Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

An Insight into the Pathogenesis of Diabetic Cardiomyopathy Along with the Novel Potential Therapeutic Approaches

Author(s): Himangi Vig, Ravinandan AP, Hunsur Nagendra Vishwas, Sachin Tyagi, Shruti Rathore, Ankita Wal and Pranay Wal*

Volume 20, Issue 1, 2024

Published on: 22 May, 2023

Article ID: e020523216416 Pages: 15

DOI: 10.2174/1573399819666230502110511

Price: $65

Abstract

Background: The existence of aberrant myocardial activity and function in the exclusion of those other cardiovascular events, such as atherosclerosis, hypertension, and severe valve disease, is known as diabetic cardiomyopathy. Diabetes patients are much more prone to death from cardiovascular illnesses than from any other cause, and they also have a 2–5 fold higher likelihood of acquiring cardiac failure and other complications.

Objective: In this review, the pathophysiology of diabetic cardiomyopathy is discussed, with an emphasis on the molecular and cellular irregularities that arise as the condition progresses, as well as existing and prospective future treatments.

Method: The literature for this topic was researched utilizing Google Scholar as a search engine. Before compiling the review article, several research and review publications from various publishers, including Bentham Science, Nature, Frontiers, and Elsevier, were investigated.

Result: The abnormal cardiac remodelling, marked by left ventricular concentric thickening and interstitial fibrosis contributing to diastolic impairment, is mediated by hyperglycemia, and insulin sensitivity. The pathophysiology of diabetic cardiomyopathy has been linked to altered biochemical parameters, decreased calcium regulation and energy production, enhanced oxidative damage and inflammation, and a build-up of advanced glycation end products.

Conclusion: Antihyperglycemic medications are essential for managing diabetes because they successfully lower microvascular problems. GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors have now been proven to benefit heart health by having a direct impact on the cardiomyocyte. To cure and avoid diabetic cardiomyopathy new medicines are being researched, including miRNA and stem cell therapies.

[1]
Zheng J, Cheng J, Zheng S, Feng Q, Xiao X. Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol 2018; 9: 472.
[http://dx.doi.org/10.3389/fphar.2018.00472] [PMID: 29867479]
[2]
Nelson MAM, Builta ZJ, Monroe TB, Doorn JA, Anderson EJ. Biochemical characterization of the catecholaldehyde reactivity of l-carnosine and its therapeutic potential in human myocardium. Amino Acids 2019; 51(1): 97-102.
[http://dx.doi.org/10.1007/s00726-018-2647-y] [PMID: 30191330]
[3]
Nelson MAM, Efird JT, Kew KA, et al. Enhanced catecholamine flux and impaired carbonyl metabolism disrupt cardiac mitochondrial oxidative phosphorylation in diabetes patients. Antioxid Redox Signal 2021; 35(4): 235-51.
[http://dx.doi.org/10.1089/ars.2020.8122] [PMID: 33066717]
[4]
Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 2020; 126(11): 1501-25.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315913] [PMID: 32437308]
[5]
Korkmaz-Icöz S, Al Said S, Radovits T, et al. Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: activation of the Akt pathway. Cardiovasc Diabetol 2016; 15(1): 75.
[http://dx.doi.org/10.1186/s12933-016-0383-8] [PMID: 27153943]
[6]
Roy D, Modi A, Khokhar M, et al. Microrna 21 emerging role in diabetic complications: A critical update. Curr Diabetes Rev 2021; 17(2): 122-35.
[http://dx.doi.org/10.2174/18756417MTA2tMzAmw] [PMID: 32359340]
[7]
Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2019; 109: 2155-72.
[http://dx.doi.org/10.1016/j.biopha.2018.11.086] [PMID: 30551473]
[8]
Thomas MC. Type 2 diabetes and heart failure: Challenges and solutions. Curr Cardiol Rev 2016; 12(3): 249-55.
[http://dx.doi.org/10.2174/1573403X12666160606120254] [PMID: 27280301]
[9]
Andreadi A, Bellia A, Di Daniele N, et al. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr Opin Pharmacol 2022; 62: 85-96.
[http://dx.doi.org/10.1016/j.coph.2021.11.010] [PMID: 34959126]
[10]
Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149-66.
[http://dx.doi.org/10.1007/s10741-012-9313-3] [PMID: 22453289]
[11]
Cubillos-Angulo JM, Vinhaes CL, Fukutani ER, et al. In silico transcriptional analysis of mRNA and miRNA reveals unique biosignatures that characterizes different types of diabetes. PLoS One 2020; 15(9): e0239061.
[http://dx.doi.org/10.1371/journal.pone.0239061] [PMID: 32956382]
[12]
Nair N, Gongora E. Oxidative stress and cardiovascular aging: Interaction between NRF-2 and ADMA. Curr Cardiol Rev 2017; 13(3): 183-8.
[PMID: 28215178]
[13]
Rasolabadi M, Khaledi S, Ardalan M, Kalhor M, Penjvini S, Gharib A. Diabetes research in Iran: A scientometric analysis of publications output. Acta Inform Med 2015; 23(3): 160-4.
[http://dx.doi.org/10.5455/aim.2015.23.160-164] [PMID: 26236083]
[14]
Scheen AJ. Pharmacotherapy of ‘treatment resistant’ type 2 diabetes. Expert Opin Pharmacother 2017; 18(5): 503-15.
[http://dx.doi.org/10.1080/14656566.2017.1297424] [PMID: 28276972]
[15]
Amdare N, Purcell AW, DiLorenzo TP. Noncontiguous T cell epitopes in autoimmune diabetes: From mice to men and back again. J Biol Chem 2021; 297(1): 100827.
[http://dx.doi.org/10.1016/j.jbc.2021.100827] [PMID: 34044020]
[16]
Hölscher M, Bode C, Bugger H. Diabetic cardiomyopathy: Does the type of diabetes matter? Int J Mol Sci 2016; 17(12): 2136.
[http://dx.doi.org/10.3390/ijms17122136] [PMID: 27999359]
[17]
Xu CR, Fang QJ. Inhibiting glucose metabolism by miR-34a and miR-125b protects against hyperglycemia-induced cardiomyocyte cell death. Arq Bras Cardiol 2021; 116(3): 415-22.
[http://dx.doi.org/10.36660/abc.20190529] [PMID: 33909769]
[18]
Tarquini R, Pala L, Brancati S, et al. Clinical approach to diabetic cardiomyopathy: A review of human studies. Curr Med Chem 2018; 25(13): 1510-24.
[http://dx.doi.org/10.2174/0929867324666170705111356] [PMID: 28685679]
[19]
Voulgari C, Pagoni S, Tesfaye S, Tentolouris N. The spatial QRS-T angle: Implications in clinical practice. Curr Cardiol Rev 2013; 9(3): 197-210.
[http://dx.doi.org/10.2174/1573403X113099990031] [PMID: 23909632]
[20]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[21]
Chrysohoou C, Pitsavos C, Metallinos G, et al. Cross-sectional relationship of a Mediterranean type diet to diastolic heart function in chronic heart failure patients. Heart Vessels 2012; 27(6): 576-84.
[http://dx.doi.org/10.1007/s00380-011-0190-9] [PMID: 21947607]
[22]
Angelis A, Chrysohoou C, Tzorovili E, et al. The Mediterranean diet benefit on cardiovascular hemodynamics and erectile function in chronic heart failure male patients by decoding central and peripheral vessel rheology. Nutrients 2020; 13(1): 108.
[http://dx.doi.org/10.3390/nu13010108] [PMID: 33396861]
[23]
Weng L, Li L, Zhao K, et al. Non-invasive local acoustic therapy ameliorates diabetic heart fibrosis by suppressing ACE-mediated oxidative stress and inflammation in cardiac fibroblasts. Cardiovasc Drugs Ther 2022; 36(3): 413-24.
[http://dx.doi.org/10.1007/s10557-021-07297-6] [PMID: 35156147]
[24]
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142(3): 375-415.
[http://dx.doi.org/10.1016/j.pharmthera.2014.01.003] [PMID: 24462787]
[25]
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[26]
Adeghate E, Singh J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 2014; 19(1): 15-23.
[http://dx.doi.org/10.1007/s10741-013-9388-5] [PMID: 23467937]
[27]
Paolillo S, Marsico F, Prastaro M, et al. Diabetic cardiomyopathy. Heart Fail Clin 2019; 15(3): 341-7.
[http://dx.doi.org/10.1016/j.hfc.2019.02.003] [PMID: 31079692]
[28]
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18(6): 400-23.
[http://dx.doi.org/10.1038/s41569-020-00480-6] [PMID: 33432192]
[29]
Tsigkou V, Oikonomou E, Anastasiou A, et al. Molecular mechanisms and therapeutic implications of endothelial dysfunction in patients with heart failure. Int J Mol Sci 2023; 24(5): 4321.
[http://dx.doi.org/10.3390/ijms24054321] [PMID: 36901752]
[30]
Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig 2014; 5(6): 623-34.
[http://dx.doi.org/10.1111/jdi.12250] [PMID: 25422760]
[31]
Siriwardena K, MacKay N, Levandovskiy V, et al. Mitochondrial citrate synthase crystals: Novel finding in Sengers syndrome caused by acylglycerol kinase (AGK) mutations. Mol Genet Metab 2013; 108(1): 40-50.
[http://dx.doi.org/10.1016/j.ymgme.2012.11.282] [PMID: 23266196]
[32]
Zhang X, Chen C. A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine 2012; 41(3): 398-409.
[http://dx.doi.org/10.1007/s12020-012-9623-1] [PMID: 22322947]
[33]
Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116(3): 531-49.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303584] [PMID: 25634975]
[34]
Rossino MG, Dal Monte M, Casini G. Relationships between neurodegeneration and vascular damage in diabetic retinopathy. Front Neurosci 2019; 13: 1172.
[http://dx.doi.org/10.3389/fnins.2019.01172] [PMID: 31787868]
[35]
Gadjeva V, Goycheva P, Nikolova G, Zheleva A. Influence of glycemic control on some real-time biomarkers of free radical formation in type 2 diabetic patients: An EPR study. Adv Clin Exp Med 2017; 26(8): 1237-43.
[http://dx.doi.org/10.17219/acem/68988] [PMID: 29264881]
[36]
Dhalla NS, Shah AK, Tappia PS. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy. Int J Mol Sci 2020; 21(7): 2413.
[http://dx.doi.org/10.3390/ijms21072413] [PMID: 32244448]
[37]
Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev 2014; 19(1): 87-99.
[http://dx.doi.org/10.1007/s10741-013-9385-8] [PMID: 23436108]
[38]
Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 2014; 19(1): 25-33.
[http://dx.doi.org/10.1007/s10741-013-9378-7] [PMID: 23456446]
[39]
Cas A, Spigoni V, Ridolfi V, Metra M. Diabetes and chronic heart failure: From diabetic cardiomyopathy to therapeutic approach. Endocr Metab Immune Disord Drug Targets 2013; 13(1): 38-50.
[http://dx.doi.org/10.2174/1871530311313010006] [PMID: 23369136]
[40]
LaRocca TJ, Fabris F, Chen J, et al. Na + /Ca 2+ exchanger-1 protects against systolic failure in the Akita ins2 model of diabetic cardiomyopathy via a CXCR4/NF-κB pathway. Am J Physiol Heart Circ Physiol 2012; 303(3): H353-67.
[http://dx.doi.org/10.1152/ajpheart.01198.2011] [PMID: 22610174]
[41]
Tian J, Zhao Y, Liu Y, Liu Y, Chen K, Lyu S. Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: Current status and perspective. Oxid Med Cell Longev 2017; 2017: 1-15.
[http://dx.doi.org/10.1155/2017/8214541] [PMID: 29204251]
[42]
Yan D, Luo X, Li Y, et al. Effects of advanced glycation end products on calcium handling in cardiomyocytes. Cardiology 2014; 129(2): 75-83.
[http://dx.doi.org/10.1159/000364779] [PMID: 25138529]
[43]
Ng KM, Lau YM, Dhandhania V, et al. Empagliflozin ammeliorates high glucose induced-cardiac dysfuntion in human iPSC-derived cardiomyocytes. Sci Rep 2018; 8(1): 14872.
[http://dx.doi.org/10.1038/s41598-018-33293-2] [PMID: 30291295]
[44]
Xu X, Kobayashi S, Chen K, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 2013; 288(25): 18077-92.
[http://dx.doi.org/10.1074/jbc.M113.474650] [PMID: 23658055]
[45]
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: A promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2021; 2021: 1-16.
[http://dx.doi.org/10.1080/13813455.2021.1956976] [PMID: 34379994]
[46]
Ni R, Cao T, Xiong S, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med 2016; 90: 12-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.013] [PMID: 26577173]
[47]
Zhang N, Yang Z, Xiang SZ, et al. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 2016; 417(1-2): 87-96.
[http://dx.doi.org/10.1007/s11010-016-2716-z] [PMID: 27160937]
[48]
Palomer X, Pizarro-Delgado J, Vázquez-Carrera M. Emerging actors in diabetic cardiomyopathy: heartbreaker biomarkers or therapeutic targets? Trends Pharmacol Sci 2018; 39(5): 452-67.
[http://dx.doi.org/10.1016/j.tips.2018.02.010] [PMID: 29605388]
[49]
Khan S, Kamal MA. Can wogonin be used in controlling diabetic cardiomyopathy? Curr Pharm Des 2019; 25(19): 2171-7.
[http://dx.doi.org/10.2174/1381612825666190708173108] [PMID: 31298148]
[50]
Kotturu SK, Uddandrao VVS, Ghosh S, Parim B. Bioactive compounds in diabetic cardiomyopathy: current approaches and potential diagnostic and therapeutic targets. Cardiovasc Hematol Agents Med Chem 2021; 19(2): 118-30.
[http://dx.doi.org/10.2174/1871525718666200421114801] [PMID: 32316902]
[51]
Lerner Y, Hanout W, Ben-Uliel SF, Gani S, Leshem MP, Qvit N. Natriuretic peptides as the basis of peptide drug discovery for cardiovascular diseases. Curr Top Med Chem 2020; 20(32): 2904-21.
[http://dx.doi.org/10.2174/1568026620666201013154326] [PMID: 33050863]
[52]
Li X, Du N, Zhang Q, et al. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 2014; 5(10): e1479.
[http://dx.doi.org/10.1038/cddis.2014.430] [PMID: 25341033]
[53]
Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig 2013; 4(1): 4-18.
[http://dx.doi.org/10.1111/jdi.12042] [PMID: 23550085]
[54]
Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014; 57(4): 660-71.
[http://dx.doi.org/10.1007/s00125-014-3171-6] [PMID: 24477973]
[55]
Yang GK, Maahs DM, Perkins BA, Cherney DZI. Renal hyperfiltration and systemic blood pressure in patients with uncomplicated type 1 diabetes mellitus. PLoS One 2013; 8(7): e68908.
[http://dx.doi.org/10.1371/journal.pone.0068908] [PMID: 23861950]
[56]
Zamir I, Stoltz Sjöström E, Edstedt Bonamy AK, Mohlkert LA, Norman M, Domellöf M. Postnatal nutritional intakes and hyperglycemia as determinants of blood pressure at 6.5 years of age in children born extremely preterm. Pediatr Res 2019; 86(1): 115-21.
[http://dx.doi.org/10.1038/s41390-019-0341-8] [PMID: 30776793]
[57]
Li Q, Park K, Li C, et al. Induction of vascular insulin resistance and endothelin-1 expression and acceleration of atherosclerosis by the overexpression of protein kinase C-β isoform in the endothelium. Circ Res 2013; 113(4): 418-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301074] [PMID: 23759514]
[58]
Sutton G, Pugh D, Dhaun N. Developments in the role of endothelin-1 in atherosclerosis: A potential therapeutic target? Am J Hypertens 2019; 32(9): 813-5.
[http://dx.doi.org/10.1093/ajh/hpz091] [PMID: 31145445]
[59]
Zhang J, Zhao WS, Wang X, Xu L, Yang XC. Palmitic acid increases endothelin-1 expression in vascular endothelial cells through the induction of endoplasmic reticulum stress and protein kinase C signaling. Cardiology 2018; 140(3): 133-40.
[http://dx.doi.org/10.1159/000490093] [PMID: 29996135]
[60]
Andersson C, Gislason GH, Møgelvang R, et al. Importance and inter-relationship of tissue Doppler variables for predicting adverse outcomes in high-risk patients: An analysis of 388 diabetic patients referred for coronary angiography. Eur Heart J Cardiovasc Imaging 2012; 13(8): 643-9.
[http://dx.doi.org/10.1093/ejechocard/jer297] [PMID: 22207342]
[61]
Hodzic A, Ribault V, Maragnes P, Milliez P, Saloux E, Labombarda F. Decreased regional left ventricular myocardial strain in type 1 diabetic children: A first sign of diabetic cardiomyopathy? J Transl Int Med 2016; 4(2): 81-7.
[http://dx.doi.org/10.1515/jtim-2016-0025] [PMID: 28191526]
[62]
Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 110-6.
[http://dx.doi.org/10.2174/1570161117666190405165151] [PMID: 30961498]
[63]
Soares Felício J, Cavalcante Koury C, Tavares Carvalho C, et al. Present insights on cardiomyopathy in diabetic patients. Curr Diabetes Rev 2016; 12(4): 384-95.
[http://dx.doi.org/10.2174/1573399812666150914120529] [PMID: 26364799]
[64]
Zhang Q, Liu Z, Du J, et al. Dermal exposure to nano-TiO2 induced cardiovascular toxicity through oxidative stress, inflammation and apoptosis. J Toxicol Sci 2019; 44(1): 35-45.
[http://dx.doi.org/10.2131/jts.44.35] [PMID: 30626778]
[65]
Xia P, Liu Y, Cheng Z. Signaling pathways in cardiac myocyte apoptosis. BioMed Res Int 2016; 2016: 1-22.
[http://dx.doi.org/10.1155/2016/9583268] [PMID: 28101515]
[66]
Teringova E, Tousek P. Apoptosis in ischemic heart disease. J Transl Med 2017; 15(1): 87.
[http://dx.doi.org/10.1186/s12967-017-1191-y] [PMID: 28460644]
[67]
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136: 27-41.
[http://dx.doi.org/10.1016/j.yjmcc.2019.09.001] [PMID: 31505198]
[68]
Qin W, Liu G, Wang J, et al. Poly(ADP-ribose) polymerase 1 inhibition protects cardiomyocytes from inflammation and apoptosis in diabetic cardiomyopathy. Oncotarget 2016; 7(24): 35618-31.
[http://dx.doi.org/10.18632/oncotarget.8343] [PMID: 27027354]
[69]
Arcopinto M, Bobbio E, Bossone E, et al. The GH/IGF-1 axis in chronic heart failure. Endocr Metab Immune Disord Drug Targets 2013; 13(1): 76-91.
[http://dx.doi.org/10.2174/1871530311313010010] [PMID: 23369140]
[70]
Sharchil C, Vijay A, Ramachandran V, et al. Zebrafish: A model to study and understand the diabetic nephropathy and other microvascular complications of Type 2 diabetes mellitus. Vet Sci 2022; 9(7): 312.
[http://dx.doi.org/10.3390/vetsci9070312] [PMID: 35878329]
[71]
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 2020; 11: 42.
[http://dx.doi.org/10.3389/fphar.2020.00042] [PMID: 32116717]
[72]
Schlossarek S, Frey N, Carrier L. Ubiquitin-proteasome system and hereditary cardiomyopathies. J Mol Cell Cardiol 2014; 71: 25-31.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.016] [PMID: 24380728]
[73]
Li J, Ma W, Yue G, et al. Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. J Mol Cell Cardiol 2017; 102: 53-60.
[http://dx.doi.org/10.1016/j.yjmcc.2016.11.013] [PMID: 27913284]
[74]
Zhou Q, Lv D, Chen P, et al. MicroRNAs in diabetic cardiomyopathy and clinical perspectives. Front Genet 2014; 5: 185.
[http://dx.doi.org/10.3389/fgene.2014.00185] [PMID: 25009554]
[75]
De Blasio MJ, Huynh N, Deo M, et al. Defining the progression of diabetic cardiomyopathy in a mouse model of type 1 diabetes. Front Physiol 2020; 11: 124.
[http://dx.doi.org/10.3389/fphys.2020.00124] [PMID: 32153425]
[76]
Husain A, Alouffi S, Khanam A, et al. Non-inhibitory effects of the potent antioxidant from sp. on the glycation reaction. Rev Rom Med Lab 2022; 30(2): 199-213.
[77]
Tiwari N, Thakur AK, Kumar V, Dey A, Kumar V. Therapeutic targets for diabetes mellitus: An update. Clin Pharmacol Biopharm 2014; 3(1): 1.
[http://dx.doi.org/10.4172/2167-065X.1000117]
[78]
Trang Nguyen ND, Le LT. Targeted proteins for diabetes drug design. Advances in Natural Sciences: Nanoscience and Nanotechnology 2012; 3(1): 013001.
[http://dx.doi.org/10.1088/2043-6262/3/1/013001]
[79]
Maheshwari N, Karthikeyan C, Trivedi P, Moorthy NSHN. Recent advances in protein tyrosine phosphatase 1B targeted drug discovery for type II diabetes and obesity. Curr Drug Targets 2018; 19(5): 551-75.
[http://dx.doi.org/10.2174/1389450118666170222143739] [PMID: 28228082]
[80]
Adeva-Andany MM, Martínez-Rodríguez J, González-Lucán M, Fernández-Fernández C, Castro-Quintela E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab Syndr 2019; 13(2): 1449-55.
[http://dx.doi.org/10.1016/j.dsx.2019.02.023] [PMID: 31336505]
[81]
Fung CSC, Wan EYF, Wong CKH, Jiao F, Chan AKC. Effect of metformin monotherapy on cardiovascular diseases and mortality: A retrospective cohort study on Chinese type 2 diabetes mellitus patients. Cardiovasc Diabetol 2015; 14(1): 137.
[http://dx.doi.org/10.1186/s12933-015-0304-2] [PMID: 26453464]
[82]
Li H, Lee J, He C, Zou MH, Xie Z. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. Am J Physiol Endocrinol Metab 2014; 306(2): E197-209.
[http://dx.doi.org/10.1152/ajpendo.00202.2013] [PMID: 24302004]
[83]
Tokgozoglu L, Catapano AL. Can EPA evaporate plaques? Eur Heart J 2020; 41(40): 3933-5.
[http://dx.doi.org/10.1093/eurheartj/ehaa750] [PMID: 33141163]
[84]
Li T, Jiang S, Yang Z, et al. Targeting the energy guardian AMPK: Another avenue for treating cardiomyopathy? Cell Mol Life Sci 2017; 74(8): 1413-29.
[http://dx.doi.org/10.1007/s00018-016-2407-7] [PMID: 27815596]
[85]
Robinson E, Cassidy RS, Tate M, et al. Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol 2015; 110(2): 20.
[http://dx.doi.org/10.1007/s00395-015-0476-7] [PMID: 25725809]
[86]
Jalleh RJ, Jones KL, Rayner CK, Marathe CS, Wu T, Horowitz M. Normal and disordered gastric emptying in diabetes: Recent insights into (patho)physiology, management and impact on glycaemic control. Diabetologia 2022; 65(12): 1981-93.
[http://dx.doi.org/10.1007/s00125-022-05796-1] [PMID: 36194250]
[87]
Reed J, Kanamarlapudi V, Bain S. Mechanism of cardiovascular disease benefit of glucagon-like peptide 1 agonists. Cardiovasc Endocrinol Metab 2018; 7(1): 18-23.
[PMID: 31646274]
[88]
Qi M, Zhou Q, Zeng W, et al. Analysis of long non-coding RNA expression of lymphatic endothelial cells in response to type 2 diabetes. Cell Physiol Biochem 2017; 41(2): 466-74.
[http://dx.doi.org/10.1159/000456599] [PMID: 28214888]
[89]
Nickerson HD, Dutta S. Diabetic complications: Current challenges and opportunities. J Cardiovasc Transl Res 2012; 5(4): 375-9.
[http://dx.doi.org/10.1007/s12265-012-9388-1] [PMID: 22752737]
[90]
Menikdiwela KR, Ramalingam L, Rasha F, et al. Autophagy in metabolic syndrome: Breaking the wheel by targeting the renin–angiotensin system. Cell Death Dis 2020; 11(2): 87.
[http://dx.doi.org/10.1038/s41419-020-2275-9] [PMID: 32015340]
[91]
Adeghate EA, Kalász H, Al Jaberi S, Adeghate J, Tekes K. Tackling type 2 diabetes-associated cardiovascular and renal comorbidities: A key challenge for drug development. Expert Opin Investig Drugs 2021; 30(2): 85-93.
[http://dx.doi.org/10.1080/13543784.2021.1865914] [PMID: 33327794]
[92]
Cao Z, Pan J, Sui X. Protective effects of HuangqiShengmai Yin on type 1 diabetes-induced cardiomyopathy by improving myocardial lipid metabolism. Evid Based Complement Alternat Med 2021; 2021: 1-13.
[93]
Westermann D, Becher PM, Lindner D, et al. Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol 2012; 107(6): 308.
[http://dx.doi.org/10.1007/s00395-012-0308-y] [PMID: 23117837]
[94]
Tsioufis C, Bafakis I, Kasiakogias A, Stefanadis C. The role of matrix metalloproteinases in diabetes mellitus. Curr Top Med Chem 2012; 12(10): 1159-65.
[http://dx.doi.org/10.2174/1568026611208011159] [PMID: 22519446]
[95]
Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: Clinical and therapeutic implications. Lancet Diabetes Endocrinol 2019; 7(3): 221-30.
[http://dx.doi.org/10.1016/S2213-8587(18)30136-0] [PMID: 30115599]
[96]
Trachanas K, Sideris S, Aggeli C, et al. Diabetic cardiomyopathy: From pathophysiology to treatment. Hellenic J Cardiol 2014; 55(5): 411-21.
[PMID: 25243440]
[97]
Chavali V, Tyagi SC, Mishra PK. Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 2013; 6: 151-60.
[PMID: 23610527]
[98]
von Lewinski D, Kolesnik E, Wallner M, Resl M, Sourij H. New antihyperglycemic drugs and heart failure: synopsis of basic and clinical data. BioMed Res Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/1253425] [PMID: 28894748]
[99]
Wallner M, Eaton DM, von Lewinski D, Sourij H. Revisiting the diabetes-heart failure connection. Curr Diab Rep 2018; 18(12): 134.
[http://dx.doi.org/10.1007/s11892-018-1116-z] [PMID: 30343339]
[100]
Zucker IH, Wang H, Schultz HD. GLP-1 (Glucagon-Like Peptide-1) Plays a role in carotid chemoreceptor-mediated sympathoexcitation and hypertension. Circ Res 2022; 130(5): 708-10.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.320799] [PMID: 35239402]
[101]
Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8(12): 728-42.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[102]
Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK. Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: A cohort study. Diabetes Care 2015; 38(2): 316-22.
[http://dx.doi.org/10.2337/dc14-0920] [PMID: 25492401]
[103]
Lee AK, Warren B, Lee CJ, et al. The association of severe hypoglycemia with incident cardiovascular events and mortality in adults with type 2 diabetes. Diabetes Care 2018; 41(1): 104-11.
[http://dx.doi.org/10.2337/dc17-1669] [PMID: 29127240]
[104]
Amiel SA, Aschner P, Childs B, et al. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol 2019; 7(5): 385-96.
[http://dx.doi.org/10.1016/S2213-8587(18)30315-2] [PMID: 30926258]
[105]
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic cardiomyopathy: Current and future therapies. Beyond glycemic control. Front Physiol 2018; 9: 1514.
[http://dx.doi.org/10.3389/fphys.2018.01514] [PMID: 30425649]
[106]
Asleh R, Sheikh-Ahmad M, Briasoulis A, Kushwaha SS. The influence of anti-hyperglycemic drug therapy on cardiovascular and heart failure outcomes in patients with type 2 diabetes mellitus. Heart Fail Rev 2018; 23(3): 445-59.
[http://dx.doi.org/10.1007/s10741-017-9666-8] [PMID: 29270818]
[107]
Anker SD, Butler J, Filippatos GS, et al. Evaluation of the effects of sodium–glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: Rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail 2019; 21(10): 1279-87.
[http://dx.doi.org/10.1002/ejhf.1596] [PMID: 31523904]
[108]
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 2018; 61(10): 2108-17.
[http://dx.doi.org/10.1007/s00125-018-4670-7] [PMID: 30132036]
[109]
Lan NSR, Fegan PG, Yeap BB, Dwivedi G. The effects of sodium glucose cotransporter 2 inhibitors on left ventricular function: Current evidence and future directions. ESC Heart Fail 2019; 6(5): 927-35.
[http://dx.doi.org/10.1002/ehf2.12505] [PMID: 31400090]
[110]
Mukhopadhyay P, Sanyal D, Chatterjee P, Pandit K, Ghosh S. Different SGLT 2 inhibitors: Can they prevent death? Endocr Pract 2022; 28(8): 795-801.
[http://dx.doi.org/10.1016/j.eprac.2022.05.005] [PMID: 35569736]
[111]
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[112]
Mulvihill EE, Varin EM, Ussher JR, et al. Inhibition of dipeptidyl peptidase-4 impairs ventricular function and promotes cardiac fibrosis in high fat–fed diabetic mice. Diabetes 2016; 65(3): 742-54.
[http://dx.doi.org/10.2337/db15-1224] [PMID: 26672095]
[113]
Zhang J, Chen Q, Zhong J, Liu C, Zheng B, Gong Q. DPP-4 inhibitors as potential candidates for antihypertensive therapy: improving vascular inflammation and assisting the action of traditional antihypertensive drugs. Front Immunol 2019; 10: 1050.
[http://dx.doi.org/10.3389/fimmu.2019.01050] [PMID: 31134095]
[114]
Takahashi A, Asakura M, Ito S, et al. Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice. Am J Physiol Heart Circ Physiol 2013; 304(10): H1361-9.
[http://dx.doi.org/10.1152/ajpheart.00454.2012] [PMID: 23504176]
[115]
Bostick B, Habibi J, Ma L, et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a Mouse model of Western diet induced obesity. Metabolism 2014; 63(8): 1000-11.
[http://dx.doi.org/10.1016/j.metabol.2014.04.002] [PMID: 24933400]
[116]
Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA 2019; 321(1): 69-79.
[http://dx.doi.org/10.1001/jama.2018.18269] [PMID: 30418475]
[117]
Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J Diabetes 2013; 4(5): 177-89.
[http://dx.doi.org/10.4239/wjd.v4.i5.177] [PMID: 24147202]
[118]
Filippatos TD, Elisaf MS. Are lower levels of LDL-cholesterol really better? Looking at the results of IMPROVE-IT: opinions of three experts - III. Hellenic J Cardiol 2015; 56(1): 7-9.
[PMID: 25701966]
[119]
Abdel-Hamid AAM, Firgany AEDL. Atorvastatin alleviates experimental diabetic cardiomyopathy by suppressing apoptosis and oxidative stress. J Mol Histol 2015; 46(4-5): 337-45.
[http://dx.doi.org/10.1007/s10735-015-9625-4] [PMID: 26041576]
[120]
Shin YH, Min JJ, Lee JH, et al. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts. Heart Vessels 2017; 32(5): 618-27.
[http://dx.doi.org/10.1007/s00380-016-0936-5] [PMID: 28013371]
[121]
Ewart MA, Kennedy S. Diabetic cardiovascular disease-AMP-activated protein kinase (AMPK) as a therapeutic target. Cardiovasc Hematol Agents Med Chem 2012; 10(3): 190-211.
[http://dx.doi.org/10.2174/187152512802651015] [PMID: 22632264]
[122]
Gariballa S, Kosanovic M, Yasin J, Essa A. Oxidative damage and inflammation in obese diabetic Emirati subjects. Nutrients 2014; 6(11): 4872-80.
[http://dx.doi.org/10.3390/nu6114872] [PMID: 25375631]
[123]
Anichini C, Lotti F, Longini M, Felici C, Proietti F, Buonocore G. Antioxidant strategies in genetic syndromes with high neoplastic risk in infant age. Tumori 2014; 100(6): 590-9.
[http://dx.doi.org/10.1177/1778.19256] [PMID: 25688491]
[124]
Zozina VI, Covantev S, Goroshko OA, Krasnykh LM, Kukes VG. Coenzyme Q10 in cardiovascular and metabolic diseases: current state of the problem. Curr Cardiol Rev 2018; 14(3): 164-74.
[http://dx.doi.org/10.2174/1573403X14666180416115428] [PMID: 29663894]
[125]
Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: Results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2014; 2(6): 641-9.
[http://dx.doi.org/10.1016/j.jchf.2014.06.008] [PMID: 25282031]
[126]
Prakoso D, De Blasio MJ, Tate M, et al. Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 318(4): H840-52.
[http://dx.doi.org/10.1152/ajpheart.00632.2019] [PMID: 32142359]
[127]
Butz H. Circulating noncoding RNAs in pituitary neuroendocrine tumors-two sides of the same coin. Int J Mol Sci 2022; 23(9): 5122.
[http://dx.doi.org/10.3390/ijms23095122] [PMID: 35563510]
[128]
Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic cardiomyopathy: Current approach and potential diagnostic and therapeutic targets. J Diabetes Res 2017; 2017: 1-7.
[http://dx.doi.org/10.1155/2017/1310265] [PMID: 28421204]
[129]
Muñoz-Córdova F, Hernández-Fuentes C, Lopez-Crisosto C, et al. Novel insights into the pathogenesis of diabetic cardiomyopathy and pharmacological strategies. Front Cardiovasc Med 2021; 8: 707336.
[http://dx.doi.org/10.3389/fcvm.2021.707336] [PMID: 35004869]
[130]
León LE, Rani S, Fernandez M, Larico M, Calligaris SD. Subclinical detection of diabetic cardiomyopathy with microRNAs: Challenges and perspectives. J Diabetes Res 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/6143129] [PMID: 26770988]
[131]
Zhang Z, Wang S, Zhou S, et al. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol 2014; 77: 42-52.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.022] [PMID: 25268649]
[132]
Li Z, Xu W, Su Y, et al. Nicotine induces insulin resistance via downregulation of Nrf2 in cardiomyocyte. Mol Cell Endocrinol 2019; 495: 110507.
[http://dx.doi.org/10.1016/j.mce.2019.110507] [PMID: 31315024]
[133]
Yellon DM, Davidson SM. Exosomes. Circ Res 2014; 114(2): 325-32.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300636] [PMID: 24436428]
[134]
Dannenberg L, Weske S, Kelm M, Levkau B, Polzin A. Cellular mechanisms and recommended drug-based therapeutic options in diabetic cardiomyopathy. Pharmacol Ther 2021; 228: 107920.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107920] [PMID: 34171330]
[135]
Hu J, Wang S, Xiong Z, et al. Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864(11): 3639-49.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.026] [PMID: 30251683]
[136]
Liu J, Zhang Y, Tian Y, Huang W, Tong N, Fu X. Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics 2022; 12(3): 1342-72.
[http://dx.doi.org/10.7150/thno.65778] [PMID: 35154494]
[137]
Singla DK. Stem cells and exosomes in cardiac repair. Curr Opin Pharmacol 2016; 27: 19-23.
[http://dx.doi.org/10.1016/j.coph.2016.01.003] [PMID: 26848944]
[138]
Shepherd DL, Hathaway QA, Nichols CE, et al. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus. J Mol Cell Cardiol 2018; 119: 104-15.
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.016] [PMID: 29733819]
[139]
Hopf AE, Andresen C, Kötter S, et al. Diabetes-induced cardiomyocyte passive stiffening is caused by impaired insulin-dependent titin modification and can be modulated by neuregulin-1. Circ Res 2018; 123(3): 342-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312166] [PMID: 29760016]
[140]
Rupee S, Rupee K, Singh RB, et al. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence. Heart Fail Rev 2022; 2022: 1-8.
[http://dx.doi.org/10.1007/s10741-022-10271-5] [PMID: 36107271]
[141]
Calligaris SD, Conget P. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy. Biol Res 2013; 46(3): 251-5.
[http://dx.doi.org/10.4067/S0716-97602013000300005] [PMID: 24346072]
[142]
da Silva JS, Gonçalves RGJ, Vasques JF, et al. Mesenchymal stem cell therapy in diabetic cardiomyopathy. Cells 2022; 11(2): 240.
[http://dx.doi.org/10.3390/cells11020240] [PMID: 35053356]
[143]
Saraswat N, Wal P, Pal RS, Wal A, Pal Y, Pharmacophore DM. Current review on IRS-1, JNK, NF-KB & m-TOR pathways in insulin resistance. Pharmacophores 2020; 11(1): 1-4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy