Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Biomaterials in Medical Applications

Author(s): Sonia yadav, Sruthy Varghese, Reena Devi, Davinder Kumar, Naveen Khatri, Gajendra Singh and Virender Kumar*

Volume 17, Issue 3, 2024

Published on: 25 May, 2023

Page: [212 - 239] Pages: 28

DOI: 10.2174/2666145416666230420094148

Price: $65

Abstract

Biomaterials, a fascinating and highly interdisciplinary field, have become integral to improving modern man's conditions and quality of life. It is done by many health-related problems arising from many sources. The first batch of biomaterials was produced as implants and medical equipment in the 1960s and 1970s. Biomaterials are primarily used in medicine and may be directly or indirectly exposed to biological systems. For instance, we could use them in cultures and mediums for cell development, plasma protein testing, biomolecular processing cultures, diagnostic gene chips, and packaging materials primarily for medical items. Biomaterials should have certain qualities for human-related problems, like being non-carcinogenic, not being pyrogenic or toxic, completely plasma compatible, and anti-inflammatory. This paper introduces the history, classification, and ideal parameters of biomaterials and where they are used in the current scenarios in the medical field, providing a brief outlook on the future.

[1]
Todros S, Todesco M, Bagno A. Biomaterials and their biomedical applications: From replacement to regeneration. Processes 1949; 9(11): 1949.
[http://dx.doi.org/10.3390/pr9111949]
[2]
Agrawal CM, Ong JL, Appleford MR, Mani G. Introduction to biomaterials: Basic theory with engineering applications. Cambridge texts in biomedical engineering 2013.
[3]
Kiradzhiyska DD, Mantcheva RD. Overview of biocompatible materials and their use 2019 Mar 1; 61(1): 34-40.
[4]
Zaman HA, Sharif S, Idris MH, Kamarudin A. Metallic biomaterials for medical implant applications: A Review. Appl Mech Mater 2015; 735: 19-25.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.735.19]
[5]
Kulinets I. Biomaterials and their applications in medicine. In:Regulatory Affairs for Biomaterials and Medical Devices. Woodhead Publishing Series in Biomaterials 2015; pp. 1-10.
[http://dx.doi.org/10.1533/9780857099204.1]
[6]
Hildebrand HF. Biomaterials - a history of 7000 years. BioNanoMaterials 2013; 14(3–4): 119-33.
[http://dx.doi.org/10.1515/bnm-2013-0014]
[7]
Ratner BD, Zhang G. A history of biomaterials. Biomater Sci 2020; 21-34.
[8]
Sandeep KK, Seeram R. An introduction to biomaterials science and engineering [Accessed: Nov. 22, 2022].
[9]
Ghasemi-Mobarakeh L, Kolahreez D, Ramakrishna S, Williams D. Key terminology in biomaterials and biocompatibility. Curr Opin Biomed Eng 2019; 10: 45-50.
[http://dx.doi.org/10.1016/j.cobme.2019.02.004]
[10]
Oudrhiri M, Rherib C, Oulja M, Assermouh A, Mahraoui C, Hafidi NE. Requirements for selection/development of a biomaterial. Biomed J Sci Tech Res 2019; 14(3): 001-6.
[11]
Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29(20): 2941-53.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.023] [PMID: 18440630]
[12]
Masaeli R, Zandsalimi K, Tayebi L. Biomaterials evaluation: Conceptual refinements and practical reforms. Ther Innov Regul Sci 2018; 53(1): 120-7.
[http://dx.doi.org/10.1177/2168479018774320]
[13]
Davis NF, Cunnane EM, Quinlan MR, et al. Biomaterials and regenerative medicine in urology. Adv Exp Med Biol 2018; 1107: 189-98.
[http://dx.doi.org/10.1007/5584_2017_139] [PMID: 29340876]
[14]
Gugliandolo A, Fonticoli L, Trubiani O, et al. Oral bone tissue regeneration: Mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci 2021; 22(10): 5236.
[http://dx.doi.org/10.3390/ijms22105236] [PMID: 34063438]
[15]
Ercan H, Durkut S, Koc-Demir A, Elçin AE, Elçin YM. Clinical applications of injectable biomaterials. Adv Exp Med Biol 2018; 1077: 163-82.
[http://dx.doi.org/10.1007/978-981-13-0947-2_10] [PMID: 30357689]
[16]
Sharma R, Kumar S, Bhawna , et al. An insight of nanomaterials in tissue engineering from fabrication to applications. Tissue Eng Regen Med 2022; 19(5): 927-60.
[http://dx.doi.org/10.1007/s13770-022-00459-z] [PMID: 35661124]
[17]
Brokesh AM, Gaharwar AK. Inorganic biomaterials for regenerative medicine. ACS Appl Mater Interfaces 2020; 12(5): 5319-44.
[http://dx.doi.org/10.1021/acsami.9b17801] [PMID: 31989815]
[18]
Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M. Biomaterials for regenerative medicine: Historical perspectives and current trends. Adv Exp Med Biol 2018; 1119: 1-19.
[http://dx.doi.org/10.1007/5584_2018_278] [PMID: 30406362]
[19]
Rezaie HR, Bakhtiari L, Öchsner A. Biomaterials and their applications
[http://dx.doi.org/10.1007/978-3-319-17846-2]
[20]
Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J. Metallic biomaterials: Current challenges and opportunities. Materials 2017; 10(8): 884.
[http://dx.doi.org/10.3390/ma10080884] [PMID: 28773240]
[21]
Rao S, Hashemi Astaneh S, Villanueva J, et al. Physicochemical and in vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium. J Mech Behav Biomed Mater 2019; 96: 152-64.
[http://dx.doi.org/10.1016/j.jmbbm.2019.03.019] [PMID: 31035066]
[22]
Eliaz N. Corrosion of metallic biomaterials: A review. Materials 2019; 12(3): 407.
[http://dx.doi.org/10.3390/ma12030407]
[23]
Ratner B, Hoffman A, Schoen F, Lemons J. Biomaterials Science: A Multidisciplinary Endeavor. Elsevier 2004.
[24]
Advantages and disadvantages of metallic and ceramic biomaterials. Available at: See link from MS. [Accessed: 10 Feb, 2023].
[25]
Bharadwaj A. Advantages and disadvantages of metallic and ceramic biomaterial. IOP Conference Series Materials Science and Engineering 2021; 116(1): 012178.
[http://dx.doi.org/10.1088/1757-899X/1116/1/012178]
[26]
Wang H. Biomaterials in Medical Applications. Polymers 2023; 15(4): 847.
[http://dx.doi.org/10.3390/polym15040847] [PMID: 36850130]
[27]
Igielska-Kalwat J. Kilian-Pięta E, Połoczańska-Godek S. The use of natural collagen obtained from fish waste in hair styling and care. Polymers 2022; 14(4): 749.
[http://dx.doi.org/10.3390/polym14040749] [PMID: 35215659]
[28]
Di Tinco R, Consolo U, Pisciotta A, et al. Characterization of dental pulp stem cells response to bone substitutes biomaterials in dentistry. Polymers 2022; 14(11): 2223.
[http://dx.doi.org/10.3390/polym14112223] [PMID: 35683895]
[29]
Åkerlund E, Diez-Escudero A, Grzeszczak A, Persson C. The effect of PCL addition on 3D-Printable PLA/HA composite filaments for the treatment of bone defects. Polymers 2022; 14(16): 3305.
[http://dx.doi.org/10.3390/polym14163305] [PMID: 36015563]
[30]
Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regenerative Med 2010; 5(1): 107.
[http://dx.doi.org/10.2217/rme.09.77]
[31]
Zhang G, Lu H, Mamidwar S, Wang M. Composites. Biomaterials Science: An Introduction to Materials in Medicine 2020 Jan 1; 415-29.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.99868-4]
[32]
Prockop DJ, Kivirikko KI. Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995; 64(1): 403-34.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.002155] [PMID: 7574488]
[33]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[34]
Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 2003; 49(12): 2990-3006.
[http://dx.doi.org/10.1002/aic.690491202]
[35]
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomaterials Res 2020; 24(1): 1-12.
[http://dx.doi.org/10.1186/s40824-020-00190-7]
[36]
Piconi C, Maccauro G, Muratori F, Brach Del Prever E. Alumina and zirconia ceramics in joint replacements. J Appl Biomater Biomech 2003 Jan-Apr; 1(1): 19-32.
[http://dx.doi.org/10.1177/228080000300100103]
[37]
Diomidis N, Mischler S. Third body effects on friction and wear during fretting of steel contacts. Tribol Int 2011; 44(11): 1452-60.
[http://dx.doi.org/10.1016/j.triboint.2011.02.013]
[38]
Kurtz SM, Kocagöz S, Arnholt C, Huet R, Ueno M, Walter WL. Advances in zirconia toughened alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater 2014; 31: 107-16.
[http://dx.doi.org/10.1016/j.jmbbm.2013.03.022] [PMID: 23746930]
[39]
Brož A, Jirka I, Matějka R, Štěpanovská J, Doubková M, Sajdl P, et al. Surface modifications of a silicalite film designed for coating orthopaedic implants. Mater Des 2022 Dec 1; 224: 111373.
[40]
Diomidis N, Mischler S, More NS, Roy M. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomater 2012; 8(2): 852-9.
[http://dx.doi.org/10.1016/j.actbio.2011.09.034] [PMID: 22005332]
[41]
Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1997; 1: 15-21.
[42]
Ganguly S, Das P, Itzhaki E, Hadad E, Gedanken A, Margel S. Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Appl Mater Interfaces 2020; 12(46): 51940-51.
[http://dx.doi.org/10.1021/acsami.0c14527] [PMID: 33156599]
[43]
Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 2011; 7(6): 2644-50.
[http://dx.doi.org/10.1016/j.actbio.2011.03.009] [PMID: 21402182]
[44]
Bandyopadhyay A, Vahabzadeh S. Three-dimensional printing of biomaterials and soft materials. undefined 2015; 40(12): 1162-8.
[45]
Griffin E, Freeform SM. Selective laser sintering and fused deposition modeling processes for functional ceramic parts 1995. Available at: See link from MS. [Accessed: Jan 23,2022].
[46]
Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005; 26(23): 4817-27.
[http://dx.doi.org/10.1016/j.biomaterials.2004.11.057] [PMID: 15763261]
[47]
Haberstroh K, Ritter K, Kuschnierz J, et al. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J Biomed Mater Res B Appl Biomater 2010; 93B(2): 520-30.
[http://dx.doi.org/10.1002/jbm.b.31611] [PMID: 20225216]
[48]
Bandyopadhyay A, Bose S, Das S. 3D printing of biomaterials. MRS Bull 2015; 40(2): 108-15.
[http://dx.doi.org/10.1557/mrs.2015.3]
[49]
Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces 2014; 6(13): 9955-65.
[http://dx.doi.org/10.1021/am501048n] [PMID: 24826838]
[50]
Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med 2019; 4(1): 83.
[http://dx.doi.org/10.1002/btm2.10110]
[51]
Garreta E, Oria R, Tarantino C, et al. Tissue engineering by decellularization and 3D bioprinting. Mater Today 2017; 20(4): 166-78.
[http://dx.doi.org/10.1016/j.mattod.2016.12.005]
[52]
Holzapfel B, Reichert J. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 2013; 65(4): 581-603.
[http://dx.doi.org/10.1016/j.addr.2012.07.009]
[53]
Xuanhe Z. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 2014; 10(5): 672-87.
[http://dx.doi.org/10.1039/C3SM52272E]
[54]
Mirfakhrai T, Madden J. Polymer artificial muscles. Polym Soft Ma 2007; 10(4): 30-8.
[55]
Rokaya D. Advances in biomaterials for clinical applications. J Chitwan Med Coll 2022; 11(4): 1-3.
[http://dx.doi.org/10.54530/jcmc.593]
[56]
Zhao W, Cui CH, Bose S, et al. Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci 2012; 109(48): 19626-31.
[http://dx.doi.org/10.1073/pnas.1211234109] [PMID: 23150586]
[57]
Kowalski PS, Bhattacharya C, Afewerki S, Langer R. Smart biomaterials: Recent advances and future directions. ACS Biomater Sci Eng 2018; 4(11): 3809-17.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00889] [PMID: 33429614]
[58]
Palmiero U, Sponchioni M. Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polymer Chemistry 2018; (30): 4084-99.
[59]
Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015; 9(7): 6644-54.
[http://dx.doi.org/10.1021/acsnano.5b03569]
[60]
Langer R, Peppas N. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 1981; 2(4): 201-14.
[http://dx.doi.org/10.1016/0142-9612(81)90059-4] [PMID: 7034798]
[61]
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater 2018; 30(29): e1705328.
[http://dx.doi.org/10.1002/adma.201705328]
[62]
Stachewicz U. Biomaterials and Medical Applications. In:Bio materials In Drug Delivery . 2021.
[63]
Crommelin DJA, Park K, Florence A. Pharmaceutical nanotechnology: Unmet needs in drug delivery. J Control Release 2010; 141(3): 263-4.
[http://dx.doi.org/10.1016/j.jconrel.2009.11.019] [PMID: 19945491]
[64]
Park K. Controlled drug delivery systems: Past forward and future back. J Control Release 2014; 190: 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
[65]
Agrawal M, Prathyusha E, Ahmed H, et al. Biomaterials in treatment of Alzheimer’s disease. Neurochem Int 2021; 145: 105008.
[http://dx.doi.org/10.1016/j.neuint.2021.105008] [PMID: 33684545]
[66]
Das P, Ganguly S, Saravanan A, et al. Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release. ACS Appl Bio Mater 2022; 5(12): 5617-33.
[http://dx.doi.org/10.1021/acsabm.2c00664] [PMID: 36480591]
[67]
Zhu FD, Hu YJ, Yu L, et al. Nanoparticles: A hope for the treatment of inflammation in CNS. Front Pharmacol 2021; 12: 683935.
[http://dx.doi.org/10.3389/fphar.2021.683935] [PMID: 34122112]
[68]
Agarwal KM, Singh P, Mohan U, Mandal S, Bhatia D. Comprehensive study related to advancement in biomaterials for medical applications. Sensors International 2020; 1: 100055.
[http://dx.doi.org/10.1016/j.sintl.2020.100055]
[69]
Navarro M, Michiardi A, Castaño O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface 2008; 5(27): 1137.
[70]
de Oliveira CP, Rodrigues LMR, Fregni MVVD, Gotfryd A, Made AM, Pinhal MADS. Extracellular matrix remodeling in experimental intervertebral disc degeneration. Acta Ortop Bras 2013; 21(3): 144.
[71]
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2(4): 224.
[http://dx.doi.org/10.1016/j.bioactmat.2017.05.007]
[72]
Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater 2020; 5(9): 686-705.
[http://dx.doi.org/10.1038/s41578-020-0209-x]
[73]
Jaganathan SK, Supriyanto E, Murugesan S, Balaji A, Asokan MK. Biomaterials in cardiovascular research: Applications and clinical implications. Biomed Res Int 2014; 2014: 459465.
[http://dx.doi.org/10.1155/2014/459465]
[74]
Phillips’ Science of Dental Materials - E-Book - Google Books Available from : https://books.google.co.in/books/about/Phillips_Science_of_Dental_Materials_E_B.html?id=SMfsAwAAQBAJ&redir_esc=y Accessed : 10-05-2023
[75]
Haworth K, Travis D, Abariga SA, Fuller D, Pucker AD. Silicone hydrogel versus hydrogel soft contact lenses for differences in patient‐reported eye comfort and safety. Cochrane Database Syst Rev 2021; 2021(5): CD014791.
[76]
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent advances of intraocular lens materials and surface modification in cataract surgery. Front Bioeng Biotechnol 2022; 10: 913383.
[http://dx.doi.org/10.3389/fbioe.2022.913383]
[77]
Reza RH, Beigi RH, Rezaei KMM, Öchsner A. A Review on Dental Materials. (1st ed.), Springer 2020.
[http://dx.doi.org/10.1007/978-3-030-48931-1]
[78]
Mazzoni E, Iaquinta MR, Lanzillotti C, et al. Bioactive materials for soft tissue repair. Front Bioeng Biotechnol 2021; 9: 613787.
[http://dx.doi.org/10.3389/fbioe.2021.613787] [PMID: 33681157]
[79]
Bikramjit B, Dhirendra SK, Ashok K, Eds. Advanced Biomaterials:Fundamentals, Processing, and Applications. The American Ceramic Society. 2009. Available at: See link from MS. [Accessed: Nov 23, 2022].
[80]
Nara S, Chameettachal S, Ghosh S. Precise patterning of biopolymers and cells by direct write technique. Materials Technology 2014; 29(B1): B10-4.
[http://dx.doi.org/10.1179/1753555713Y.0000000112]
[81]
Nicholson J. Current trends in biomaterials. Mater Today 1998; 1(2): 6-8.
[http://dx.doi.org/10.1016/S1369-7021(98)80038-2]
[82]
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Library. MRS Bull 2006; 31(1): 58-60.
[http://dx.doi.org/10.1557/mrs2006.17]
[83]
Yun YH, Lee BK, Park K. Controlled drug delivery: Historical perspective for the next generation. J Control Release 2015; 219: 2-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.005] [PMID: 26456749]
[84]
Fenton OS, Paolini M, Andresen JL, Müller FJ, Langer R. Outlooks on three-dimensional printing for ocular biomaterials research. J Ocul Pharmacol Ther 2020; 36(1): 7-17.
[http://dx.doi.org/10.1089/jop.2018.0142] [PMID: 31211652]
[85]
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170: 396-424.
[http://dx.doi.org/10.1016/j.addr.2020.09.011] [PMID: 32987096]
[86]
Yoon SK, Chung DJ. In vivo degradation studies of pga-pla block copolymer and their histochemical analysis for spinal-fixing application. Polymers 2022; 14(16): 3322.
[http://dx.doi.org/10.3390/polym14163322] [PMID: 36015579]
[87]
Åkerlund E, Diez-Escudero A, Grzeszczak A, Persson C. The effect of PCL addition on 3D-Printable PLA/HA composite filaments for the treatment of bone defects. Polymers (Basel) 2022; 14(16): 3305.
[http://dx.doi.org/10.3390/polym14163305] [PMID: 36015563]
[88]
Nordin NN, Aziz NK, Naharudin I, Anuar NK. Effects of drug-free pectin hydrogel films on thermal burn wounds in streptozotocin-induced diabetic rats. Polymers (Basel) 2022; 14(14): 2873.
[http://dx.doi.org/10.3390/polym14142873] [PMID: 35890648]
[89]
La Gatta A, Bedini E, Aschettino M, Finamore R, Schiraldi C. Hyaluronan hydrogels: Rheology and stability in relation to the type/level of biopolymer chemical modification. Polymers 2022; 14(12): 2402.
[http://dx.doi.org/10.3390/polym14122402] [PMID: 35745978]
[90]
Kim SE, Jeong SI, Shim KM, et al. In vivo evaluation of gamma-irradiated and heparin-immobilized small-diameter polycaprolactone vascular grafts with VEGF in aged rats. Polymers 2022; 14(6): 1265.
[http://dx.doi.org/10.3390/polym14061265] [PMID: 35335595]
[91]
Herráez-Galindo C, Rizo-Gorrita M, Maza-Solano S, Serrera-Figallo MA, Torres-Lagares D. A review on CAD/CAM yttria-stabilized tetragonal zirconia polycrystal (y-tzp) and polymethyl methacrylate (PMMA) and their biological behavior. Polymers 2022; 14(5): 906.
[http://dx.doi.org/10.3390/polym14050906] [PMID: 35267729]
[92]
Bacakova L, Novotna K, Hadraba D, Musilkova J, Slepicka P, Beran M. Influence of biomimetically mineralized collagen scaffolds on bone cell proliferation and immune activation. Polymers 2022; 14(3): 602.
[http://dx.doi.org/10.3390/polym14030602] [PMID: 35160591]
[93]
Hata K, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Development of dental Poly(methyl methacrylate)-based resin for stereolithography additive manufacturing. Polymers 2021; 13(24): 4435.
[http://dx.doi.org/10.3390/polym13244435] [PMID: 34960985]
[94]
Ma YC, Hsieh CT, Lin YH, Dai CA, Li JH. Numerical study of customized artificial cornea shape by hydrogel biomaterials on imaging and wavefront aberration. Polymers 2021; 13(24): 4372.
[http://dx.doi.org/10.3390/polym13244372] [PMID: 34960923]
[95]
Taguchi Y, Turki T. Effects of collagen–glycosaminoglycan mesh on gene expression as determined by using principal component analysis-based unsupervised feature extraction. Polymers 2021; 13(23): 4117.
[http://dx.doi.org/10.3390/polym13234117] [PMID: 34883620]
[96]
Niu L, Chen G, Feng Y, et al. Polyethylenimine-modified bombyx mori silk fibroin as a delivery carrier of the ing4-il-24 coexpression plasmid. Polymers 2021; 13(20): 3592.
[http://dx.doi.org/10.3390/polym13203592] [PMID: 34685354]
[97]
Ballal NV, Roy A, Zehnder M. Effect of sodium hypochlorite concentration in continuous chelation on dislodgement resistance of an epoxy resin and hydraulic calcium silicate sealer. Polymers 2021; 13(20): 3482.
[http://dx.doi.org/10.3390/polym13203482] [PMID: 34685241]
[98]
Lu YJ, Hsieh HY, Kuo WC, et al. Nanoplasmonic structure of a polycarbonate substrate integrated with parallel microchannels for label-free multiplex detection. Polymers 2021; 13(19): 3294.
[http://dx.doi.org/10.3390/polym13193294] [PMID: 34641110]
[99]
Zheng Y, Pierce AF, Wagner WL, et al. Functional adhesion of pectin biopolymers to the lung visceral pleura. Polymers 2021; 13(17): 2976.
[http://dx.doi.org/10.3390/polym13172976] [PMID: 34503016]
[100]
Zheng Y, Pierce AF, Wagner WL, et al. Biomaterial-assisted anastomotic healing: Serosal adhesion of pectin films. Polymers 2021; 13(16): 2811.
[http://dx.doi.org/10.3390/polym13162811] [PMID: 34451349]
[101]
Vallecillo C, Toledano-Osorio M, Vallecillo-Rivas M, Toledano M, Osorio R. In vitro biodegradation pattern of collagen matrices for soft tissue augmentation. Polymers 2021; 13(16): 2633.
[http://dx.doi.org/10.3390/polym13162633] [PMID: 34451173]
[102]
Zu G, Meijer M, Mergel O, Zhang H, van Rijn P. 3d-printable hierarchical nanogel-gelma composite hydrogel system. Polymers 2021; 13(15): 2508.
[http://dx.doi.org/10.3390/polym13152508] [PMID: 34372111]
[103]
Lee HI, Heo Y, Baek SW, Kim DS, Song DH, Han DK. Multifunctional biodegradable vascular PLLA scaffold with improved x-ray opacity, anti-inflammation, and re-endothelization. Polymers 2021; 13(12): 1979.
[http://dx.doi.org/10.3390/polym13121979] [PMID: 34208677]
[104]
Coroli A, Romano R, Saccani A, Raddadi N, Mele E, Mascia L. An in‐vitro evaluation of the characteristics of zein‐based films for the release of lactobionic acid and the effects of oleic acid. Polymers 2021; 13(11): 1826.
[http://dx.doi.org/10.3390/polym13111826] [PMID: 34072945]
[105]
Radhouani H, Correia S, Gonçalves C, Reis RL, Oliveira JM. Synthesis and characterization of biocompatible methacrylated kefiran hydrogels: Towards tissue engineering applications. Polymers 2021; 13(8): 1342.
[http://dx.doi.org/10.3390/polym13081342] [PMID: 33923932]
[106]
Moldovan H, Antoniac I, Gheorghiță D. et al.Biomaterials as haemostatic agents in cardiovascular surgery: Review of current situation and future trends. Polymers 2022; 14(6): 1189.
[http://dx.doi.org/10.3390/polym14061189] [PMID: 35335519]
[107]
Niculescu AG, Grumezescu AM. An up-to-date review of biomaterials application in wound management. Polymers 2022; 14(3): 421.
[http://dx.doi.org/10.3390/polym14030421] [PMID: 35160411]
[108]
Onisor F, Bran S, Mitre I, et al. Polymer-based bone substitutes in periodontal infrabony defects: A systematic evaluation of clinical studies. Polymers 2021; 13(24): 4445.
[http://dx.doi.org/10.3390/polym13244445] [PMID: 34960996]
[109]
Wang H. A review of the effects of collagen treatment in clinical studies. Polymers 2021; 13(22): 3868.
[http://dx.doi.org/10.3390/polym13223868] [PMID: 34833168]
[110]
Mokhtari H, Tavakoli S, Safarpour F, et al. Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers 2021; 13(11): 1744.
[http://dx.doi.org/10.3390/polym13111744] [PMID: 34073518]
[111]
Vallecillo C, Toledano-Osorio M, Vallecillo-Rivas M, Toledano M, Rodriguez-Archilla A, Osorio R. Collagen matrix vs. Autogenous connective tissue graft for soft tissue augmentation: A systematic review and meta-analysis. Polymers 2021; 13(11): 1810.
[http://dx.doi.org/10.3390/polym13111810] [PMID: 34072698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy