother. Res., 2021, 35(2), 908-919.
[http://dx.doi.org/10.1002/ptr.6843] [PMID: 32964551]
[60]
Ho, K.V.; Schreiber, K.L.; Park, J.; Vo, P.H.; Lei, Z.; Sumner, L.W.; Brown, C.R.; Lin, C.H. Identification and quantification of bioactive molecules inhibiting pro-inflammatory cytokine production in spent coffee grounds using metabolomics analyses. Front. Pharmacol., 2020, 11, 229.
[http://dx.doi.org/10.3389/fphar.2020.00229] [PMID: 32210815]
[61]
Zhang, J.; Wang, S.; Li, Y.; Xu, P.; Chen, F.; Tan, Y.; Duan, J. Anti-diarrheal constituents of Alpinia oxyphylla. Fitoterapia, 2013, 89, 149-156.
[http://dx.doi.org/10.1016/j.fitote.2013.04.001] [PMID: 23583435]
[62]
Bian, Q.Y.; Wang, S.Y.; Xu, L.J.; Chan, C.O.; Mok, D.K.W.; Chen, S.B. Two new antioxidant diarylheptanoids from the fruits of Alpinia oxyphylla. J. Asian Nat. Prod. Res., 2013, 15(10), 1094-1099.
[http://dx.doi.org/10.1080/10286020.2013.816297] [PMID: 23869536]
[63]
Rapta, P.; Mišík, V.; Staško, A.; Vrábel, I. Redox intermediates of flavonoids and caffeic acid esters from propolis: An EPR spectroscopy and cyclic voltammetry study. Free Radic. Biol. Med., 1995, 18(5), 901-908.
[http://dx.doi.org/10.1016/0891-5849(94)00232-9] [PMID: 7797098]
[64]
Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alfayez, I.A.; Natto, M.J.; Alenezi, S.; Siheri, W.; AlQarni, M.; Igoli, J.O.; Fearnley, J.; De Koning, H.P.; Watson, D.G. Activity of compounds from temperate propolis against Trypanosoma brucei and Leishmania mexicana. Molecules, 2021, 26(13), 3912.
[http://dx.doi.org/10.3390/molecules26133912] [PMID: 34206940]
[65]
Salvador, M.J.; Sartori, F.T.; Sacilotto, A.C.B.C.; Pral, E.M.F.; Alfieri, S.C.; Vichnewski, W. Bioactivity of flavonoids isolated from Lychnophora markgravii against Leishmania amazonensis amastigotes. Z. Naturforsch. C J. Biosci., 2009, 64(7-8), 509-512.
[http://dx.doi.org/10.1515/znc-2009-7-807] [PMID: 19791501]
[66]
Takeara, R.; Albuquerque, S.; Lopes, N.P.; Lopes, J.L.C. Trypanocidal activity of Lychnophora staavioides Mart. (Vernonieae, Asteraceae). Phytomedicine, 2003, 10(6-7), 490-493.
[http://dx.doi.org/10.1078/094471103322331430] [PMID: 13678232]
[67]
Hernández Tasco, A.J.; Ramírez Rueda, R.Y.; Alvarez, C.J.; Sartori, F.T.; Sacilotto, A.C.B.C.; Ito, I.Y.; Vichnewski, W.; Salvador, M.J. Antibacterial and antifungal properties of crude extracts and isolated compounds from Lychnophora markgravii. Nat. Prod. Res., 2020, 34(6), 863-867.
[http://dx.doi.org/10.1080/14786419.2018.1503263] [PMID: 30445853]
[68]
Qing, Z.J.; Yong, W.; Hui, L.Y.; Yong, L.W.; Long, L.H.; Ao, D.J.; Xia, P.L. Two new natural products from the fruits of Alpinia oxyphylla with inhibitory effects on nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophage cells. Arch. Pharm. Res., 2012, 35(12), 2143-2146.
[http://dx.doi.org/10.1007/s12272-012-1211-7] [PMID: 23263808]
[69]
Amakura, Y.; Tsutsumi, T.; Nakamura, M.; Handa, H.; Yoshimura, M.; Matsuda, R.; Yoshida, T. Aryl hydrocarbon receptor ligand activity of commercial health foods. Food Chem., 2011, 126(4), 1515-1520.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.034] [PMID: 25213920]
[70]
Zhao, X.; Su, X.; Liu, C.; Jia, Y. Simultaneous Determination of Chrysin and Tectochrysin from Alpinia oxyphylla Fruits by UPLC-MS/MS and Its Application to a Comparative Pharmacokinetic Study in Normal and Dementia Rats. Molecules, 2018, 23(7), 1702.
[http://dx.doi.org/10.3390/molecules23071702] [PMID: 30002311]
[71]
Chen, F.; Li, H.L.; Tan, Y.F.; Li, Y.H.; Lai, W.Y.; Guan, W.W.; Zhang, J.Q.; Zhao, Y.S.; Qin, Z.M. Identification of known chemicals and their metabolites from Alpinia oxyphylla fruit extract in rat plasma using liquid chromatography/tandem mass spectrometry (LC–MS/MS) with selected reaction monitoring. J. Pharm. Biomed. Anal., 2014, 97, 166-177.
[http://dx.doi.org/10.1016/j.jpba.2014.04.037] [PMID: 24879483]
[72]
Griffiths, L.A.; Smith, G.E. Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem. J., 1972, 128(4), 901-911.
[http://dx.doi.org/10.1042/bj1280901] [PMID: 4638796]
[73]
Fu, Y.H.; Huang, L.G.; Wang, X.C.; Li, X.B.; Li, K.K.; Wu, S.L.; Liu, Y.P. Studies on chemical constituents from psychotria straminea. Zhongguo Zhongyao Zazhi, 2015, 40(11), 2138-2143.
[PMID: 26552170]
[74]
Chen, F.; Li, H.L.; Tan, Y.F.; Guan, W.W.; Zhang, J.Q.; Li, Y.H.; Zhao, Y.S.; Qin, Z.M. Different accumulation profiles of multiple components between pericarp and seed of Alpinia oxyphylla capsular fruit as determined by UFLC-MS/MS. Molecules, 2014, 19(4), 4510-4523.
[http://dx.doi.org/10.3390/molecules19044510] [PMID: 24727421]
[75]
Zhao, B.; Yang, X.; Yang, X.; Zhang, L. Chemical constituents of roots of saposhnikovia divaricata. Zhongguo Zhongyao Zazhi, 2010, 35(12), 1569-1572.
[PMID: 20815209]
[76]
Xu, J.; Tan, N.; Zeng, G.; Han, H.; Huang, H.; Ji, C.; Zhu, M.; Zhang, Y. Studies on chemical constituents in fruit of alpinia oxyphylla. Zhongguo Zhongyao Zazhi, 2009, 34(8), 990-993.
[PMID: 19639783]
[77]
Lima, B.; Tapia, A.; Luna, L.; Fabani, M.P.; Schmeda-Hirschmann, G.; Podio, N.S.; Wunderlin, D.A.; Feresin, G.E. Main flavonoids, DPPH activity, and metal content allow determination of the geographical origin of propolis from the Province of San Juan (Argentina). J. Agric. Food Chem., 2009, 57(7), 2691-2698.
[http://dx.doi.org/10.1021/jf803866t] [PMID: 19334753]
[78]
Zhou, L.; Guo, J.; Yu, J. Flavonoids from beijing propolis. Zhongguo Zhongyao Zazhi, 1999, 24(3), 162-164, 191.
[PMID: 12242799]
[79]
Novotný, L.; Vachálková, A.; Al-Nakib, T.; Mohanna, N.; Veselá, D.; Suchý, V. Separation of structurally related flavonoids by GC/MS technique and determination of their polarographic parameters and potential carcinogenicity. Neoplasma, 1999, 46(4), 231-236.
[PMID: 10613603]
[80]
Stevens, J.F.; Ivancic, M.; Deinzer, M.L.; Wollenweber, E. A novel 2-hydroxyflavanone from collinsonia canadensis. J. Nat. Prod., 1999, 62(2), 392-394.
[http://dx.doi.org/10.1021/np980421i] [PMID: 10075799]
[81]
Lahouel, M.; Boutabet, K.; Kebsa, W.; Alyane, M. Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin. Indian J. Nephrol., 2011, 21(2), 101-106.
[http://dx.doi.org/10.4103/0971-4065.82131] [PMID: 21769172]
[82]
Han, Y.; Wang, S.; Liu, Y.; Bai, L.; Yan, H.; Liu, H. Preparation of poly(ionic liquid@MOF) composite monolithic column and its application in the online enrichment and purification of tectochrysin in medicinal plants. Anal. Methods, 2022, 14(4), 401-409.
[http://dx.doi.org/10.1039/D1AY01954F] [PMID: 35006229]
[83]
Niu, Q.; Gao, Y.; Liu, P. Optimization of microwave-assisted extraction, antioxidant capacity, and characterization of total flavonoids from the leaves of Alpinia oxyphylla Miq. Prep. Biochem. Biotechnol., 2020, 50(1), 82-90.
[http://dx.doi.org/10.1080/10826068.2019.1663535] [PMID: 31545661]
[84]
Chasset, T.; Häbe, T.T.; Ristivojevic, P.; Morlock, G.E. Profiling and classification of French propolis by combined multivariate data analysis of planar chromatograms and scanning direct analysis in real time mass spectra. J. Chromatogr. A, 2016, 1465, 197-204.
[http://dx.doi.org/10.1016/j.chroma.2016.08.045] [PMID: 27599799]
[85]
Patel, D.K. Therapeutic effectiveness of magnolin on cancers and other human complications. Pharmacol Res -. Mod Chinese Med, 2023, 6, 100203.
[86]
Patel, K.; Patel, D.K. Health benefits of quassin from quassia amara: A comprehensive review of their ethnopharmacological importance, pharmacology, phytochemistry and analytical aspects. Curr. Nutr. Food Sci., 2020, 16(1), 35-44.
[http://dx.doi.org/10.2174/1573401314666181023094645]
[87]
Marques, J.; Silva, A.M.S.; Marques, M.P.M.; Braga, S.S. Ruthenium(II) trithiacyclononane complexes of 7,3′,4′-trihydroxyflavone, chrysin and tectochrysin: Synthesis, characterisation, and cytotoxic evaluation. Inorg. Chim. Acta, 2019, 488, 71-79.
[http://dx.doi.org/10.1016/j.ica.2019.01.003]
[88]
Zhang, Q.; Cui, C.; Chen, C.Q.; Hu, X.L.; Liu, Y.H.; Fan, Y.H.; Meng, W.H.; Zhao, Q.C. Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J. Ethnopharmacol., 2015, 169, 99-108.
[http://dx.doi.org/10.1016/j.jep.2015.03.073] [PMID: 25891473]
[89]
Zhang, Q.; Zheng, Y.; Hu, X.; Hu, X.; Lv, W.; Lv, D.; Chen, J.; Wu, M.; Song, Q.; Shentu, J. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of alpinia oxyphylla miquel: A review. J. Ethnopharmacol., 2018, 224, 149-168.
[http://dx.doi.org/10.1016/j.jep.2018.05.002] [PMID: 29738847]
[90]
Lee, C.C.; Chiu, C.C.; Liao, W.T.; Wu, P.F.; Chen, Y.T.; Huang, K.C.; Chou, Y-T.; Wen, Z-H.; Wang, H-M. Alpinia oxyphylla Miq. bioactive extracts from supercritical fluid carbon dioxide extraction. Biochem. Eng. J., 2013, 78, 101-107.
[http://dx.doi.org/10.1016/j.bej.2013.03.009]
[91]
Shui, Guan Bao, Y.M.; Bo Jiang; An, L.J. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur. J. Pharmacol., 2006, 538(1-3), 73-79.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.065] [PMID: 16678817]
[92]
Yu, X.; An, L.; Wang, Y.; Zhao, H.; Gao, C. Neuroprotective effect of Alpinia oxyphylla Miq. fruits against glutamate-induced apoptosis in cortical neurons. Toxicol. Lett., 2003, 144(2), 205-212.
[http://dx.doi.org/10.1016/S0378-4274(03)00219-4] [PMID: 12927364]
[93]
Zhao, X.; Zhou, Y.; Kong, W.; Gong, B.; Chen, D.; Wei, J.; Yang, M. Multi-residue analysis of 26 organochlorine pesticides in Alpinia oxyphylla by GC-ECD after solid phase extraction and acid cleanup. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1017-1018, 211-220.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.009] [PMID: 26990736]
[94]
Yuan, Y.; Tan, Y.; Xu, P.; Li, H.; Li, Y.; Chen, W.; Zhang, J.; Chen, F.; Huang, G. Izalpinin from fruits of <i>Alpinia oxyphylla</i> with antagonistic activity against the rat bladder contractility. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(4), 120-125.
[http://dx.doi.org/10.4314/ajtcam.v11i4.18] [PMID: 25392590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy