Abstract
The primary cause of death worldwide is an infectious disease, and viruses in particular, have a major worldwide impact on health and economic growth. A critical public health problem is the quick emergence of medication resistance to currently accessible treatments as well as negative side effects from repeated use. Therefore, the creation of novel treatment plans is necessary. In contrast to conventional chemical-based antiviral drugs, the use of nanoparticles offers an alluring potential for the development of innovative antiviral therapies with minimal risk of acquiring drug resistance. Nanomaterials make it simple to change the properties of accessible resources. Nanomaterials can be readily applied to modify the available detection platforms to improve their sensitivity. Due to their high surface-to-volume ratio, NPs readily bind to either the viral membrane proteins or the viral reproduction system (DNA/RNA), thus hindering the virus' ability to infect cells. Viral proliferation has been inhibited by the use of metal nanoparticles (NPs) such as gold, silver, and copper. Copper has repeatedly been examined for its strong anti-microbial qualities due to its lower cost than silver and gold. The virus's inactivation on copper surfaces after 4 hours raises the possibility that copper could be used to destroy the infection. Also, it was discovered that 50% of virus-like particles (VLPs) could be rendered inactive by copper composite nanoparticles in just 10 minutes. The medical community could benefit greatly from sophisticated smartphone and/or LFA-based detection techniques that can be used right at the patient's bedside. This review discusses methods based on nanotechnology for diagnosing and treating viral diseases, especially HIV and influenza.
Graphical Abstract
[PMID: 32306836]
[http://dx.doi.org/10.1109/TNB.2015.2508718] [PMID: 26685261]
[http://dx.doi.org/10.1016/j.rineng.2022.100838]
[http://dx.doi.org/10.1016/j.padiff.2022.100450]
[http://dx.doi.org/10.1177/09544089221133909]
[http://dx.doi.org/10.1016/j.taml.2022.100357]
[http://dx.doi.org/10.1016/j.taml.2022.100356]
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[http://dx.doi.org/10.1371/journal.pone.0141050] [PMID: 26474396]
[http://dx.doi.org/10.1021/acs.analchem.9b00704] [PMID: 30896928]
[http://dx.doi.org/10.1016/j.bios.2021.113646] [PMID: 34624801]
[http://dx.doi.org/10.1016/j.aca.2020.06.005] [PMID: 32825915]
[http://dx.doi.org/10.1021/am300374q]
[http://dx.doi.org/10.1016/j.talanta.2020.121292] [PMID: 32887034]
[http://dx.doi.org/10.2217/nnm.13.8] [PMID: 23477336]
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.058] [PMID: 22056754]
[http://dx.doi.org/10.1016/j.bmcl.2010.03.070] [PMID: 20363623]
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[http://dx.doi.org/10.2174/1871520621666201207085900] [PMID: 33292139]
[http://dx.doi.org/10.2174/2210681208666180724100646]
[http://dx.doi.org/10.4155/tde-2017-0013] [PMID: 28361608]
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[http://dx.doi.org/10.1021/ja710321g] [PMID: 18473457]
[http://dx.doi.org/10.1039/b510984a] [PMID: 16220170]
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[PMID: 20957115]
[http://dx.doi.org/10.1166/jbn.2014.1813] [PMID: 24749395]
[http://dx.doi.org/10.1007/978-1-60327-198-1_1]
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[PMID: 8313389]
[http://dx.doi.org/10.1021/acs.chemrev.8b00359]
[http://dx.doi.org/10.1142/S1793984421300077]
[http://dx.doi.org/10.1016/j.nano.2016.08.016] [PMID: 27575283]
[http://dx.doi.org/10.1016/j.bios.2019.111407] [PMID: 31207571]
[http://dx.doi.org/10.1007/s00604-019-3822-x] [PMID: 31853644]
[http://dx.doi.org/10.1016/j.jviromet.2017.01.010] [PMID: 28109844]
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[http://dx.doi.org/10.1016/j.trac.2019.115754]
[http://dx.doi.org/10.1016/j.snb.2016.06.081]
[http://dx.doi.org/10.1016/j.bios.2018.05.015] [PMID: 29778002]
[http://dx.doi.org/10.1007/s41664-021-00200-0] [PMID: 34777896]
[http://dx.doi.org/10.1016/j.bios.2016.10.062] [PMID: 27836593]
[http://dx.doi.org/10.1016/j.bios.2013.12.030] [PMID: 24412426]
[http://dx.doi.org/10.1016/j.aca.2019.10.016] [PMID: 31864618]
[http://dx.doi.org/10.1007/s00604-019-3345-5] [PMID: 30847572]
[http://dx.doi.org/10.1021/acsami.9b04240]
[http://dx.doi.org/10.1021/acs.biomac.7b00846] [PMID: 28835099]
[http://dx.doi.org/10.1016/j.ymeth.2013.04.014] [PMID: 23623821]
[http://dx.doi.org/10.1586/erv.10.115] [PMID: 20923267]
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[http://dx.doi.org/10.1007/s10904-020-01572-z] [PMID: 32395098]
[http://dx.doi.org/10.1039/C6TB02308H] [PMID: 32263655]
[http://dx.doi.org/10.1016/j.vaccine.2020.06.063] [PMID: 32624251]
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[http://dx.doi.org/10.3390/nano10051008] [PMID: 32466176]
[http://dx.doi.org/10.1371/journal.pone.0190868] [PMID: 29324805]
[http://dx.doi.org/10.1080/03639040802192806] [PMID: 19016059]
[http://dx.doi.org/10.1002/adfm.201807616] [PMID: 32313544]
[http://dx.doi.org/10.1016/j.addr.2014.06.008] [PMID: 24993613]
[http://dx.doi.org/10.1016/j.addr.2014.03.006] [PMID: 24732364]
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[http://dx.doi.org/10.1021/nn505399e] [PMID: 25360809]
[http://dx.doi.org/10.1016/j.jconrel.2011.12.004] [PMID: 22192571]
[http://dx.doi.org/10.1109/ICBBE.2007.309]
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[http://dx.doi.org/10.1007/s11051-015-3043-0]
[http://dx.doi.org/10.1186/1477-3155-8-15] [PMID: 20626911]
[http://dx.doi.org/10.1007/s11033-014-3758-5] [PMID: 25245956]
[http://dx.doi.org/10.1016/j.bios.2015.05.020] [PMID: 26011543]
[http://dx.doi.org/10.1016/j.nbt.2015.04.002] [PMID: 25917978]
[http://dx.doi.org/10.1016/j.bios.2015.01.035] [PMID: 25791337]
[http://dx.doi.org/10.2147/IJN.S53622] [PMID: 24204140]
[http://dx.doi.org/10.1292/jvms.14-0158] [PMID: 24871643]
[http://dx.doi.org/10.1021/acs.analchem.8b04052] [PMID: 30338973]