Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Preparation of La2O3-modified BaSn Composite Nanorods and Photocatalytic Properties toward Crystal Violet

Author(s): Chenxu Feng, Qianmin Cong, Feihu Tao, Jiong Zhou, Zizhan Sun and Lizhai Pei*

Volume 13, Issue 3, 2023

Published on: 26 May, 2023

Article ID: e280423216341 Pages: 9

DOI: 10.2174/2210681213666230428113045

Price: $65

conference banner
Abstract

Background: The separation efficiency of the electron and hole pairs of the BaSn composite nanorods is limited due to a wide band gap energy restricting the photocatalytic treatment ability of the composite nanorods. It is an efficient route to improve the photocatalytic properties of the semiconductor photocatalysts by La2O3 modification.

Objective: This study aims to synthesize La2O3-modified BaSn composite nanorods through a simple method and research the photocatalytic performance of the La2O3-modified BaSn composite nanorods for crystal violet degradation.

Methods: La2O3 modified BaSn composite nanorods were synthesized by a facile method using lanthanum acetate as the lanthanum raw material and evaluated by electron microscopy, solid diffuse reflectance spectra, X-ray diffraction, photoluminescence and photocatalytic measurement for crystal violet degradation under ultraviolet light irradiation.

Results: BaSn composite nanorods consist of orthorhombic SnO2, monoclinic BaSn(OH)6, and monoclinic Ba(OH)2. La2O3 suppresses the growth of the monoclinic BaSn(OH)6, and orthorhombic SnO2. The La2O3-modified BaSn composite nanorods possess coarse surface covered with the La2O3 nanoscale particles with an average size of about 50 nm. The absorption edge red-shifts to 373 nm and the band gap energy reaches 3.32 eV of the La2O3 modified BaSn composite nanorods compared with the BaSn composite nanorods. 20 mL 10 mg·L-1 crystal violet solution can be entirely removed by 20 mg composite nanorods with 15wt.% La2O3 content under ultraviolet light irradiated for 120 min. The reaction rate constant is 2.4 times higher than that of the non-modified composite nanorods. Hydroxyl radicals and holes are the reaction active substances for crystal violet degradation in the composite nanorod reaction system.

Conclusion: La2O3 modification decreases the band gap energy, enhances the light absorption ability, and suppresses the recombination of the electron and hole pairs of the composite nanorods.

Graphical Abstract

[1]
Conroy, M.A.; Du, Y.G.; Fujimoto, M.S.; Varga, T.; Kruger, A.A.; Levitskaia, T.G. Inorganic Ba-Sn nanocomposite material for sulfate sequestration from complex aqueous solutions. Environ. Sci. Nano, 2018, 5, 890-903.
[http://dx.doi.org/10.1039/C7EN01241A]
[2]
Sun, C.; Yang, J.; Xu, M.; Cui, Y.; Ren, W.; Zhang, J.; Zhao, H.; Liang, B. Recent intensification strategies of SnO2-based photocatalysts: A review. Chem. Eng. J., 2022, 427131564
[http://dx.doi.org/10.1016/j.cej.2021.131564]
[3]
Peng, X.; Jiang, M.; Wang, X.; Li, D.; Sun, S.; Shao, Y.; Zheng, Y. Photocatalytic purification of contaminated air in intensive care units by ZnSn(OH)6 nanoparticles. Environ. Sci. Pollut. Res. Int., 2021, 28(24), 31770-31777.
[http://dx.doi.org/10.1007/s11356-021-12970-2] [PMID: 33611731]
[4]
Ramanathan, G.; Murali, K.R. Photocatalytic activity of SnO2 nanoparticles. J. Appl. Electrochem., 2022, 52(5), 849-859.
[http://dx.doi.org/10.1007/s10800-022-01676-z]
[5]
Abd-Rabboh, H.S.M.; Galal, A.H.; Aziz, R.A.; Ahmed, M.A. A novel BiVO 3/SnO 2 step S-scheme nano-heterojunction for an enhanced visible light photocatalytic degradation of amaranth dye and hydrogen production. RSC Advances, 2021, 11(47), 29507-29518.
[http://dx.doi.org/10.1039/D1RA04717E] [PMID: 35479533]
[6]
Tao, F.; Li, F.; Huang, J.; Xue, Z.; Yu, C.; Cai, Z.; Pei, L. A general hydrothermal growth and photocatalytic performance of barium tin hydroxide/tin dioxide nanorods. Cryst. Res. Technol., 2022, 57(2)2100156
[http://dx.doi.org/10.1002/crat.202100156]
[7]
MingYan, W.; Wei, Z.; DongEn, Z.; ShuAn, L.; WeiXing, M.; ZhiWei, T.; Jun, C. CeO2 hollow nanospheres decorated reduced graphene oxide composite for efficient photocatalytic dye-degradation. Mater. Lett., 2014, 137, 229-232.
[http://dx.doi.org/10.1016/j.matlet.2014.08.128]
[8]
Manjumol, K.A.; Smitha, V.S.; Shajesh, P.; Baiju, K.V.; Warrier, K.G.K. Synthesis of lanthanum oxide doped photocatalytic nano titanium oxide through aqueous sol–gel method for titania multifunctional ultrafiltration membrane. J. Sol-Gel Sci. Technol., 2010, 53(2), 353-358.
[http://dx.doi.org/10.1007/s10971-009-2101-4]
[9]
Chen, H.J.; Wang, Z.; Xue, Z.Y.; Yu, C.H.; Pei, L.Z.; Fan, C.G. Constructing a Z-scheme Bi2O3/In2O3 heterojunction for efficient photocatalytic degradation of Rhodamine B. Cryst. Res. Technol., 2020, 552000093
[10]
Wu, M.; Zhang, M.; Lv, T.; Guo, M.; Li, J.; Okonkwo, C.A.; Liu, Q.; Jia, L. The effect of calcination atmosphere upon the photocatalytic performance of Au-La2O3/TiO2 for hydrogen production from formic acid. Appl. Catal. A Gen., 2017, 547, 96-104.
[http://dx.doi.org/10.1016/j.apcata.2017.08.027]
[11]
Dal’Toé, A.T.O.; Colpani, G.L.; Padoin, N.; Fiori, M.A.; Soares, C. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light. Appl. Surf. Sci., 2018, 441, 1057-1071.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.291]
[12]
Azam, M.U.; Tahir, M.; Umer, M.; Jaffar, M.M.; Nawawi, M.G.M. Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. Appl. Surf. Sci., 2019, 484, 1089-1101.
[http://dx.doi.org/10.1016/j.apsusc.2019.04.030]
[13]
Uzunova, M.; Kostadinov, M.; Georgieva, J.; Dushkin, C.; Todorovsky, D.; Philippidis, N.; Poulios, I.; Sotiropoulos, S. Photoelectrochemical characterisation and photocatalytic activity of composite La2O3–TiO2 coatings on stainless steel. Appl. Catal. B, 2007, 73(1-2), 23-33.
[http://dx.doi.org/10.1016/j.apcatb.2006.12.004]
[14]
Bilel, C.; Jbeli, R.; Jemaa, I.B.; Boukhachem, A.; Saadallah, F.; Amlouk, M.; Ezzaouïa, H. Physical investigations on annealed structure Cu/La2O3 for photocatalytic application under sunlight. J. Mater. Sci. Mater. Electron., 2020, 31(10), 7398-7410.
[http://dx.doi.org/10.1007/s10854-020-02863-4]
[15]
Jbeli, R.; Lahmar, M.; Bilel, C.; Saadallah, F.; Ouzari, H.I.; Bouaïcha, M.; Amlouk, M. Structural and optical investigations on sprayed Co doped La2O3 thin films along with photocatalytic and anti-bacterial applications. Optik (Stuttg.), 2021, 242, 166837.
[http://dx.doi.org/10.1016/j.ijleo.2021.166837]
[16]
Deng, A.; Yu, C.; Xue, Z.; Huang, J.; Pan, H.; Pei, L. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. J. Mater. Res. Technol., 2022, 19, 1073-1089.
[http://dx.doi.org/10.1016/j.jmrt.2022.05.104]
[17]
Chen, H.; Li, F.; Tao, F.; Huang, J.; Zhang, Y.; Pei, L. Bismuth oxide/carbon nanodots/indium oxide heterojunctions with enhanced visible light photocatalytic performance. J. Mater. Sci. Mater. Electron., 2022, 33(9), 7154-7171.
[http://dx.doi.org/10.1007/s10854-022-07896-5]
[18]
Xue, Z.Y.; Li, F.Y.; Yu, C.H.; Huang, J.F.; Tao, F.H.; Cai, Z.Y.; Pei, L.Z. Synthesis of hexahydroxy strontium stannate nanorods for photocatalytic degradation of organic pollutants. Toxicol. Environ. Chem., 2022, 103, 279-294.
[19]
Luo, Y.; Chen, J.; Liu, J.; Shao, Y.; Li, X.; Li, D. Hydroxide SrSn(OH) 6: A new photocatalyst for degradation of benzene and rhodamine B. Appl. Catal. B, 2016, 182, 533-540.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.051]
[20]
Liu, X.; Lv, J.; Wang, S.; Li, X.; Lang, J.; Su, Y.; Chai, Z.; Wang, X. A novel contractive effect of KTaO3 nanocrystals via La3+ doping and an enhanced photocatalytic performance. J. Alloys Compd., 2015, 622, 894-901.
[http://dx.doi.org/10.1016/j.jallcom.2014.11.005]
[21]
Iwanowski, R.J.; Heinonen, M.H.; Pracka, I.; Kachniarz, J. XPS characterization of single crystalline SrLaGa3O7. Nd. Appl. Surf. Sci., 2013, 283, 168-174.
[http://dx.doi.org/10.1016/j.apsusc.2013.06.075]
[22]
Cong, Y.; Tian, B.; Zhang, J. Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Appl. Catal. B, 2011, 101(3-4), 376-381.
[http://dx.doi.org/10.1016/j.apcatb.2010.10.006]
[23]
Zhang, T.; Zeng, X.; Xia, Y.; Zhang, H.; Sun, B.; Wang, H.; Zhao, Y. Morphology evolution and photocatalytic applications of W-doped Bi2O3 films prepared using unique oblique angle co-sputtering technology. Ceram. Int., 2019, 45(17), 21968-21974.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.211]
[24]
Ebrahimi, R.; Maleki, A.; Zandsalimi, Y.; Ghanbari, R.; Shahmoradi, B.; Rezaee, R.; Safari, M.; Joo, S.W.; Daraei, H.; Harikaranahalli Puttaiah, S.; Giahi, O. Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J. Ind. Eng. Chem., 2019, 73, 297-305.
[http://dx.doi.org/10.1016/j.jiec.2019.01.041]
[25]
Pei, L.Z.; Wang, S.; Lin, N.; Lin, H.D.; Yu, H.Y. Calcium germanate nanowires by vanadium doping with improved photocatalytic activity. J. Exp. Nanosci., 2015, 10(16), 1223-1231.
[http://dx.doi.org/10.1080/17458080.2014.989553]
[26]
Fang, Q.; Chen, C.; Yang, Z.; Chen, X.; Chen, X.; Liu, T. Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres. J. Alloys Compd., 2020, 826, 154084.
[http://dx.doi.org/10.1016/j.jallcom.2020.154084]
[27]
Pei, L.Z.; Lin, F.F.; Qiu, F.L.; Wang, W.L.; Zhang, Y.; Fan, C.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid. Mater. Res. Express, 2017, 4(7)075047
[http://dx.doi.org/10.1088/2053-1591/aa7e04]
[28]
Chaudhari, S.M.; Gonsalves, O.S.; Nemade, P.R. Enhanced photocatalytic degradation of Diclofenac with Agl/CeO2: A comparison with Mn, Cu and Ag-doped CeO2. Mater. Res. Bull., 2021, 143, 111463.
[http://dx.doi.org/10.1016/j.materresbull.2021.111463]
[29]
Dhanalakshmi, M.; Saravanakumar, K.; Prabavathi, S.L.; Muthuraj, V. Iridium doped ZnO nanocomposites: Synergistic effect induced photocatalytic degradation of methylene blue and crystal violet. Inorg. Chem. Commun., 2020, 111, 107601.
[http://dx.doi.org/10.1016/j.inoche.2019.107601]
[30]
Zhang, N.; Liu, S.; Fu, X.; Xu, Y.J. Synthesis of M@TiO 2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity. J. Phys. Chem. C, 2011, 115(18), 9136-9145.
[http://dx.doi.org/10.1021/jp2009989]
[31]
Ullah, R.; Sun, J.; Gul, A.; Bai, S. One-step hydrothermal synthesis of TiO2-supported clinoptilolite: An integrated photocatalytic adsorbent for removal of crystal violet dye from aqueous media. J. Environ. Chem. Eng., 2020, 8(4), 103852.
[http://dx.doi.org/10.1016/j.jece.2020.103852]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy