Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Nanomaterials as Theragnostic Tools of Detection and Fighting off the Virus

Author(s): Rama Sharma*

Volume 13, Issue 3, 2023

Published on: 25 May, 2023

Article ID: e280423216340 Pages: 8

DOI: 10.2174/2210681213666230428112658

Price: $65

Abstract

The primary cause of death worldwide is an infectious disease, and viruses in particular, have a major worldwide impact on health and economic growth. A critical public health problem is the quick emergence of medication resistance to currently accessible treatments as well as negative side effects from repeated use. Therefore, the creation of novel treatment plans is necessary. In contrast to conventional chemical-based antiviral drugs, the use of nanoparticles offers an alluring potential for the development of innovative antiviral therapies with minimal risk of acquiring drug resistance. Nanomaterials make it simple to change the properties of accessible resources. Nanomaterials can be readily applied to modify the available detection platforms to improve their sensitivity. Due to their high surface-to-volume ratio, NPs readily bind to either the viral membrane proteins or the viral reproduction system (DNA/RNA), thus hindering the virus' ability to infect cells. Viral proliferation has been inhibited by the use of metal nanoparticles (NPs) such as gold, silver, and copper. Copper has repeatedly been examined for its strong anti-microbial qualities due to its lower cost than silver and gold. The virus's inactivation on copper surfaces after 4 hours raises the possibility that copper could be used to destroy the infection. Also, it was discovered that 50% of virus-like particles (VLPs) could be rendered inactive by copper composite nanoparticles in just 10 minutes. The medical community could benefit greatly from sophisticated smartphone and/or LFA-based detection techniques that can be used right at the patient's bedside. This review discusses methods based on nanotechnology for diagnosing and treating viral diseases, especially HIV and influenza.

Graphical Abstract

[1]
Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn., 2021, 39(9), 3409-3418.
[PMID: 32306836]
[2]
Rafiei, S.; Rezatofighi, S.E.; Ardakani, M.R.; Rastegarzadeh, S. Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Trans. Nanobiosci., 2016, 15(1), 34-40.
[http://dx.doi.org/10.1109/TNB.2015.2508718] [PMID: 26685261]
[3]
Hosseinzadeh, K.; Mardani, M.R.; Paikar, M.; Hasibi, A.; Tavangar, T.; Nimafar, M.; Ganji, D.D.; Shafii, M.B. Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results Engineer., 2023, 17100838
[http://dx.doi.org/10.1016/j.rineng.2022.100838]
[4]
Attar, M.A.; Roshani, M.; Hosseinzadeh, K.; Ganji, D.D. Analytical solution of fractional differential equations by Akbari–Ganji’s method. Part. Different. Equat. Appl. Math., 2022, 6100450
[http://dx.doi.org/10.1016/j.padiff.2022.100450]
[5]
Fallah Najafabadi, M.; Talebi Rostami, H.; Hosseinzadeh, K.; Ganji, D.D. Hydrothermal study of nanofluid flow in channel by RBF method with exponential boundary conditions. Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2022. Avaialable from: https://journals.sagepub.com/doi/10.1177/09544089221133909
[http://dx.doi.org/10.1177/09544089221133909]
[6]
Zangooee, M.R.; Hosseinzadeh, K.; Ganji, D.D. Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition. Theor. Appl. Mech. Lett., 2022, 12(5)100357
[http://dx.doi.org/10.1016/j.taml.2022.100357]
[7]
Najafabadi, M.F. TalebiRostami, H.; Hosseinzadeh, K.; Ganji, D.D. Investigation of nanofluid flow in a vertical channel considering polynomial boundary conditions by Akbari-Ganji’s method. Theor. Appl. Mech. Lett., 2022, 12(4)100356
[http://dx.doi.org/10.1016/j.taml.2022.100356]
[8]
Ravishankar, Rai V Nanoparticles and their potential application as antimicrobials. Processing, characterization and application of nanomaterials, 2011.
[9]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[10]
Broglie, J.J.; Alston, B.; Yang, C.; Ma, L.; Adcock, A.F.; Chen, W.; Yang, L. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One, 2015, 10(10)e0141050
[http://dx.doi.org/10.1371/journal.pone.0141050] [PMID: 26474396]
[11]
Wang, R.; Ongagna-Yhombi, S.Y.; Lu, Z.; Centeno-Tablante, E.; Colt, S.; Cao, X.; Ren, Y.; Cárdenas, W.B.; Mehta, S.; Erickson, D. Rapid diagnostic platform for colorimetric differential detection of dengue and Chikungunya viral infections. Anal. Chem., 2019, 91(8), 5415-5423.
[http://dx.doi.org/10.1021/acs.analchem.9b00704] [PMID: 30896928]
[12]
Ma, L.; Yin, L.; Li, X.; Chen, S.; Peng, L.; Liu, G.; Ye, S.; Zhang, W.; Man, S. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. Biosens. Bioelectron., 2022, 195113646
[http://dx.doi.org/10.1016/j.bios.2021.113646] [PMID: 34624801]
[13]
Celik, C.; Ildiz, N.; Kaya, M.Z.; Kilic, A.B.; Ocsoy, I. Preparation of natural indicator incorporated media and its logical use as a colorimetric biosensor for rapid and sensitive detection of Methicillin-resistant Staphylococcus aureus. Anal. Chim. Acta, 2020, 1128, 80-89.
[http://dx.doi.org/10.1016/j.aca.2020.06.005] [PMID: 32825915]
[14]
Shukoor, MI.; Altman, MO.; Han, D.; Bayrac, AT.; Ocsoy, I.; Zhu, Z. Aptamer-nanoparticle assembly for logic-based detection. ACS Appl. Mater. Interfaces, 2012, 4(6), 3007-3011.
[http://dx.doi.org/10.1021/am300374q]
[15]
Celik, C.; Ildiz, N.; Sagiroglu, P.; Atalay, M.A.; Yazici, C.; Ocsoy, I. Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta, 2020, 219121292
[http://dx.doi.org/10.1016/j.talanta.2020.121292] [PMID: 32887034]
[16]
Schütz, C.A.; Juillerat-Jeanneret, L.; Mueller, H.; Lynch, I.; Riediker, M. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond.), 2013, 8(3), 449-467.
[http://dx.doi.org/10.2217/nnm.13.8] [PMID: 23477336]
[17]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[18]
Kumar, A.; Ma, H.; Zhang, X.; Huang, K.; Jin, S.; Liu, J.; Wei, T.; Cao, W.; Zou, G.; Liang, X.J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials, 2012, 33(4), 1180-1189.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.058] [PMID: 22056754]
[19]
Caron, J.; Reddy, L.H.; Lepêtre-Mouelhi, S.; Wack, S.; Clayette, P.; Rogez-Kreuz, C.; Yousfi, R.; Couvreur, P.; Desmaële, D. Squalenoyl nucleoside monophosphate nanoassemblies: New prodrug strategy for the delivery of nucleotide analogues. Bioorg. Med. Chem. Lett., 2010, 20(9), 2761-2764.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.070] [PMID: 20363623]
[20]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[21]
Sharma, R.; Srivastava, N. Plant mediated silver nanoparticles and mode of action in cancer therapy: A review. Anticancer. Agents Med. Chem., 2021, 21(14), 1793-1801.
[http://dx.doi.org/10.2174/1871520621666201207085900] [PMID: 33292139]
[22]
Goel, A.; Bhatia, AK. Phytosynthesized nanoparticles for effective cancer treatment: A review. Nanosci. & Nanotech., 2019, 9, 437-443.
[http://dx.doi.org/10.2174/2210681208666180724100646]
[23]
Gagliardi, M. Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther. Deliv., 2017, 8(5), 289-299.
[http://dx.doi.org/10.4155/tde-2017-0013] [PMID: 28361608]
[24]
Sanvicens, N.; Marco, M.P. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26(8), 425-433.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[25]
Bowman, M.C.; Ballard, T.E.; Ackerson, C.J.; Feldheim, D.L.; Margolis, D.M.; Melander, C. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc., 2008, 130(22), 6896-6897.
[http://dx.doi.org/10.1021/ja710321g] [PMID: 18473457]
[26]
Garg, P. Selective preference of antibody mimetics over antibody, as binding molecules, for diagnostic and therapeutic applications in cancer therapy. Biointerface Res. Appl. Chem., 2021, 11, 10765-10775.
[27]
Sun, R.W.Y.; Chen, R.; Chung, N.P.Y.; Ho, C.M.; Lin, C.L.S.; Che, C.M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. (Camb.), 2005, (40), 5059-5061.
[http://dx.doi.org/10.1039/b510984a] [PMID: 16220170]
[28]
Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol., 2010, 8(1), 1-10.
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[29]
Mallipeddi, R.; Rohan, L.C. Progress in antiretroviral drug delivery using nanotechnology. Int. J. Nanomed., 2010, 5, 533-547.
[PMID: 20957115]
[30]
Wang, W.; Guo, Z.; Chen, Y.; Liu, T.; Jiang, L. Influence of generation 2--5 of PAMAM dendrimer on the inhibition of Tat peptide/TAR RNA binding in HIV-1 transcription. Chem. Biol. Drug Des., 2006, 68, 314-318.
[31]
Santos-Martinez, M.J.; Rahme, K.; Corbalan, J.J.; Faulkner, C.; Holmes, J.D.; Tajber, L.; Medina, C.; Radomski, M.W. Pegylation increases platelet biocompatibility of gold nanoparticles. J. Biomed. Nanotechnol., 2014, 10(6), 1004-1015.
[http://dx.doi.org/10.1166/jbn.2014.1813] [PMID: 24749395]
[32]
McNeil, S.E. Unique benefits of nanotechnology to drug delivery and diagnostics.Characterization of Nanoparticles Intended for Drug Delivery; Springer, 2011, pp. 3-8.
[http://dx.doi.org/10.1007/978-1-60327-198-1_1]
[33]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[34]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54(4), 987-992.
[PMID: 8313389]
[35]
Mejía-Salazar, J.R.; Oliveira, O.N. Jr Plasmonic Biosensing. Chem. Rev., 2018, 118(20), 10617-10625.
[http://dx.doi.org/10.1021/acs.chemrev.8b00359]
[36]
Das, D.K.; Kumar, A.; Vashistha, V.K. Advancement in nanomaterials for rapid sensing, diagnosis, and prevention of COVID-19. Nano Life, 2021, 11(3)2130007
[http://dx.doi.org/10.1142/S1793984421300077]
[37]
Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine, 2017, 13(1), 219-230.
[http://dx.doi.org/10.1016/j.nano.2016.08.016] [PMID: 27575283]
[38]
Quesada-González, D.; Stefani, C.; González, I.; de la Escosura-Muñiz, A.; Domingo, N.; Mutjé, P.; Merkoçi, A. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens. Bioelectron., 2019, 141111407
[http://dx.doi.org/10.1016/j.bios.2019.111407] [PMID: 31207571]
[39]
Huang, Y.; Xu, T.; Wang, W.; Wen, Y.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Lateral flow biosensors based on the use of micro- and nanomaterials: A review on recent developments. Mikrochim. Acta, 2020, 187(1), 70.
[http://dx.doi.org/10.1007/s00604-019-3822-x] [PMID: 31853644]
[40]
Wang, L.; Liu, Z.; Xia, X.; Yang, C.; Huang, J.; Wan, S. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes. J. Virol. Methods, 2017, 243, 113-119.
[http://dx.doi.org/10.1016/j.jviromet.2017.01.010] [PMID: 28109844]
[41]
Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The disease and tools for detection. ACS Nano, 2020, 14(4), 3822-3835.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[42]
Sun, J.; Lu, Y.; He, L.; Pang, J.; Yang, F.; Liu, Y. Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. Trends Analyt. Chem., 2020, 122115754
[http://dx.doi.org/10.1016/j.trac.2019.115754]
[43]
Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem., 2017, 238, 888-902.
[http://dx.doi.org/10.1016/j.snb.2016.06.081]
[44]
Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron., 2018, 114, 52-65.
[http://dx.doi.org/10.1016/j.bios.2018.05.015] [PMID: 29778002]
[45]
Bisht, A.; Mishra, A.; Bisht, H.; Tripathi, R.M. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: A review. J. Anal. Test., 2021, 5(4), 327-340.
[http://dx.doi.org/10.1007/s41664-021-00200-0] [PMID: 34777896]
[46]
Quesada-González, D.; Merkoçi, A. Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosens. Bioelectron., 2017, 92, 549-562.
[http://dx.doi.org/10.1016/j.bios.2016.10.062] [PMID: 27836593]
[47]
Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Radecki, J.; Radecka, H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens. Bioelectron., 2014, 55, 301-306.
[http://dx.doi.org/10.1016/j.bios.2013.12.030] [PMID: 24412426]
[48]
Akkapinyo, C.; Khownarumit, P.; Waraho-Zhmayev, D.; Poo-arporn, R.P. Development of a multiplex immunochromatographic strip test and ultrasensitive electrochemical immunosensor for hepatitis B virus screening. Anal. Chim. Acta, 2020, 1095, 162-171.
[http://dx.doi.org/10.1016/j.aca.2019.10.016] [PMID: 31864618]
[49]
Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim. Acta, 2019, 186(4), 224.
[http://dx.doi.org/10.1007/s00604-019-3345-5] [PMID: 30847572]
[50]
Huang, X.; Li, M.; Xu, Y.; Zhang, J.; Meng, X. An, X Novel gold nanorod-based HR1 peptide inhibitor for Middle East respiratory syndrome coronavirus. ACS Appl. Mater. Interfaces, 2019, 11(22), 19799-19807.
[http://dx.doi.org/10.1021/acsami.9b04240]
[51]
Moustafa, M.; Amin, A.; Magdi, Y. Cytotoxicity of 6-mercaptopurine via loading on PVA-coated magnetite nanoparticles delivery system: A new era of leukemia therapy. J. Nanomed. Nanotechnol., 2018, 9, 2.
[52]
Qiu, J.; Cheng, R.; Zhang, J.; Sun, H.; Deng, C.; Meng, F.; Zhong, Z. Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules, 2017, 18(10), 3207-3214.
[http://dx.doi.org/10.1021/acs.biomac.7b00846] [PMID: 28835099]
[53]
Zaman, M.; Good, M.F.; Toth, I. Nanovaccines and their mode of action. Methods, 2013, 60(3), 226-231.
[http://dx.doi.org/10.1016/j.ymeth.2013.04.014] [PMID: 23623821]
[54]
Chen, Y-C.; Cheng, H-F.; Yang, Y-C.; Yeh, M-K. Biotechnologies applied in biomedical vaccines; Vaccine Rijeka, Croat InTech, 2017, pp. 97-110.
[55]
Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.T.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines, 2010, 9(10), 1149-1176.
[http://dx.doi.org/10.1586/erv.10.115] [PMID: 20923267]
[56]
Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle vaccines against infectious diseases. Front. Immunol., 2018, 9, 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[57]
Wang, N.; Wei, C.; Zhang, Z.; Liu, T.; Wang, T. Aluminum nanoparticles acting as a pulmonary vaccine adjuvant-delivery system (VADS) able to safely elicit robust systemic and mucosal immunity. J. Inorg. Organomet. Polym. Mater., 2020, 30(10), 4203-4217.
[http://dx.doi.org/10.1007/s10904-020-01572-z] [PMID: 32395098]
[58]
Yang, W.; Guo, W.; Chang, J.; Zhang, B. Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(3), 401-417.
[http://dx.doi.org/10.1039/C6TB02308H] [PMID: 32263655]
[59]
Chen, Y.; Hu, Y.; Chen, H.; Li, X.; Qian, P. A ferritin nanoparticle vaccine for foot-and-mouth disease virus elicited partial protection in mice. Vaccine, 2020, 38(35), 5647-5652.
[http://dx.doi.org/10.1016/j.vaccine.2020.06.063] [PMID: 32624251]
[60]
Zhao, Y.; Huang, L. Lipid nanoparticles for gene delivery. Adv. Genet., 2014, 88, 13-36.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[61]
Zottig, X.; Côté-Cyr, M.; Arpin, D.; Archambault, D.; Bourgault, S. Protein supramolecular structures: From self-assembly to nanovaccine design. Nanomaterials (Basel), 2020, 10(5), 1008.
[http://dx.doi.org/10.3390/nano10051008] [PMID: 32466176]
[62]
Lee, Y.T.; Ko, E.J.; Lee, Y.; Kim, K.H.; Kim, M.C.; Lee, Y.N.; Kang, S.M. Intranasal vaccination with M2e5x virus-like particles induces humoral and cellular immune responses conferring cross-protection against heterosubtypic influenza viruses. PLoS One, 2018, 13(1)e0190868
[http://dx.doi.org/10.1371/journal.pone.0190868] [PMID: 29324805]
[63]
Lang, R.; Winter, G.; Vogt, L.; Zürcher, A.; Dorigo, B.; Schimmele, B. Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev. Ind. Pharm., 2009, 35(1), 83-97.
[http://dx.doi.org/10.1080/03639040802192806] [PMID: 19016059]
[64]
Lin, L.C.W.; Huang, C.Y.; Yao, B.Y.; Lin, J.C.; Agrawal, A.; Algaissi, A.; Peng, B.H.; Liu, Y.H.; Huang, P.H.; Juang, R.H.; Chang, Y.C.; Tseng, C.T.; Chen, H.W.; Hu, C.M.J. Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Adv. Funct. Mater., 2019, 29(28)1807616
[http://dx.doi.org/10.1002/adfm.201807616] [PMID: 32313544]
[65]
Rubin, B.K.; Williams, R.W. Emerging aerosol drug delivery strategies: From bench to clinic. Adv. Drug Deliv. Rev., 2014, 75, 141-148.
[http://dx.doi.org/10.1016/j.addr.2014.06.008] [PMID: 24993613]
[66]
Zhou, Q.T.; Tang, P.; Leung, S.S.Y.; Chan, J.G.Y.; Chan, H.K. Emerging inhalation aerosol devices and strategies: Where are we headed? Adv. Drug Deliv. Rev., 2014, 75, 3-17.
[http://dx.doi.org/10.1016/j.addr.2014.03.006] [PMID: 24732364]
[67]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269, 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[68]
Thorley, A.J.; Ruenraroengsak, P.; Potter, T.E.; Tetley, T.D. Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano, 2014, 8(11), 11778-11789.
[http://dx.doi.org/10.1021/nn505399e] [PMID: 25360809]
[69]
Beck-Broichsitter, M.; Merkel, O.M.; Kissel, T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J. Control. Release, 2012, 161(2), 214-224.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.004] [PMID: 22192571]
[70]
Wang, X.; Sun, Y.; Jing, S.; Ma, X.; Zeng, Y. Combining gold nanoparticles with real-time immuno-PCR for analysis of HIV p24 antigens International Conference on Bioinformatics and Biomedical Engineering (ICBBE), July 6-8 2007Wuhan, China2007, pp. 1198-1201.
[http://dx.doi.org/10.1109/ICBBE.2007.309]
[71]
Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol., 2005, 3(1), 6.
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[72]
Sajjanar, B.; Kakodia, B.; Bisht, D.; Saxena, S.; Singh, A.K.; Joshi, V.; Tiwari, A.K.; Kumar, S. Peptide-activated gold nanoparticles for selective visual sensing of virus. J. Nanopart. Res., 2015, 17(5), 234.
[http://dx.doi.org/10.1007/s11051-015-3043-0]
[73]
Lara, H.H.; Ixtepan-Turrent, L.; Garza-Treviño, E.N.; Rodriguez-Padilla, C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J. Nanobiotechnol., 2010, 8(1), 15.
[http://dx.doi.org/10.1186/1477-3155-8-15] [PMID: 20626911]
[74]
Shojaei, T.R.; Tabatabaei, M.; Shawky, S.; Salleh, M.A.M.; Bald, D. A review on emerging diagnostic assay for viral detection: The case of avian influenza virus. Mol. Biol. Rep., 2015, 42(1), 187-199.
[http://dx.doi.org/10.1007/s11033-014-3758-5] [PMID: 25245956]
[75]
Diba, F.S.; Kim, S.; Lee, H.J. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens. Bioelectron., 2015, 72, 355-361.
[http://dx.doi.org/10.1016/j.bios.2015.05.020] [PMID: 26011543]
[76]
Carinelli, S.; Martí, M.; Alegret, S.; Pividori, M.I. Biomarker detection of global infectious diseases based on magnetic particles. N. Biotechnol., 2015, 32(5), 521-532.
[http://dx.doi.org/10.1016/j.nbt.2015.04.002] [PMID: 25917978]
[77]
Yang, Z.H.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens. Bioelectron., 2015, 69, 321-327.
[http://dx.doi.org/10.1016/j.bios.2015.01.035] [PMID: 25791337]
[78]
Xiang, D.; Zheng, C.; Zheng, Y.; Li, X.; Yin, J.; O’ Conner, M.; Marappan, M.; Miao, Y.; Xiang, B.; Duan, W.; Shigdar, S.; Zhao, X. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomed., 2013, 8, 4103-4113.
[http://dx.doi.org/10.2147/IJN.S53622] [PMID: 24204140]
[79]
Jiang, J.F.; Cui, H.X.; Yang, T.; Cai, H.C.; Wu, D.L. Inactivation efficiency of nano-Cu2+/TiO2 on avian influenza (H9N2). J. Funtional. Mater., 2009, 40, 1403-1406.
[80]
Thammakarn, C.; Satoh, K.; Suguro, A.; Hakim, H.; Ruenphet, S.; Takehara, K. Inactivation of avian influenza virus, newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder. J. Vet. Med. Sci., 2014, 76(9), 1277-1280.
[http://dx.doi.org/10.1292/jvms.14-0158] [PMID: 24871643]
[81]
Cinti, S.; Proietti, E.; Casotto, F.; Moscone, D.; Arduini, F. based strips for the electrochemical detection of single and double stranded DNA. Anal. Chem., 2018, 90(22), 13680-13686.
[http://dx.doi.org/10.1021/acs.analchem.8b04052] [PMID: 30338973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy