Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Research Article

Green Tea (Camellia sinensis) Extract is Effective against Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa, and Interferes on the Activity of Antimicrobial Drugs

Author(s): Gustavo José da Costa, Renan Martins dos Santos, Isabela Penna Ceravolo, Gabriel Pimenta Freire and Marcus Vinícius Dias Souza*

Volume 1, Issue 2, 2023

Published on: 26 May, 2023

Article ID: e190423216032 Pages: 9

DOI: 10.2174/2666862901666230419092405

Price: $65

Abstract

Background: Given the lack of options for treating infectious diseases, it is urgent to explore new antimicrobials. Plant food historically represents relevant sources of antimicrobial molecules.

Objective: Here, we show that green tea can eradicate biofilms and planktonic cells of clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa.

Methods: We conducted in vitro antimicrobial activity tests (MIC, MBC, MBEC). Cytotoxicity tests were conducted using BGM cells. We used UPLC and GC-MS to detect flavonoids and other relevant phytomolecules. The antioxidant potential was assessed using the ®-carotene bleaching test. The extract was combined to clinically relevant antimicrobial drugs in vitro to investigate possible synergism or antagonism.

Results: To the best of our knowledge, MIC values are among the lowest ever described for the alcoholic extract (8 μg/mL). The extract presented elevated antioxidant potential and was not toxic to BGM cells. When the extract was combined to clinically relevant antimicrobial drugs, statistically significant antagonism was frequent for the drugs used against S. aureus isolates, whilst significant synergism was observed for some drugs used against P. aeruginosa isolates.

Conclusion: Our data open doors for exploring isolated molecules from green tea extract against bacterial biofilms, and for developing formulations for clinical treatments.

Graphical Abstract

[1]
Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A randomized trial. Nat Commun 2022; 13(1): 893.
[http://dx.doi.org/10.1038/s41467-022-28525-z] [PMID: 35173154]
[2]
Cooray T, Zhang J, Zhong H, et al. Profiles of antibiotic resistome and microbial community in groundwater of CKDu prevalence zones in Sri Lanka. J Hazard Mater 2021; 403: 123816.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123816] [PMID: 33264913]
[3]
Zhou Y, Smith D, Leong BJ, Brännström K, Almqvist F, Chapman MR. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 2012; 287(42): 35092-103.
[http://dx.doi.org/10.1074/jbc.M112.383737] [PMID: 22891247]
[4]
Mirza B, Ikram H, Bilgrami S, Haleem DJ, Haleem MA. Neurochemical and behavioral effects of green tea (Camellia sinensis): A model study. Pak J Pharm Sci 2013; 26(3): 511-6.
[PMID: 23625424]
[5]
Heo JC, Rho JR, Kim TH, Kim SY, Lee SH. An aqueous extract of green tea Camellia sinensis increases expression of Th1 cell-specific anti-asthmatic markers. Int J Mol Med 2008; 22(6): 763-7.
[PMID: 19020774]
[6]
Batista GA, Cunha CL, Scartezini M, von der Heyde R, Bitencourt MG, Melo SF. Prospective double-blind crossover study of Camellia sinensis (green tea) in dyslipidemias. Arq Bras Cardiol 2009; 93(2): 128-34.
[http://dx.doi.org/10.1590/S0066-782X2009000800010] [PMID: 19838489]
[7]
Kang MY, Park YH, Kim BS, et al. Preventive effects of green tea (Camellia sinensis var. assamica) on diabetic nephropathy. Yonsei Med J 2012; 53(1): 138-44.
[http://dx.doi.org/10.3349/ymj.2012.53.1.138] [PMID: 22187244]
[8]
Filippini T, Malavolti M, Borrelli F, et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Libr 2020; 2021(11): CD005004.
[http://dx.doi.org/10.1002/14651858.CD005004.pub3] [PMID: 32118296]
[9]
Harborne JB. Phytochemical methods: A guide to modern techniques on plant analysis. (3rd ed.). UK: Kluwer Academic Publishers 1998; pp. 299-312.
[10]
Dias-Souza MV, dos Santos RM, Cerávolo IP, Cosenza G, Ferreira Marçal PH, Figueiredo FJB. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb Pathog 2018; 114: 29-35.
[http://dx.doi.org/10.1016/j.micpath.2017.11.006] [PMID: 29146496]
[11]
Dias-Souza MV, Andrade S, Aguiar AP, Monteiro AS. Evaluation of Antimicrobial and Anti-biofilm activities of Anacardium occidentale stem bark extract. J Nat Prod 2013; 26: 198-205.
[12]
Dias-Souza MV, Caldoncelli JL, Monteiro AS. Anacardium occidentale stem bark extract can decrease the efficacy of antimicrobial drugs. J Med Biol Sci 2013; 12: 161-5.
[13]
Adak M, Gabar MA. Green tea as a functional food for better health: A brief review. Res J Pharm Biol Chem Sci 2011; 2: 645-64.
[14]
Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 2009; 23(4): 791-815.
[http://dx.doi.org/10.1016/j.idc.2009.06.008]
[15]
Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem 2012; 135(2): 672-5.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.143] [PMID: 22868144]
[16]
Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol 2014; 5: 434.
[http://dx.doi.org/10.3389/fmicb.2014.00434] [PMID: 25191312]
[17]
Taylor PW, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bull 2005; 2(7): 71-81.
[http://dx.doi.org/10.1616/1476-2137.14184] [PMID: 19844590]
[18]
Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and multi–drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed 2013; 3(8): 663-7.
[http://dx.doi.org/10.1016/S2221-1691(13)60133-1] [PMID: 23905026]
[19]
Mora A, Pawa J, Chaverri JM, Arias ML. Determination of the antimicrobial capacity of green tea (Camellia sinensis) against potentially pathogenic agents Escherichia coli, Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, Candida albicans and Aspergillus niger. Arch Latinoam Nutr 2013; 63(3): 247-53.
[PMID: 25362825]
[20]
Jeon J, Kim JH, Lee CK, Oh CH, Song HJ. The Antimicrobial Activity of (-)-Epigallocatehin-3-Gallate and Green Tea Extracts against Pseudomonas aeruginosa and Escherichia coli Isolated from Skin Wounds. Ann Dermatol 2014; 26(5): 564-9.
[http://dx.doi.org/10.5021/ad.2014.26.5.564] [PMID: 25324647]
[21]
Gonzales GB, Raes K, Coelus S, Struijs K, Smagghe G, Van Camp J. Ultra(high)-pressure liquid chromatography–electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J Chromatogr A 2014; 1323: 39-48.
[http://dx.doi.org/10.1016/j.chroma.2013.10.077] [PMID: 24280615]
[22]
Mabry TJ, Markham KR, Thomas MB. The Systematic Identification of Flavonoids. Springer-Verlag 1970.
[http://dx.doi.org/10.1007/978-3-642-88458-0]
[23]
Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: Results of a controlled supplementation trial. Br J Nutr 2011; 105(2): 171-9.
[http://dx.doi.org/10.1017/S0007114510003211] [PMID: 20807462]
[24]
dos Santos RM, Costa G, Cerávolo IP, Dias-Souza MV. Antibiofilm potential of Psidium guajava and Passiflora edulis pulp extracts against Staphylococcus aureus, cytotoxicity, and interference on the activity of antimicrobial drugs. Future Journal of Pharmaceutical Sciences 2020; 6(1): 48.
[http://dx.doi.org/10.1186/s43094-020-00056-8]
[25]
Huang YS, Dufour R, Davignon J. Effect of methyl linoleate administration on phospholipid fatty acid composition and osmotic fragility of erythrocytes in essential fatty acid deficient rats. J Am Coll Nutr 1983; 2(1): 55-61.
[http://dx.doi.org/10.1080/07315724.1983.10719909] [PMID: 6886244]
[26]
Tampucci S, Monti D, Burgalassi S, et al. Effect of 5-Oxo-2-pyrrolidinecarboxylic acid (PCA) as a new topically applied agent for dry eye syndrome treatment. Pharmaceutics 2018; 10(3): 137.
[http://dx.doi.org/10.3390/pharmaceutics10030137] [PMID: 30149648]
[27]
Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. In vitro anti-adhesive activity of green tea extract against pathogen adhesion. Phytother Res 2009; 23(4): 460-6.
[http://dx.doi.org/10.1002/ptr.2609] [PMID: 19107860]
[28]
Kim SA, Rhee MS. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Appl Environ Microbiol 2013; 79(21): 6552-60.
[http://dx.doi.org/10.1128/AEM.02164-13] [PMID: 23956396]
[29]
Saleem R, Ahmad M, Naz A, Siddiqui H, Ahmad SI, Faizi S. Hypotensive and toxicological study of citric acid and other constituents from Tagetes patula roots. Arch Pharm Res 2004; 27(10): 1037-42.
[http://dx.doi.org/10.1007/BF02975428] [PMID: 15554261]
[30]
Gómez-Moreno G, Guardia J, Aguilar-Salvatierra A, Cabrera-Ayala M, Maté-Sánchez de-Val JE, Calvo-Guirado JL. Effectiveness of malic acid 1% in patients with xerostomia induced by antihypertensive drugs. Med Oral Patol Oral Cir Bucal 2013; 18(1): e49-55.
[http://dx.doi.org/10.4317/medoral.18206] [PMID: 22926481]
[31]
Ray S, Dutta M, Chaudhury K, De B. GC–MS based metabolite profiling and angiotensin I-converting enzyme inhibitory property of black tea extracts. Revista Brasileira de Farmacognosia 2017; 27(5): 580-6.
[http://dx.doi.org/10.1016/j.bjp.2017.05.006]
[32]
Yüksel AK, Yükse M. Şat IG. Determination of certain physicochemical characteristics and sensory properties of green tea powder (matcha) added ice creams and detection of their organic acid and mineral contents. Gida 2017; 42(2): 116-2.
[33]
Carro MD, López S, Valdés C, Ovejero FJ. Effect of dl-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Anim Feed Sci Technol 1999; 79(4): 279-88.
[http://dx.doi.org/10.1016/S0377-8401(99)00034-6]
[34]
Colovic MB, Vasic VM, Djuric DM, Krstic DZ. Sulphur-containing Amino Acids: Protective role against free radicals and heavy metals. Curr Med Chem 2018; 25(3): 324-35.
[http://dx.doi.org/10.2174/0929867324666170609075434] [PMID: 28595554]
[35]
Isogai E, Isogai H, Hirose K, Hayashi S, Oguma K. In vivo synergy between green tea extract and levofloxacin against enterohemorrhagic Escherichia coli O157 infection. Curr Microbiol 2001; 42(4): 248-51.
[http://dx.doi.org/10.1007/s0028403357] [PMID: 11178724]
[36]
Farooqui A, Khan A, Borghetto I, Kazmi SU, Rubino S, Paglietti B. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria. PLoS One 2015; 10(2): e0118431.
[http://dx.doi.org/10.1371/journal.pone.0118431] [PMID: 25719410]
[37]
Hacioglu M, Dosler S, Birteksoz Tan AS, Otuk G. Antimicrobial activities of widely consumed herbal teas, alone or in combination with antibiotics: An in vitro study. PeerJ 2017; 5: e3467.
[http://dx.doi.org/10.7717/peerj.3467] [PMID: 28761777]
[38]
Dos Santos LDR, Dos Santos AES, Cerávolo IP, Figueiredo FJB, Dias-Souza MV. Antibiofilm activity of black tea leaf extract, its cytotoxicity and interference on the activity of antimicrobial drugs. Biointerface Res Appl Chem 2018; 8: 3565-9.
[39]
Dias-Souza MV, dos Santos RM, de Siqueira EP, Ferreira-Marçal PH. Antibiofilm activity of cashew juice pulp against Staphylococcus aureus, high performance liquid chromatography/diode array detection and gas chromatography-mass spectrometry analyses, and interference on antimicrobial drugs. J Food Drug Anal 2017; 25(3): 589-96.
[http://dx.doi.org/10.1016/j.jfda.2016.07.009] [PMID: 28911645]
[40]
Dos Santos RM, Pimenta G, Dias-Souza MV. Carotenoids and flavonoids can impair the effectiveness of some antimicrobial drugs against clinical isolates of Escherichia coli and Staphylococcus aureus. Int Food Res J 2015; 5: 1777-82.
[41]
Dos Santos RM, Pimenta G, Figueiredo FJB, Dias-Souza MV. Interference of flavonoids and carotenoids on the antimicrobial activity of some drugs against clinical isolates of Pseudomonas aeruginosa. Int Food Res J 2016; 23: 1268-73.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy