Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Succinimidium Perchlorate as a Novel and Efficient Brönsted Acidic Ionic Liquid Promoter for the Synthesis of 5-arylidene Barbituric Acid and pyrano[2,3-d] Pyrimidinone Derivatives

Author(s): Sara Haghpanah-Kouchesfehani, Zahra Azizi, Nader Daneshvar, Farhad Shirini* and Hassan Tajik

Volume 10, Issue 4, 2023

Published on: 12 July, 2023

Page: [331 - 344] Pages: 14

DOI: 10.2174/2213337210666230420100001

Price: $65

conference banner
Abstract

Introduction: In this article, succinimidinium perchlorate as a new acidic ionic liquid catalyst was prepared and used to synthesize 5-arylidene barbituric acid and pyrano[2,3- d]pyrimidinone derivatives.

Method: These two derivatives of barbituric acid have a variety of useful properties.

Result: The advantages of this reagent were high yields, high efficiency, short reaction times, easy performance, easy work-up and reusability.

Conclusion: Succinimidinium perchlorate, which was made for the first time in this project, was identified with different methods, including FT-IR, 1H NMR, 13C NMR and mass spectroscopic techniques derivatives of benzimidazole, which are shown in this review as a powerful scaffold.

Graphical Abstract

[1]
Jairton D, Consorti CS, Spencer J. Room temperature molten salts: neoteric “green” solvents for chemical reactions and processes. J Braz Soc 2000; 11: 337-44.
[2]
Daneshvar N, Nasiri M, Shirzad M, Safarpoor Nikoo Langarudi M, Shirini F, Tajik H. The introduction of two new imidazole-based bis-dicationic Brönsted acidic ionic liquids and comparison of their catalytic activity in the synthesis of barbituric acid derivatives. New J Chem 2018; 42(12): 9744-56.
[http://dx.doi.org/10.1039/C8NJ01179F]
[3]
Perry RH, Green DW. Perry’s Chemical Engineers’ Handbook, 7th. McGraw-Hill 1997.
[4]
Brennecke JF, Maginn EJ. Ionic liquids: Innovative fluids for chemical processing. AIChE J 2001; 47(11): 2384-9.
[http://dx.doi.org/10.1002/aic.690471102]
[5]
Forsyth SA, Pringle JM, MacFarlane DR. Ionic liquids—an overview. Aust J Chem 2004; 57(2): 113-9.
[http://dx.doi.org/10.1071/CH03231]
[6]
Shirini F, Langarudi MSN, Seddighi M, Jolodar OG. Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives. Res Chem Intermed 2015; 41(11): 8483-97.
[http://dx.doi.org/10.1007/s11164-014-1905-1]
[7]
Asadi SK, Aleaba G, Daneshvar N, Shirini F. Sustainable and green synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-one derivatives under mild conditions using a novel phosphoric acid-based molten salt as catalyst. Sustain Chem Pharm 2021; 21: 100442.
[http://dx.doi.org/10.1016/j.scp.2021.100442]
[8]
Rahmatizadeh-Pashaki Z, Daneshvar N, Shirini F. Introduction of bis-imidazolium dihydrogen phosphate as a new green acidic ionic liquid catalyst in the synthesis of arylidene malononitrile, ethyl (E)-3-(aryl)-2-cyanoacrylate and tetrahydrobenzo[b]pyran derivatives. J Indian Chem Soc 2021; 18(8): 2135-49.
[http://dx.doi.org/10.1007/s13738-021-02177-0]
[9]
Abbas Khakiani B, Shirini F, Tajik H, Taherpour Nahzomi H, Daneshvar N. Synthesis, characterization, and physicochemical properties of three new nanostructured benzimidazole-based dicationic Brønsted acidic molten salts and comparison of their catalytic and antibacterial activities. J Mol Liq 2021; 342: 117104-46.
[http://dx.doi.org/10.1016/j.molliq.2021.117104]
[10]
Shirzad M, Nasiri M, Daneshvar N, Shirini F, Tajik H. Synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives promoted by two bis-imidazolium-based ionic liquids. Curr Organocatal 2021; 8.
[http://dx.doi.org/10.2174/2213337208666210726141934]
[11]
Karimi-Chayjani R, Daneshvar N, Langarudi MSN, Shirini F, Tajik H. Silica-coated magnetic nanoparticles containing bis dicationic bridge for the synthesis of 1, 2, 4-triazolo pyrimidine/quinazolinone derivatives. J Mol Liq 2020; 1199: 126891-900.
[12]
Cvetković J.P.; Božić B.Đ Banjac, N.R.; Petrović J.; Soković M.; Vitnik, V.D.; Vitnik, Ž.J.; Ušćumlić G.S.; Valentić N.V. Synthesis, antimicrobial activity and quantum chemical investigation of novel succinimide derivatives. J Mol Struct 2019; 1181: 148-56.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.083]
[13]
Patil MM, Rajput SS. Succinimides: synthesis, reaction, and biological activity. Int J Pharm Pharm Sci 2014; 6: 8-14.
[14]
Luzina EL, Popov AV. Synthesis and anticancer activity evaluation of 3,4-mono- and bicyclosubstituted N -(het)aryl trifluoromethyl succinimides. J Fluor Chem 2014; 168: 121-7.
[http://dx.doi.org/10.1016/j.jfluchem.2014.09.019] [PMID: 25400294]
[15]
Shetgiri NP, Nayak BK. Synthesis and antimicrobial activity of some succinimides. Indian J Chem Sect B 2005; 44: 1933-6.
[16]
Rich DH, Gardner JH. Synthesis of the cytostatic cyclic tetrapeptide, chlamydocin. Tetrahedron Lett 1983; 24(48): 5305-8.
[http://dx.doi.org/10.1016/S0040-4039(00)87854-5] [PMID: 7241514]
[17]
Crider AM, Kolczynski TM, Yates KM. Synthesis and anticancer activity of nitrosourea derivatives of phensuximide. J Med Chem 1980; 23(3): 324-6.
[http://dx.doi.org/10.1021/jm00177a024] [PMID: 7365750]
[18]
Kaczorowski GJ, McManus OB, Priest BT, Garcia ML. Ion channels as drug targets: the next GPCRs. J Gen Physiol 2008; 131(5): 399-405.
[http://dx.doi.org/10.1085/jgp.200709946] [PMID: 18411331]
[19]
Isaka M, Prathumpai W, Wongsa P, Tanticharoen M. Hirsutellone F, a dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC 7579. Org Lett 2006; 8(13): 2815-7.
[http://dx.doi.org/10.1021/ol060926x] [PMID: 16774264]
[20]
Muszalska I. Studies of the degradation mechanism of pyrrolo[3,4-c] pyridine-1,3(2H)-dione derivatives with analgesic activity: isolation and identification of products and summary. Acta Pol Pharm 2010; 67(3): 233-8.
[PMID: 20524424]
[21]
Obniska J, Rzepka S. Kamiński, K. Synthesis and anticonvulsant activity of new N-Mannich bases derived from 3-(2-fluorophenyl)- and 3-(2-bromophenyl)-pyrrolidine-2,5-diones. Part II. Bioorg Med Chem 2012; 20(15): 4872-80.
[http://dx.doi.org/10.1016/j.bmc.2012.05.032] [PMID: 22717240]
[22]
Allen SE, Skoog F. Stimulation of seedling growth by seed treatments with N-phenyl succinimide. Plant Physiol 1952; 27(1): 179-83.
[http://dx.doi.org/10.1104/pp.27.1.179] [PMID: 16654432]
[23]
Shirini F, Khaligh NG. Succinimide-N-sulfonic acid: A mild, efficient, and reusable catalyst for the chemoselective trimethylsilylation of alcohols and phenols. Phosphorus Sulfur Silicon Relat Elem 2011; 186(11): 2156-65.
[http://dx.doi.org/10.1080/10426507.2011.602377]
[24]
Shirini F, Jolodar OG, Seddighi M, Borujeni HT. Preparation, characterization and application of succinimidinium hydrogensulfate ([H-Suc]HSO4) as an efficient ionic liquid catalyst for the N-Boc protection of amines. RSC Advances 2015; 5(26): 19790-8.
[http://dx.doi.org/10.1039/C4RA14130J]
[25]
Abedini M, Shirini F, Omran JMA. Efficient synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives using succinimidinium N-sulfonic acid hydrogen sulfate as a new ionic liquid catalyst. J Mol Liq 2015; 212: 405-12.
[http://dx.doi.org/10.1016/j.molliq.2015.09.014]
[26]
Rahmanzadeh A, Daneshvar N, Shirini F, Tajik H. Comparison of the efficiency of two dicationic ionic liquids catalysts based on perchloric acid for the protection of alcohols. J Indian Chem Soc 2021; 18(12): 3295-302.
[http://dx.doi.org/10.1007/s13738-021-02267-z]
[27]
Darvishzad S, Daneshvar N, Shirini F, Tajik H. Knoevenagel condensation in aqueous media promoted by 2,2′-bipyridinium dihydrogen phosphate as a green efficient catalyst. Res Chem Intermed 2021; 47(7): 2973-84.
[http://dx.doi.org/10.1007/s11164-021-04445-3]
[28]
Kitamura N, Onishi A. European Patent 163599, 1984.
[29]
Furuya S, Ohtaki T. European Patent 608565, 1994.
[30]
Heber D, Heers C, Ravens U. Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Pharmazie 1993; 48(7): 537-41.
[PMID: 7692456]
[31]
Coates WJ. European Patent 351058, 1990.
[32]
Sakuma Y, Hasegawa M, Kataoka K, et al. 1, 10-phenanthroline derivatives. WO 91/05785 PCT Int. Appl., 1989. Chem Abstr 1991; 115: 71646.
[33]
Broom AD, Shim JL, Anderson GL. Pyrido[2,3-d]pyrimidines. IV. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines. J Org Chem 1976; 41(7): 1095-9.
[http://dx.doi.org/10.1021/jo00869a003] [PMID: 1255289]
[34]
Bisht SS, Jaiswal N, Sharma A, et al. A convenient synthesis of novel pyranosyl homo-C-nucleosides and their antidiabetic activities. Carbohydr Res 2011; 346(10): 1191-201.
[http://dx.doi.org/10.1016/j.carres.2011.03.006] [PMID: 21550025]
[35]
Hussain H, Aziz S, Schulz B, Krohn K. Synthesis of a 4Hanthra[1,2-b]pyran derivative and its Antimicrobial activity. Nat Prod Commun 2011; 6(6) 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600621] [PMID: 21815422]
[36]
Wang Y, Mo SY, Wang SJ, Li S, Yang YC, Shi JG. A unique highly oxygenated pyrano[4,3-c][2]benzopyran-1,6-dione derivative with antioxidant and cytotoxic activities from the fungus Phellinus igniarius. Org Lett 2005; 7(9): 1675-8.
[http://dx.doi.org/10.1021/ol0475764] [PMID: 15844878]
[37]
Schiller R, Tichotová L, Pavlík J, et al. 3,5-Disubstituted pyranone analogues of highly antifungally active furanones: Conversion of biological effect from antifungal to cytostatic. Bioorg Med Chem Lett 2010; 20(24): 7358-60.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.052] [PMID: 21074433]
[38]
He M, Yang N, Sun C, Yao X, Yang M. Modification and biological evaluation of novel 4-hydroxy-pyrone derivatives as non-peptidic HIV-1 protease inhibitors. Med Chem Res 2011; 20(2): 200-9.
[http://dx.doi.org/10.1007/s00044-010-9307-4]
[39]
Zonouzi A, Mirzazadeh R, Safavi M, Kabudanian Ardestani S, Emami S, Foroumadi A. 2-Amino-4-(nitroalkyl)-4H-chromene-3-carbonitriles as new cytotoxic agents. Iran J Pharm Res 2013; 12(4): 679-85.
[PMID: 24523747]
[40]
Kumar D, Sharma P, Singh H, et al. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances 2017; 7(59): 36977-99.
[http://dx.doi.org/10.1039/C7RA05441F]
[41]
Anzabi MY, Yazdani H, Bazgir A. Electrostatically enhanced sulfuric acid: A strong brønsted acidic catalyst for multi-component reactions. Catal Lett 2019; 149(7): 1934-40.
[http://dx.doi.org/10.1007/s10562-019-02776-w]
[42]
Daneshvar N, Shirini F, Langarudi MSN, Karimi-Chayjani R. Taurine as a green bio-organic catalyst for the preparation of bio-active barbituric and thiobarbituric acid derivatives in water media. Bioorg Chem 2018; 77: 68-73.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.021] [PMID: 29334621]
[43]
Seyyedi N, Shirini F, Nikoo Langarudi MS. DABCO-based ionic liquids: green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC Advances 2016; 6(50): 44630-40.
[http://dx.doi.org/10.1039/C6RA05878G]
[44]
Shirini F, Langarudi MSN, Daneshvar N. Preparation of a new DABCO-based ionic liquid (H2-DABCO) (H2PO4)2 and its application in the synthesis of tetrahydrobenzo[ b]pyran and pyrano[2,3- d]pyrimidinone derivatives. J Mol Liq 2017; 234: 268-78.
[http://dx.doi.org/10.1016/j.molliq.2017.03.063]
[45]
Rajput JK, Kaur G. CoFe2O4 nanoparticles: An efficient heterogeneous magnetically separable catalyst for “click” synthesis of arylidene barbituric acid derivatives at room temperature. Chin J Catal 2013; 34(9): 1697-704.
[http://dx.doi.org/10.1016/S1872-2067(12)60646-9]
[46]
Rathod SB, Gambhire AB, Arbad BR, Lande MK. Synthesis, characterization and catalytic activity of Ce1 Mgx Zr1-x O2 (CMZO) solid heterogeneous catalyst for the synthesis of 5-arylidine barbituric acid derivatives. Bull Korean Chem Soc 2010; 31(2): 339-43.
[http://dx.doi.org/10.5012/bkcs.2010.31.02.339]
[47]
Albadi J, Mansournezhad A, Sadeghi T. Eco-friendly synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by a novel nanocatalyst of ZnO-supported copper oxide in water. Res Chem Intermed 2015; 41(11): 8317-26.
[http://dx.doi.org/10.1007/s11164-014-1894-0]
[48]
Sharifi Z, Daneshvar N, Langarudi MSN, Shirini F. Comparison of the efficiency of two imidazole-based dicationic ionic liquids as the catalysts in the synthesis of pyran derivatives and Knoevenagel condensations. Res Chem Intermed 2019; 45(10): 4941-58.
[http://dx.doi.org/10.1007/s11164-019-03874-5]
[49]
Goli-Jolodar O, Shirini F, Seddighi M. Succinimidinium hydrogensulfate ([H-Suc]HSO4) as an efficient ionic liquid catalyst for the synthesis of 5-arylidenepyrimidine-2,4,6(1H,3H,5H)-trione and pyrano-pyrimidinones derivatives. J Indian Chem Soc 2016; 13(3): 457-63.
[http://dx.doi.org/10.1007/s13738-015-0754-1]
[50]
Azizian J. shameli, A.; Balalaie, S.; Ghanbari, M.M.; Zomorodbakhsh, S.; Entezari, M.; Bagheri, S.; Fakhrpour, G. The one-pot synthesis of pyrano [2,3-d] pyrimidinone derivatives with 1,4-diazabicyclo [2.2.2] octane in aqueous media. Orient J Chem 2012; 28(1): 327-32.
[http://dx.doi.org/10.13005/ojc/280141]
[51]
Bararjanian M, Balalaie S, Movassag B, Amani AM. One-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by L-proline in aqueous media. J Indian Chem Soc 2009; 6(2): 436-42.
[http://dx.doi.org/10.1007/BF03245854]
[52]
Ziarani GM, Faramarzi S, Asadi S, Badiei A, Bazl R, Amanlou M. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity. Daru 2013; 21(1): 3.
[http://dx.doi.org/10.1186/2008-2231-21-3] [PMID: 23351402]
[53]
Sabour B, Peyrovi MH, Hajimohammadi M. Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res Chem Intermed 2015; 41(3): 1343-50.
[http://dx.doi.org/10.1007/s11164-013-1277-y]
[54]
Balalaie S, Abdolmohammadi S, Bijanzadeh HR, Amani AM. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol Divers 2008; 12(2): 85-91.
[http://dx.doi.org/10.1007/s11030-008-9079-7] [PMID: 18512127]
[55]
Karimi-Chayjani R, Daneshvar N, Tajik H, Shirini F. Introduction of a new magnetic nanocatalyst as an organic‐inorganic hybrid framework for the synthesis of pyrano[2,3‐d]pyrimidinone(thione)s and pyrido[2,3‐d]pyrimidines. ChemistrySelect 2019; 4(4): 1205-13.
[http://dx.doi.org/10.1002/slct.201802916]
[56]
Kamble S, Rashinkar G, Kumbhar A, Mote K, Salunkhe R. Green chemistry approach for synthesis of 5-arylidine barbituric acid derivatives by hydrotrope induced Knovenagel condensation in aqueous medium. Arch Appl Sci Res 2010; 2(2): 217-22.
[57]
Alcerreca G, Sanabria R, Miranda R, Arroyo G, Tamariz J, Delgado F. Preparation of benzylidene barbituric acids promoted by infrared irradiation in absence of solvent. Synth Commun 2000; 30(7): 1295-301.
[http://dx.doi.org/10.1080/00397910008087151]
[58]
Levesque DL, Wang EC, Wei DC, et al. Synthesis of a new class of uridine phosphorylase inhibitors. J Heterocycl Chem 1993; 30(5): 1399-404.
[http://dx.doi.org/10.1002/jhet.5570300537]
[59]
Khalafi-Nezhad A, Hashemi A. Microwave enhanced Knoevenagel condensation of barbituric acid with aromatic aldehydes on basic alumina. Iran J Chem Chem Eng 2001; 20(1): 9-11.
[60]
Reddy CS, Nagaraj A, Jalapathi P. A new and efficient method for the synthesis of 5-arylmethylene-pyrimidine-2, 4, 6-trione under solvent and catalyst free conditions. Indian J Chem Sect B 2007; 46: 660-3.
[61]
Li JT, Dai HG, Liu D, Li TS. Efficient method for synthesis of the derivatives of 5‐arylidene barbituric acid catalyzed by aminosulfonic acid with grinding. Synth Commun 2006; 36(6): 789-94.
[http://dx.doi.org/10.1080/00397910500451324]
[62]
Dewan SK, Singh R. One pot synthesis of barbiturates on reaction of barbituric acid with aldehydes under microwave irradiation using a variety of catalysts. Synth Commun 2003; 33(17): 3081-4.
[http://dx.doi.org/10.1081/SCC-120022485]
[63]
Vvedenskii VM. Substitution in barbituric acids. Chem Heterocycl Compd 1972; 5(6): 827-9.
[http://dx.doi.org/10.1007/BF00475868]
[64]
Yu J, Wang H. Green synthesis of pyrano [2,3‐d]pyrimidine derivatives in ionic liquids. Synth Commun 2005; 35(24): 3133-40.
[http://dx.doi.org/10.1080/00397910500282661]
[65]
Safari N, Shirini F, Tajik H. Verjuice as a green and bio-degradable solvent/catalyst for facile and eco-friendly synthesis of 5-arylmethylenepyrimidine-2,4,6-trione, pyrano[2,3-d]pyrimidinone and pyrimido[4,5-d]pyrimidinone derivatives. J Indian Chem Soc 2019; 16(4): 887-97.
[http://dx.doi.org/10.1007/s13738-018-1565-y]
[66]
Ren Z, Cao W, Tong W, Jing X. Knoevenagel condensation of aldehydes with cyclic active methylene compounds in water. Synth Commun 2002; 32(13): 1947-52.
[http://dx.doi.org/10.1081/SCC-120004844]
[67]
Darvishzad S, Daneshvar N, Shirini F, Tajik H. Introduction of piperazine-1,4-diium dihydrogen phosphate as a new and highly efficient dicationic brönsted acidic ionic salt for the synthesis of (thio)barbituric acid derivatives in water. J Mol Struct 2019; 1178: 420-7.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.053]
[68]
Li JT, Sun MX. SiO2•12WO3•24H2O: A highly efficient catalyst for the synthesis of 5-arylidene barbituric acid in the presence of water. Aust J Chem 2009; 62(4): 353-5.
[http://dx.doi.org/10.1071/CH08320]
[69]
Hu Y, Chen ZC, Le ZG, Zheng QG. Organic reactions in ionic liquids: ionic liquid promoted knoevenagel condensation of aromatic aldehydes with (2‐thio) barbituric acid. Synth Commun 2004; 34(24): 4521-9.
[http://dx.doi.org/10.1081/SCC-200043210]
[70]
Wang C, Ma J, Zhou X, et al. 1‐n‐butyl‐3‐methylimmidazolium tetrafluoroborate–promoted green synthesis of 5‐arylidene barbituric acids and thiobarbituric acid derivatives. Synth Commun 2005; 35(21): 2759-64.
[http://dx.doi.org/10.1080/00397910500288254]
[71]
Hosseini H, Sheikhhosseini E, Ghazanfari D. Synthesis of arylidinebarbituric acid derivatives catalyzed by dodecylbenzene sulfonic acid (DBSA) in aqueous media. Iran J Catal 2016; 6(2): 121-5.
[72]
Bodaghifard MA, Solimannejad M, Asadbegi S, Dolatabadifarahani S. Mild and green synthesis of tetrahydrobenzopyran, pyranopyrimidinone and polyhydroquinoline derivatives and DFT study on product structures. Res Chem Intermed 2016; 42(2): 1165-79.
[http://dx.doi.org/10.1007/s11164-015-2079-1]
[73]
Yadav DK, Quraishi MA. Choline chloride. ZnCl2: green, effective and reusable ionic liquid for synthesis of 7-amino-2, 4-dioxo-5-phenyl-2, 3, 4, 5-tetrahydro-1H-pyrano [2,3-d] pyrimidine-6-carbonitrile derivative. J Mater Environ Sci 2014; 5: 1075-8.
[74]
Mobinikhaledi A, Foroughifar N, Bodaghi Fard MA. Eco-friendly and efficient synthesis of pyrano [2,3-d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives in water. Inorg. Nano-Met 2010; 40(3): 179-85.
[75]
Montazeri N. Nano Al2O3: An efficient catalyst for the multi-component synthesis of Pyrano [2,3-d] Pyrimidinone derivatives. Int J Nanodimens 2015; 6(3): 283-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy