Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

“Design of Novel MgZrO3@Fe2O3@ZnO as a Core-Shell Nano Catalyst: an Effective Strategy for the Synthesis of Pyranopyrazole Derivatives”

Author(s): Yogita. R. Shelke, Vivek. D. Bobade, Dipak. R. Tope, Sachin. S. Kushare, Jyoti. A. Agashe and Ashok. V. Borhade*

Volume 10, Issue 4, 2023

Published on: 22 August, 2023

Page: [320 - 330] Pages: 11

DOI: 10.2174/2213337210666230420095132

Price: $65

conference banner
Abstract

Background: Catalysis has been widely applied in pharmaceutical companies in recent years. This paper reports a useful new approach for the synthesis of pyranopyrazoles.

Objectives: One- pot synthesis of pyranopyrazoles using MgZrO3@Fe2O3@ZnO as a novelcore- shell nanocatalyst which increases reaction rate, selectivity, ease of work-up and recyclability of the supports. Method: The present study deals with the synthesis of MgZrO3@Fe2O3@ZnO core-shell catalyst using the sol-gel method.

Results: The synthesized MgZrO3@Fe2O3@ZnO core-shell nanoparticles were analysed using XRD, TEM and BET surface area. The nanocatalyst had an average particle size of 20 nm by TEM images and BET Surface area of 58.93 m2/g.

Conclusion: Novel MgZrO3@Fe2O3@ZnO core-shell nanoparticles have been used as an efficient and recoverable catalyst for one-pot synthesis of pyranopyrazoles.

Graphical Abstract

[1]
Ray C, Pal T. Retracted Article: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A Mater Energy Sustain 2017; 5(20): 9465-87.
[http://dx.doi.org/10.1039/C7TA02116J]
[2]
El-Toni AM, Habila MA, Labis JP. ALOthman, Z.A.; Alhoshan, M.; Elzatahry, A.A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 2016; 8(5): 2510-31.
[http://dx.doi.org/10.1039/C5NR07004J] [PMID: 26766598]
[3]
Garg A, Milina M, Ball M, et al. Transition-metal nitride core@noble-metal shell nanoparticles as highly CO tolerant catalysts. Angew Chem Int Ed 2017; 56(30): 8828-33.
[http://dx.doi.org/10.1002/anie.201704632] [PMID: 28544178]
[4]
Kim JK, Jang DJ. Metal-enhanced fluorescence of gold nanoclusters adsorbed onto Ag@SiO2 core–shell nanoparticles. J Mater Chem C Mater Opt Electron Devices 2017; 5(24): 6037-46.
[http://dx.doi.org/10.1039/C7TC01352C]
[5]
Gunji S, Jukei M, Shimotsuma Y, et al. Unexpected gas sensing properties of SiO2/SnO2 core–shell nanofibers under dry and humid conditions. J Mater Chem C Mater Opt Electron Devices 2017; 5(25): 6369-76.
[http://dx.doi.org/10.1039/C7TC01642E]
[6]
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170: 396-424.
[http://dx.doi.org/10.1016/j.addr.2020.09.011] [PMID: 32987096]
[7]
Zhao W, Wei JS, Zhang P, et al. Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells. ACS Appl Mater Interfaces 2017; 9(22): 18474-81.
[http://dx.doi.org/10.1021/acsami.7b02542] [PMID: 28541041]
[8]
Davoodi P, Srinivasan MP, Wang CH. Effective co-delivery of nutlin-3a and p53 genes via core–shell microparticles for disruption of MDM2–p53 interaction and reactivation of p53 in hepatocellular carcinoma. J Mater Chem B Mater Biol Med 2017; 5(29): 5816-34.
[http://dx.doi.org/10.1039/C7TB00481H] [PMID: 32264215]
[9]
Zhu S, Wang Z, Huang F, Zhang H, Li S. Hierarchical Cu(OH) 2 @Ni 2 (OH) 2 CO 3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J Mater Chem A Mater Energy Sustain 2017; 5(20): 9960-9.
[http://dx.doi.org/10.1039/C7TA01805C]
[10]
Yuan D, Huang G, Yin D, Wang X, Wang C, Wang L. Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl Mater Interfaces 2017; 9(21): 18178-86.
[http://dx.doi.org/10.1021/acsami.7b02176] [PMID: 28488853]
[11]
Frost R, Wadell C, Hellman A, et al. Core–shell nanoplasmonic sensing for characterization of biocorona formation and nanoparticle surface interactions. ACS Sens 2016; 1(6): 798-806.
[http://dx.doi.org/10.1021/acssensors.6b00156]
[12]
Cheng D, Zhou X, Xia H, Chan HSO. Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem Mater 2005; 17(14): 3578-81.
[http://dx.doi.org/10.1021/cm0503230]
[13]
Zhang L, Blom DA, Wang H. Au–Cu2O Core–shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem Mater 2011; 23(20): 4587-98.
[http://dx.doi.org/10.1021/cm202078t]
[14]
Moon Y, Mai HD, Yoo H. Platinum overgrowth on gold multipod nanoparticles: Investigation of synergistic catalytic effects in a bimetallic nanosystem. Chem Nano Mat 2017; 3(3): 196-203.
[http://dx.doi.org/10.1002/cnma.201600322]
[15]
Jin B, Zhou X, Huang L, Licklederer M, Yang M, Schmuki P. Aligned MoOx/MoS2 core-shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide manotubes. Angew Chem Int Ed 2016; 55(40): 12252-6.
[http://dx.doi.org/10.1002/anie.201605551] [PMID: 27599478]
[16]
Sohal HS, Goyal A, Sharma R, Khare R, Kumar S. Glycerol mediated, one pot, multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles. Eur J Chem 2013; 4(4): 450-3.
[http://dx.doi.org/10.5155/eurjchem.4.4.450-453.769]
[17]
Abdelrazek FM, Metz P, Kataeva O, Jäger A, El-Mahrouky SF. Synthesis and molluscicidal activity of new chromene and pyrano[2,3-c]pyrazole derivatives. Arch Pharm 2007; 340(10): 543-8.
[http://dx.doi.org/10.1002/ardp.200700157] [PMID: 17912679]
[18]
Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984; 27(4): 539-44.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[19]
Zaki MEA, Soliman HA, Hiekal OA, Rashad AE. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z Naturforsch C J Biosci 2006; 61(1-2): 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[20]
Parmar NJ, Barad HA, Pansuriya BR, Talpada NP. A highly efficient, rapid one-pot synthesis of some new heteroaryl pyrano[2,3-c]pyrazoles in ionic liquid under microwave-irradiation. RSC Advances 2013; 3(21): 8064.
[http://dx.doi.org/10.1039/c3ra00068k]
[21]
Azarifar D, Nejat-Yami R, Sameri F, Akrami Z. Ultrasonic-promoted one-pot synthesis of 4H-chromenes, pyrano[2,3- d]pyrimidines, and 4H-pyrano[2,3-c]pyrazoles. Lett Org Chem 2012; 9(6): 435-9.
[http://dx.doi.org/10.2174/157017812801322435]
[22]
Guo RY, An ZM, Mo L-P, et al. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron 2013; 69(47): 9931-8.
[http://dx.doi.org/10.1016/j.tet.2013.09.082]
[23]
Chavan HV, Babar SB, Hoval RU, Bandgar BP. Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition. Bull Korean Chem Soc 2011; 32(11): 3963-6.
[http://dx.doi.org/10.5012/bkcs.2011.32.11.3963]
[24]
Mecadon H. Rohman, M.R.; Rajbangshi, M.; Myrboh, B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett 2011; 52(19): 2523-5.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.036]
[25]
Peng Y, Song G, Dou R. Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media. Green Chem 2006; 8(6): 573.
[http://dx.doi.org/10.1039/b601209d]
[26]
Darandale SN, Sangshetti JN, Shinde DB. Ultrasound mediated, sodium bisulfite catalyzed, solvent free synthesis of 6-Amino-3-methyl-4-substitued-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile. J Korean Chem Soc 2012; 56(3): 328-33.
[http://dx.doi.org/10.5012/jkcs.2012.56.3.328]
[27]
Madhusudana Reddy M, Pasha M. One-pot, multicomponent synthesis of 4H-pyrano[2,3-c]pyrazoles in water at 25°C. J. Chem Sect B 2012; 51: 537.
[28]
Shi D, Mou J, Zhuang Q, Niu L, Wu N, Wang X. Three component one pot synthesis of 1,4-dihydropyrano[2,3c]pyrazole derivatives in aqueous media. Synth Commun 2004; 34(24): 4557-63.
[http://dx.doi.org/10.1081/SCC-200043224]
[29]
Khurana JM, Nand B, Kumar S. Rapid synthesis of polyfunctionalized pyrano[2,3-c]pyrazoles via multicomponent condensation in room-temperature liquids. Synth Commun 2011; 41(3): 405-10.
[http://dx.doi.org/10.1080/00397910903576669]
[30]
Farahi M, Karami B, Sedighimehr I, Tanuraghaj HM. An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid. Chin Chem Lett 2014; 25(12): 1580-2.
[http://dx.doi.org/10.1016/j.cclet.2014.07.012]
[31]
Azarifar D, Abbasi Y. Sulfonic acid–functionalized magnetic Fe3-x TixO4 nanoparticles: New recyclable heterogeneous catalyst for one-pot synthesis of tetrahydrobenzo[b]pyrans and dihydropyrano[2,3-c]pyrazole derivatives. Synth Commun 2016; 46(9): 745-58.
[http://dx.doi.org/10.1080/00397911.2016.1171360]
[32]
Azarifar D, Khatami SM, Zolfigol MA, Nejat-Yami R. Nano-titania sulfuric acid-promoted synthesis of tetrahydrobenzo[b]pyran and 1,4-dihydropyrano[2,3-c]pyrazole derivatives under ultrasound irradiation. J Indian Chem Soc 2014; 11(4): 1223-30.
[http://dx.doi.org/10.1007/s13738-013-0392-4]
[33]
Shinde PV, Gujar JB, Shingate BB, Shingare MS. Silica in water: A potentially valuable reaction medium for the synthesis of pyrano[2,3-c]pyrazoles. Bull Korean Chem Soc 2012; 33(4): 1345-8.
[http://dx.doi.org/10.5012/bkcs.2012.33.4.1345]
[34]
Heravi MM, Ghods A, Derikvand F, Bakhtiari K, Bamoharram FF. H14[NaP5W30O110] catalyzed one-pot three-component synthesis of dihydropyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine derivatives. J Indian Chem Soc 2010; 7(3): 615-20.
[http://dx.doi.org/10.1007/BF03246049]
[35]
Tekale S, Kauthale S, Jadhav KM, Pawar R. Nano-ZnO catalyzed green and efficient one-pot four-component synthesis of pyranopyrazoles. J Chem Article 2013. Available from: [https://www.hindawi.com/journals/jchem/2013/840954
[36]
Litvinov YM, Shestopalov AA, Rodinovskaya LA, Shestopalov AM. New convenient four-component synthesis of 6-Amino-2,4-dihydropyrano[2,3- c]pyrazol-5-carbonitriles and one-pot synthesis of 6′-Aminospiro[(3 H)-indol-3,4′-pyrano[2,3- c]pyrazol]-(1 H)-2-on-5′-carbonitriles. J Comb Chem 2009; 11(5): 914-9.
[http://dx.doi.org/10.1021/cc900076j] [PMID: 19711896]
[37]
Kanagaraj K, Pitchumani K. Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett 2010; 51(25): 3312-6.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.087]
[38]
Siddekha A, Nizam A, Pasha MA. An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory. Spectrochim Acta A Mol Biomol Spectrosc 2011; 81(1): 431-40.
[http://dx.doi.org/10.1016/j.saa.2011.06.033] [PMID: 21795106]
[39]
Gogoi S, Zhao CG. Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett 2009; 50(19): 2252-5.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.210] [PMID: 19915654]
[40]
Hasaninejad A, Shekouhy M, Golzar N, Zare A, Doroodmand MM. Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Appl Catal A Gen 2011; 402(1-2): 11-22.
[http://dx.doi.org/10.1016/j.apcata.2011.04.012]
[41]
Gu Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem 2012; 14(8): 2091.
[http://dx.doi.org/10.1039/c2gc35635j]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy