Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

On Powder Bed Fusion Manufactured Parts: Porosity and its Measurement

Author(s): Chiara Morano and Leonardo Pagnotta*

Volume 17, Issue 3, 2024

Published on: 26 May, 2023

Page: [185 - 197] Pages: 13

DOI: 10.2174/2666145416666230427093421

Price: $65

conference banner
Abstract

Powder Bed Fusion (PBF) is one of the earliest, most versatile, and popular AM processes, being well-suited for a great variety of materials. As in many other manufacturing processes, porosity is a phenomenon inevitably present in parts made by PBF. The quantity, shape, and distribution of pores, and the propensity to their formation depend strongly upon the type of process and on the processing conditions used to produce the part. It is well known that porosity influences in a dramatic way the quality and reliability of the manufactured materials and, therefore, it deserves special attention.

In this paper, porosity and the more appropriate experimental techniques for detecting and measuring porosity are reviewed. Moreover, a comparison among the results obtained by applying different methodologies to measure the porosity of parts produced by Powder Bed Fusion is reported. The final purpose of the work is to provide the reader with the tools for the correct choice of the most suitable method for measuring the porosity of additively manufactured pieces.

Next »
Graphical Abstract

[1]
Singh R, Gupta A, Tripathi O, et al. Powder bed fusion process in additive manufacturing: An overview. Mater Today Proc 2020; 26: 3058-70.
[http://dx.doi.org/10.1016/j.matpr.2020.02.635]
[2]
Han C, Fang Q, Shi Y, Tor SB, Chua CK, Zhou K. Recent advances on high‐entropy alloys for 3D printing. Adv Mater 2020; 32(26): 1903855.
[http://dx.doi.org/10.1002/adma.201903855] [PMID: 32431005]
[3]
Additive manufacturing-General principles-Fundamentals and vocabulary. Norma Europea
[http://dx.doi.org/10.3403/30448424]
[4]
Yadroitsev I, Yadroitsava I, Du Plessis A, MacDonald E. Additive manufacturing materials and technologies- In:fundamentals of laser powder bed fusion of metals elsevier 2021. P. ii.
[http://dx.doi.org/10.1016/B978-0-12-824090-8.09001-6]
[5]
Yan C, Shi Y, Li Z, Wen S, Wei Q. Selective laser sintering additive manufacturing technology. Elsevier 2021.
[http://dx.doi.org/10.1016/B978-0-08-102993-0.00008-4]
[6]
Song B, Wen S, Yan C, Wei Q, Shi Y. Selective laser melting for metal and metal matrix composites London England . Sam Diego, CA: AP Elsevier 2021.
[7]
Pou J, Riveiro A, Davim P. Additive Manufacturing. Elsevier 2021.
[8]
Magdassi S, Kamyshny A. Nanomaterials for 2D and 3D Printing. Weinheim, Germany: Wiley-VCH 2017.
[http://dx.doi.org/10.1002/9783527685790]
[9]
Wu Z, Asherloo M, Jiang R, et al. Study of printability and porosity formation in laser powder bed fusion built hydride-dehydride (HDH) Ti-6Al-4V. Addit Manuf 2021; 47: 102323.
[http://dx.doi.org/10.1016/j.addma.2021.102323]
[10]
Nezhadfar PD, Thompson S, Saharan A, Phan N, Shamsaei N. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior. Addit Manuf 2021; 47: 102292.
[http://dx.doi.org/10.1016/j.addma.2021.102292]
[11]
Cacace S, Pagani L, Colosimo BM, Semeraro Q. The effect of energy density and porosity structure on tensile properties of 316L stainless steel produced by laser powder bed fusion. Addit Manuf 2022; 7(5): 1053-70.
[http://dx.doi.org/10.1007/s40964-022-00281-y]
[12]
Stichel T, Frick T, Laumer T, et al. A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters. J Mater Process Technol 2018; 252: 537-45.
[http://dx.doi.org/10.1016/j.jmatprotec.2017.10.013]
[13]
Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 2016; 10: 47-57.
[http://dx.doi.org/10.1016/j.addma.2016.02.003]
[14]
Zhu Z, Majewski C. Understanding pore formation and the effect on mechanical properties of High Speed Sintered polyamide-12 parts: A focus on energy input. Mater Des 2020; 194: 108937.
[http://dx.doi.org/10.1016/j.matdes.2020.108937]
[15]
Rouquerol J, Baron G, Denoyel R, et al. Liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl Chem 2011; 84(1): 107-36.
[http://dx.doi.org/10.1515/iupac.66.0925]
[16]
Rouquerol J, Avnir D, Fairbridge CW, et al. Recommendations for the characterization of porous solids. Pure Appl Chem 1994; 66(8): 1739-58.
[http://dx.doi.org/10.1515/iupac.66.0925]
[17]
Mays TJ. A new classification of pore sizesStudies in Surface Science and Catalysis. Elsevier 2007; Vol. 160: pp. 57-62.
[http://dx.doi.org/10.1016/S0167-2991(07)80009-7]
[18]
Zdravkov B, Čermák J, Šefara M, Janků J. Pore classification in the characterization of porous materials: A perspectiveOpen Chem 2007; 5(2): 385-95.
[http://dx.doi.org/10.2478/s11532-007-0017-9]
[19]
Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Des 2019; 182: 108091.
[http://dx.doi.org/10.1016/j.matdes.2019.108091]
[20]
Stichel T, Frick T, Laumer T, et al. A round robin study for selective laser sintering of polyamide 12: Microstructural origin of the mechanical properties. Opt Laser Technol 2017; 89: 31-40.
[http://dx.doi.org/10.1016/j.optlastec.2016.09.042]
[21]
Houston AN, Otten W, Falconer R, Monga O, Baveye PC, Hapca SM. Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images. Geoderma 2017; 299: 73-82.
[http://dx.doi.org/10.1016/j.geoderma.2017.03.025]
[22]
Stoffregen HA, Fischer J, Siedelhofer C, Abele E. Selective laser melting of porous structures 22th International Solid Freeform Fabrication Symposium. Austin 2011; 16.
[23]
Guddati S, Kiran ASK, Leavy M, Ramakrishna S. Recent advancements in additive manufacturing technologies for porous material applications. Int J Adv Manuf Technol 2019; 105(1-4): 193-215.
[http://dx.doi.org/10.1007/s00170-019-04116-z]
[24]
Vilaro T, Colin C, Bartout JD. As-fabricated and heat-treated microstructures of the ti-6al-4v alloy processed by selective laser melting. Metall Mater Trans, A Phys Metall Mater Sci 2011; 42(10): 3190-9.
[http://dx.doi.org/10.1007/s11661-011-0731-y]
[25]
Cunningham R, Narra SP, Ozturk T, Beuth J, Rollett AD. Evaluating the effect of processing parameters on porosity in electron beam melted Ti-6Al-4V via synchrotron x-ray microtomography. J Miner Met Mater Soc 2016; 68(3): 765-71.
[http://dx.doi.org/10.1007/s11837-015-1802-0]
[26]
Gong H, Rafi K, Gu H, Starr T, Stucker B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 2014; 1-4: 87-98.
[http://dx.doi.org/10.1016/j.addma.2014.08.002]
[27]
Kasperovich G, Haubrich J, Gussone J, Requena G. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des 2016; 105: 160-70.
[http://dx.doi.org/10.1016/j.matdes.2016.05.070]
[28]
Vastola G, Pei QX, Zhang YW. Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit Manuf 2018; 22: 817-22.
[http://dx.doi.org/10.1016/j.addma.2018.05.042]
[29]
Sola A, Nouri A. Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion. J Adv Manuf Process 2019; 1(3): e10021.
[http://dx.doi.org/10.1002/amp2.10021]
[30]
Dewulf W, Pavan M, Craeghs T, Kruth JP. Using X-ray computed tomography to improve the porosity level of polyamide-12 laser sintered parts. CIRP Ann 2016; 65(1): 205-8.
[http://dx.doi.org/10.1016/j.cirp.2016.04.056]
[31]
Thijs L, Kempen K, Kruth JP, Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 2013; 61(5): 1809-19.
[http://dx.doi.org/10.1016/j.actamat.2012.11.052]
[32]
Qiu C, Adkins NJE, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A 2013; 578: 230-9.
[http://dx.doi.org/10.1016/j.msea.2013.04.099]
[33]
Dupin S, Lame O, Barrès C, Charmeau JY. Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 2012; 48(9): 1611-21.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.06.007]
[34]
Sing KSW, Haul RAW, Pierotti RA, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 1985; 57(4): 603-19.
[http://dx.doi.org/10.1351/pac198557040603]
[35]
Espinal L. Porosity and its measurement Characterization of Materials. John Wiley & Sons 2012; p. 9.
[http://dx.doi.org/10.1002/0471266965.com129]
[36]
Volfkovich YM, Bagotzky VS, Sosenkin VE, Blinov IA. The standard contact porosimetry. Colloids Surf A Physicochem Eng Asp 2001; 187-188: 349-65.
[http://dx.doi.org/10.1016/S0927-7757(01)00650-1]
[37]
Miller B, Tyomkin I. Liquid porosimetry: New methodology and applications. J Colloid Interface Sci 1994; 162(1): 163-70.
[http://dx.doi.org/10.1006/jcis.1994.1021]
[38]
Strange JH, Rahman M, Smith EG. Characterization of porous solids by NMR. Phys Rev Lett 1993; 71(21): 3589-91.
[http://dx.doi.org/10.1103/PhysRevLett.71.3589] [PMID: 10055015]
[39]
Giesche H. Mercury porosimetry: A general (practical) overview. Part Part Syst Charact 2006; 23(1): 9-19.
[http://dx.doi.org/10.1002/ppsc.200601009]
[40]
Spierings AB, Schneider M, Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J 2011; 17(5): 380-6.
[http://dx.doi.org/10.1108/13552541111156504]
[41]
du Plessis A, Sperling P, Beerlink A, et al. Standard method for microCT-based additive manufacturing quality control 2: Density measurement. MethodsX 2018; 5: 1117-23.
[http://dx.doi.org/10.1016/j.mex.2018.09.006] [PMID: 30294559]
[42]
Thompson A, Maskery I, Leach RK. X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol 2016; 27(7): 072001.
[http://dx.doi.org/10.1088/0957-0233/27/7/072001]
[43]
Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ. Effects of processing on microstructure and properties of SLS Nylon 12. Mater Sci Eng A 2006; 435-436: 172-80.
[http://dx.doi.org/10.1016/j.msea.2006.07.084]
[44]
Wang P, Tan X, He C, et al. Scanning optical microscopy for porosity quantification of additively manufactured components. Addit Manuf 2018; 21: 350-8.
[http://dx.doi.org/10.1016/j.addma.2018.03.019]
[45]
Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A. Computed tomography for dimensional metrology. CIRP Ann 2011; 60(2): 821-42.
[http://dx.doi.org/10.1016/j.cirp.2011.05.006]
[46]
Morano C, Crocco MC, Formoso V, Pagnotta L. Effect of induced plastic strain on the porosity of PA12 printed through selective laser sintering studied by X-ray computed micro-tomography. Int J Adv Manuf Technol 2023; 125(7-8): 3229-40.
[http://dx.doi.org/10.1007/s00170-022-10791-2]
[47]
Liebrich A, Langowski HC, Schreiber R, Pinzer BR. Porosity distribution in laser-sintered polymeric thin sheets as revealed by X-ray micro tomography. Polym Test 2019; 76: 286-97.
[http://dx.doi.org/10.1016/j.polymertesting.2019.02.014]
[48]
Flores Ituarte I, Wiikinkoski O, Jansson A. Additive manufacturing of polypropylene: A screening design of experiment using laser-based powder bed fusion. Polymers (Basel) 2018; 10(12): 1293.
[http://dx.doi.org/10.3390/polym10121293] [PMID: 30961218]
[49]
Al-Maharma AY, Patil SP, Markert B. Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater Res Express 2020; 7(12): 122001.
[http://dx.doi.org/10.1088/2053-1591/abcc5d]
[50]
Han C, Li Y, Wang Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater 2018; 80: 119-27.
[http://dx.doi.org/10.1016/j.jmbbm.2018.01.013] [PMID: 29414467]
[51]
Choren JA, Heinrich SM, Silver-Thorn MB. Young’s modulus and volume porosity relationships for additive manufacturing applications. J Mater Sci 2013; 48(15): 5103-12.
[http://dx.doi.org/10.1007/s10853-013-7237-5]
[52]
Yan C, Shi Y, Hao L. Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers. Int Polym Process 2011; 26(4): 416-23.
[http://dx.doi.org/10.3139/217.2452]
[53]
Williams JD, Deckard CR. Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyp J 1998; 4(2): 90-100.
[http://dx.doi.org/10.1108/13552549810210257]
[54]
Lupone F, Padovano E, Pietroluongo M, Giudice S, Ostrovskaya O, Badini C. Optimization of selective laser sintering process conditions using stable sintering region approach. Express Polym Lett 2021; 15(2): 177-92.
[http://dx.doi.org/10.3144/expresspolymlett.2021.16]
[55]
Craft G, Nussbaum J, Crane N, Harmon JP. Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes. Addit Manuf 2018; 22: 800-6.
[http://dx.doi.org/10.1016/j.addma.2018.06.028]
[56]
Rüsenberg S, Schimdt L, Schmid H-J. Mechanical and Physical Properties - A Way to Assess Quality of Laser Sintered Parts. In 22th International Solid Freeform Fabrication Symposium. 2022.
[57]
Erdal M, Dag S, Jande YAC, Tekin CM. Production and characterization of uniform and graded porous polyamide structures using selective laser sintering. Workshop On Rapid Technologies September 24- 24 2009; 43-50.
[58]
Caulfield B, McHugh PE, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Process Technol 2007; 182(1-3): 477-88.
[http://dx.doi.org/10.1016/j.jmatprotec.2006.09.007]
[59]
Ling Z, Wu J, Wang X, Li X, Zheng J. Experimental study on the variance of mechanical properties of polyamide 6 during multi-layer sintering process in selective laser sintering 2019. .Available from: http://link.springer.com/10.1007/s00170-018-3004-8
[http://dx.doi.org/10.1007/s00170-018-3004-8]
[60]
Wegner A, Harder R, Witt G, Drummer D. Determination of optimal processing conditions for the production of polyamide 11 parts using the laser sintering process. Int J Recent Contr Eng. Sci 2015; 3(1): 5.
[http://dx.doi.org/10.3991/ijes.v3i1.4249]
[61]
Strobbe D, Van Puyvelde P, Kruth J-P, Van Hooreweder B. Laser Sintering of PA12/PA4,6 Polymer Composites. In29th Annual International Solid Freeform Fabrication Symposium. Austin. 2018; p. 10.
[62]
Salmoria GV, Ahrens CH, Klauss P, Paggi RA, Oliveira RG, Lago A. Rapid manufacturing of polyethylene parts with controlled pore size gradients using selective laser sintering. Mater Res 2007; 10(2): 211-4.
[http://dx.doi.org/10.1590/S1516-14392007000200019]
[63]
Khalil Y, Hopkinson N, Kowalski A, Fairclough JPA. Influence of laser power on morphology and properties of laser-sintered. In 27th Annual International Solid Freeform Fabrication Symposium. Austin. 2016; p. 21.
[64]
Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. CIRP Ann 2007; 56(1): 205-8.
[http://dx.doi.org/10.1016/j.cirp.2007.05.097]
[65]
Ho HCH, Gibson I, Cheung WL. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol 1999; 89-90: 204-10.
[http://dx.doi.org/10.1016/S0924-0136(99)00007-2]
[66]
Ho HCH, Cheung WL, Gibson I. Morphology and properties of selective laser sintered bisphenol a polycarbonate. Ind Eng Chem Res 2003; 42(9): 1850-62.
[http://dx.doi.org/10.1021/ie0206352]
[67]
Song XH, Shi YS, Song PH, Wei QS, Li W. Effects of the processing parameters on porosity of selective laser sintered aliphatic polycarbonate. Adv Mat Res 2014; 915-916: 1000-4.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.915-916.1000]
[68]
Ku CW, Gibson I, Cheung WL. Selective laser sintered castformTM polystyrene with controlled porosity and its infiltration characteristics by red wax. In 13th International Solid Freeform Fabrication Symposium. Austin. 2002.
[69]
Strobbe D, Dadbakhsh S, Verbelen L, Van Puyvelde P, Kruth JP. Selective laser sintering of polystyrene: A single-layer approach. Plast Rubber Compos 2018; 47(1): 2-8.
[http://dx.doi.org/10.1080/14658011.2017.1399532]
[70]
Velu R, Singamneni S. Evaluation of the influences of process parameters while selective laser sintering PMMA powders. Mech Eng Sci 2015; 229(4): 603-13.
[http://dx.doi.org/10.1177/0954406214538012]
[71]
Leite JL, Salmoria GV, Paggi RA, Ahrens CH, Pouzada AS. A study on morphological properties of laser sintered functionally graded blends of amorphous thermoplastics. Int J Mater Prod Technol 2010; 39(1/2): 205.
[http://dx.doi.org/10.1504/IJMPT.2010.034272]
[72]
Verbelen L, Dadbakhsh S, Van den Eynde M, et al. Analysis of the material properties involved in laser sintering of thermoplastic polyurethane. Addit Manuf 2017; 15: 12-9.
[http://dx.doi.org/10.1016/j.addma.2017.03.001]
[73]
Beal VE, Paggi RA, Salmoria GV, Lago A. Statistical evaluation of laser energy density effect on mechanical properties of polyamide parts manufactured by selective laser sintering. J Appl Polym Sci 2009; 113(5): 2910-9.
[http://dx.doi.org/10.1002/app.30329]
[74]
Hoskins S. 3D Printing for Artists, Designers and Makers. (2nd ed.), Bloomsbury Publishing Plc 2018.
[http://dx.doi.org/10.5040/9781474248730]
[75]
Zhou W, Wang X, Hu J, Zhu X. Melting process and mechanics on laser sintering of single layer polyamide 6 powder. Int J Adv Manuf Technol 2013; 69(1-4): 901-8.
[http://dx.doi.org/10.1007/s00170-013-5113-8]
[76]
Liu-lan L, Yu-sheng S, Fan-di Z, Shu-huai H. Microstructure of selective laser sintered polyamide. JWuhan Univ Technol-Mater Sci Ed. 2003; 18: pp. (3)60-3.
[http://dx.doi.org/10.1007/BF02838461]
[77]
Salmoria GV, Leite JL, Paggi RA. The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering. Polym Test 2009; 28(7): 746-51.
[http://dx.doi.org/10.1016/j.polymertesting.2009.06.010]
[78]
Arai S, Tsunoda S, Kawamura R, Kuboyama K, Ougizawa T. Comparison of crystallization characteristics and mechanical properties of poly(butylene terephthalate) processed by laser sintering and injection molding. Mater Des 2017; 113: 214-22.
[http://dx.doi.org/10.1016/j.matdes.2016.10.028]
[79]
Bashir Z, Gu H, Yang L. Evaluation of poly(ethylene terephthalate) powder as a material for selective laser sintering, and characterization of printed part. Polym Eng Sci 2018; 58(10): 1888-900.
[http://dx.doi.org/10.1002/pen.24797]
[80]
Salmoria GV, Leite JL, Ahrens CH, Lago A, Pires ATN. Rapid manufacturing of PA/HDPE blend specimens by selective laser sintering: Microstructural characterization. Polym Test 2007; 26(3): 361-8.
[http://dx.doi.org/10.1016/j.polymertesting.2006.12.002]
[81]
Salmoria GV, Lauth VR, Cardenuto MR, Magnago RF. Characterization of PA12/PBT specimens prepared by selective laser sintering. Opt Laser Technol 2018; 98: 92-6.
[http://dx.doi.org/10.1016/j.optlastec.2017.07.044]
[82]
Greiner S, Wudy K, Lanzl L, Drummer D. Selective laser sintering of polymer blends: Bulk properties and process behavior. Polym Test 2017; 64: 136-44.
[http://dx.doi.org/10.1016/j.polymertesting.2017.09.039]
[83]
Pavan M, Faes M, Strobbe D, et al. On the influence of inter-layer time and energy density on selected critical-to-quality properties of PA12 parts produced via laser sintering. Polym Test 2017; 61: 386-95.
[http://dx.doi.org/10.1016/j.polymertesting.2017.05.027]
[84]
Rouholamin D, Hopkinson N. An investigation on the suitability of micro-computed tomography as a non-destructive technique to assess the morphology of laser sintered nylon 12 parts. Eng Manuf 2014; 228(12): 1529-42.
[http://dx.doi.org/10.1177/0954405414522209]
[85]
Flodberg G, Pettersson H, Yang L. Pore analysis and mechanical performance of selective laser sintered objects. Addit Manuf 2018; 24: 307-15.
[http://dx.doi.org/10.1016/j.addma.2018.10.001]
[86]
Pavan M, Craeghs T, Puyvelde PV, Kruth J-P, Dewulf W. Understanding the link between process parameters, microstructure and mechanical properties of laser sintered PA12 parts through X-ray computed tomography. 2nd International Conference on Progress in AdditiveManufacturing. 9
[87]
Berretta S, Evans KE, Ghita O. Processability of PEEK, a new polymer for High Temperature Laser Sintering (HT-LS). Eur Polym J 2015; 68: 243-66.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.04.003]
[88]
Hoskins TJ, Dearn KD, Kukureka SN. Mechanical performance of PEEK produced by additive manufacturing. Polym Test 2018; 70: 511-9.
[http://dx.doi.org/10.1016/j.polymertesting.2018.08.008]
[89]
Ghita OR, James E, Trimble R, Evans KE. Physico-chemical behaviour of poly (Ether Ketone) (PEK) in high temperature laser sintering (HT-LS). J Mater Process Technol 2014; 214(4): 969-78.
[http://dx.doi.org/10.1016/j.jmatprotec.2013.11.007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy