Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Systematic Review Article

The Gut Microbiota-Brain Axis: Potential Mechanism of Drug Addiction

Author(s): Xiao Luo, Hong Li, Xuan Fan, Xiaocong Wu, Ruiyi Zhou, Yi Lei, Dan Xue, Fazheng Yang, Yu Xu* and Kunhua Wang*

Volume 23, Issue 18, 2023

Published on: 15 May, 2023

Page: [1782 - 1792] Pages: 11

DOI: 10.2174/1568026623666230418114133

Price: $65

Abstract

As a chronic encephalopathy, drug addiction is responsible for millions of deaths per year around the world. The gut microbiome is a crucial component of the human microbiome. Through dynamic bidirectional communication along the 'gut-brain axis,' gut bacteria cooperate with their hosts to regulate the development and function of the immune, metabolic, and nervous systems.

These processes may affect human health because some brain diseases are related to the composition of gut bacteria, and disruptions in microbial communities have been implicated in neurological disorders.

We review the compositional and functional diversity of the gut microbiome in drug addiction. We discuss intricate and crucial connections between the gut microbiota and the brain involving multiple biological systems and possible contributions by the gut microbiota to neurological disorders.

Finally, the treatment of probiotics and fecal transplantation was summarized. This was done to further understand the role of intestinal microecology in the pathogenesis of drug addiction and to explore new methods for the treatment of drug addiction.

« Previous
Graphical Abstract

[1]
Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci., 2001, 2(2), 119-128.
[http://dx.doi.org/10.1038/35053570] [PMID: 11252991]
[2]
Shen, S.; Zhao, J.; Dai, Y.; Chen, F.; Zhang, Z.; Yu, J.; Wang, K. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/TNF-α/tight junction axis. Toxicology Letters, 2020, 321, 73-82.
[http://dx.doi.org/10.1016/j.toxlet.2019.12.020]
[3]
Xu, Y.; Xie, Z.; Wang, H.; Shen, Z.; Guo, Y.; Gao, Y.; Chen, X.; Wu, Q.; Li, X.; Wang, K. Bacterial diversity of intestinal microbiota in patients with substance use disorders revealed by 16S rRNA gene deep sequencing. Sci. Rep., 2017, 7(1), 3628.
[http://dx.doi.org/10.1038/s41598-017-03706-9] [PMID: 28620208]
[4]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[5]
De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 2014, 156(1-2), 84-96.
[http://dx.doi.org/10.1016/j.cell.2013.12.016] [PMID: 24412651]
[6]
Morais, L.H.; Schreiber, H.L., IV; Mazmanian, S.K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol., 2021, 19(4), 241-255.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[7]
Khoruts, A. Targeting the microbiome: From probiotics to fecal microbiota transplantation. Genome Med., 2018, 10(1), 80.
[http://dx.doi.org/10.1186/s13073-018-0592-8] [PMID: 30376869]
[8]
Cammarota, G.; Ianiro, G.; Bibbò, S.; Gasbarrini, A. Gut microbiota modulation: Probiotics, antibiotics or fecal microbiota transplantation? Intern. Emerg. Med., 2014, 9(4), 365-373.
[http://dx.doi.org/10.1007/s11739-014-1069-4] [PMID: 24664520]
[9]
Goldstein, R.Z.; Volkow, N.D. Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry, 2002, 159(10), 1642-1652.
[http://dx.doi.org/10.1176/appi.ajp.159.10.1642] [PMID: 12359667]
[10]
Zou, Z.; Wang, H.; d’Oleire Uquillas, F.; Wang, X.; Ding, J.; Chen, H. Definition of substance and non-substance addiction. Adv. Exp. Med. Biol., 2017, 1010, 21-41.
[http://dx.doi.org/10.1007/978-981-10-5562-1_2] [PMID: 29098666]
[11]
Crime(UNODC). World drug report; United Nations Office on Drugs and Crime: Vienna, 2020.
[12]
Nawi, A.M.; Ismail, R.; Ibrahim, F.; Hassan, M.R.; Manaf, M.R.A.; Amit, N.; Ibrahim, N.; Shafurdin, N.S. Risk and protective factors of drug abuse among adolescents: A systematic review. BMC Public Health, 2021, 21(1), 2088.
[http://dx.doi.org/10.1186/s12889-021-11906-2] [PMID: 34774013]
[13]
Burdo, T.H.; Katner, S.N.; Taffe, M.A.; Fox, H.S. Neuroimmunity, drugs of abuse, and neuroAIDS. J. Neuroimmune Pharmacol., 2006, 1(1), 41-49.
[http://dx.doi.org/10.1007/s11481-005-9001-3] [PMID: 18040790]
[14]
Volkow, N.D.; Morales, M. The brain on drugs: From reward to addiction. Cell, 2015, 162(4), 712-725.
[http://dx.doi.org/10.1016/j.cell.2015.07.046] [PMID: 26276628]
[15]
Riezzo, I.; Fiore, C.; De Carlo, D.; Pascale, N.; Neri, M.; Turillazzi, E.; Fineschi, V. Side effects of cocaine abuse: Multiorgan toxicity and pathological consequences. Curr. Med. Chem., 2012, 19(33), 5624-5646.
[http://dx.doi.org/10.2174/092986712803988893] [PMID: 22934772]
[16]
Yin, R.; Lu, C.; Chen, Q.; Fan, J.; Lu, J. Microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy. Int. J. Med. Sci., 2013, 10(3), 299-306.
[http://dx.doi.org/10.7150/ijms.4830] [PMID: 23423584]
[17]
Qiu, Y.; Jiang, G.; Su, H.; Lv, X.; Zhang, X.; Tian, J.; Zhuo, F. Progressive white matter microstructure damage in male chronic heroin dependent individuals: A DTI and TBSS study. PLoS One, 2013, 8(5)e63212
[http://dx.doi.org/10.1371/journal.pone.0063212] [PMID: 23650554]
[18]
Pacifici, R.; di Carlo, S.; Bacosi, A.; Pichini, S.; Zuccaro, P. Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int. J. Immunopharmacol., 2000, 22(8), 603-614.
[http://dx.doi.org/10.1016/S0192-0561(00)00023-0] [PMID: 10988355]
[19]
Loram, L.C.; Grace, P.M.; Strand, K.A.; Taylor, F.R.; Ellis, A.; Berkelhammer, D.; Bowlin, M.; Skarda, B.; Maier, S.F.; Watkins, L.R. Prior exposure to repeated morphine potentiates mechanical allodynia induced by peripheral inflammation and neuropathy. Brain Behav. Immun., 2012, 26(8), 1256-1264.
[http://dx.doi.org/10.1016/j.bbi.2012.08.003] [PMID: 22902523]
[20]
Nazari, A.; Zahmatkesh, M.; Mortaz, E.; Hosseinzadeh, S. Effect of methamphetamine exposure on the plasma levels of endothelial-derived microparticles. Drug Alcohol Depend., 2018, 186, 219-225.
[http://dx.doi.org/10.1016/j.drugalcdep.2018.02.015] [PMID: 29609134]
[21]
Tan, X.; Cai, D.; Chen, N.; Du, S.; Qiao, D.; Yue, X.; Wang, T.; Li, J.; Xie, W.; Wang, H. Methamphetamine mediates apoptosis of vascular smooth muscle cells via the chop-related endoplasmic reticulum stress pathway. Toxicol. Lett., 2021, 350, 98-110.
[http://dx.doi.org/10.1016/j.toxlet.2021.06.019] [PMID: 34214594]
[22]
Hammoud, N.; Jimenez-Shahed, J. Chronic neurologic effects of alcohol. Clin. Liver Dis., 2019, 23(1), 141-155.
[http://dx.doi.org/10.1016/j.cld.2018.09.010] [PMID: 30454828]
[23]
Sambo, D.O.; Lin, M.; Owens, A.; Lebowitz, J.J.; Richardson, B.; Jagnarine, D.A.; Shetty, M.; Rodriquez, M.; Alonge, T.; Ali, M.; Katz, J.; Yan, L.; Febo, M.; Henry, L.K.; Bruijnzeel, A.W.; Daws, L.; Khoshbouei, H. The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat. Commun., 2017, 8(1), 2228.
[http://dx.doi.org/10.1038/s41467-017-02087-x] [PMID: 29263318]
[24]
Lin, M.; Sambo, D.; Khoshbouei, H. Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci., 2016, 36(40), 10376-10391.
[http://dx.doi.org/10.1523/JNEUROSCI.1392-16.2016] [PMID: 27707972]
[25]
Saha, K.; Sambo, D.; Richardson, B.D.; Lin, L.M.; Butler, B.; Villarroel, L.; Khoshbouei, H. Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing. J. Biol. Chem., 2014, 289(32), 22246-22257.
[http://dx.doi.org/10.1074/jbc.M114.563056] [PMID: 24962577]
[26]
North, A.; Swant, J.; Salvatore, M.F.; Gamble-george, J.; Prins, P.; Butler, B.; Mittal, M.K.; Heltsley, R.; Clark, J.T.; Khoshbouei, H. Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit. Synapse, 2013, 67(5), 245-257.
[http://dx.doi.org/10.1002/syn.21635] [PMID: 23280858]
[27]
Quigley, E.M.M. Gut bacteria in health and disease. Gastroenterol. Hepatol., 2013, 9(9), 560-569.
[PMID: 24729765]
[28]
Passos, M.C.F.; Moraes-Filho, J.P. Intestinal microbiota in digestive diseases. Arq. Gastroenterol., 2017, 54(3), 255-262.
[http://dx.doi.org/10.1590/s0004-2803.201700000-31] [PMID: 28723981]
[29]
Sun, Y.; Zuo, T.; Cheung, C.P.; Gu, W.; Wan, Y.; Zhang, F.; Chen, N.; Zhan, H.; Yeoh, Y.K.; Niu, J.; Du, Y.; Zhang, F.; Wen, Y.; Yu, J.; Sung, J.J.Y.; Chan, P.K.S.; Chan, F.K.L.; Wang, K.; Ng, S.C.; Miao, Y. Population-Level Configurations of Gut Mycobiome Across 6 Ethnicities in Urban and Rural China. Gastroenterology, 2021, 160(1), 272-286.e11.
[http://dx.doi.org/10.1053/j.gastro.2020.09.014] [PMID: 32956679]
[30]
Addolorato, G.; Ponziani, F.R.; Dionisi, T.; Mosoni, C.; Vassallo, G.A.; Sestito, L.; Petito, V.; Picca, A.; Marzetti, E.; Tarli, C.; Mirijello, A.; Zocco, M.A.; Lopetuso, L.R.; Antonelli, M.; Rando, M.M.; Paroni Sterbini, F.; Posteraro, B.; Sanguinetti, M.; Gasbarrini, A. Gut microbiota compositional and functional fingerprint in patients with alcohol use disorder and alcohol-associated liver disease. Liver Int., 2020, 40(4), 878-888.
[http://dx.doi.org/10.1111/liv.14383] [PMID: 31951082]
[31]
Bjørkhaug, S.T.; Aanes, H.; Neupane, S.P.; Bramness, J.G.; Malvik, S.; Henriksen, C.; Skar, V.; Medhus, A.W.; Valeur, J. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes, 2019, 10(6), 663-675.
[http://dx.doi.org/10.1080/19490976.2019.1580097] [PMID: 30894059]
[32]
Chen, L.J.; Zhi, X.; Zhang, K.K.; Wang, L.B.; Li, J.H.; Liu, J.L.; Xu, L.L.; Yoshida, J.S.; Xie, X.L.; Wang, Q. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem. Toxicol., 2021, 148111946
[http://dx.doi.org/10.1016/j.fct.2020.111946] [PMID: 33359793]
[33]
Cheng, M.; Tan, B.; Wu, X.; Liao, F.; Wang, F.; Huang, Z. Gut Microbiota Is Involved in Alcohol-Induced Osteoporosis in Young and Old Rats Through Immune Regulation. Front. Cell. Infect. Microbiol., 2021, 11636231
[http://dx.doi.org/10.3389/fcimb.2021.636231] [PMID: 34336709]
[34]
Chivero, E.T.; Ahmad, R.; Thangaraj, A.; Periyasamy, P.; Kumar, B.; Kroeger, E.; Feng, D.; Guo, M.L.; Roy, S.; Dhawan, P.; Singh, A.B.; Buch, S. Cocaine Induces Inflammatory Gut Milieu by Compromising the Mucosal Barrier Integrity and Altering the Gut Microbiota Colonization. Sci. Rep., 2019, 9(1), 12187.
[http://dx.doi.org/10.1038/s41598-019-48428-2] [PMID: 31434922]
[35]
Fan, J.; Wang, Y.; You, Y.; Ai, Z.; Dai, W.; Piao, C.; Liu, J.; Wang, Y. Fermented ginseng improved alcohol liver injury in association with changes in the gut microbiota of mice. Food Funct., 2019, 10(9), 5566-5573.
[http://dx.doi.org/10.1039/C9FO01415B] [PMID: 31429848]
[36]
Forouzan, S.; Hoffman, K.L.; Kosten, T.A. Methamphetamine exposure and its cessation alter gut microbiota and induce depressive-like behavioral effects on rats. Psychopharmacology, 2021, 238(1), 281-292.
[http://dx.doi.org/10.1007/s00213-020-05681-y] [PMID: 33097978]
[37]
Gicquelais, R.E.; Bohnert, A.S.B.; Thomas, L.; Foxman, B. Opioid agonist and antagonist use and the gut microbiota: Associations among people in addiction treatment. Sci. Rep., 2020, 10(1), 19471.
[http://dx.doi.org/10.1038/s41598-020-76570-9] [PMID: 33173098]
[38]
Gurwara, S.; Dai, A.; Ajami, N.J.; Graham, D.Y.; White, D.L.; Chen, L.; Jang, A.; Chen, E.; El-Serag, H.B.; Petrosino, J.F.; Jiao, L. Alcohol use alters the colonic mucosa-associated gut microbiota in humans. Nutr. Res., 2020, 83, 119-128.
[http://dx.doi.org/10.1016/j.nutres.2020.09.004] [PMID: 33096423]
[39]
Leclercq, S.; Schwarz, M.; Delzenne, N.M.; Stärkel, P.; de Timary, P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: A link with gut microbiota, peripheral inflammation and psychological symptoms. Transl. Psychiatry, 2021, 11(1), 503.
[http://dx.doi.org/10.1038/s41398-021-01610-5] [PMID: 34599147]
[40]
Lee, K.; Vuong, H.E.; Nusbaum, D.J.; Hsiao, E.Y.; Evans, C.J.; Taylor, A.M.W. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology, 2018, 43(13), 2606-2614.
[http://dx.doi.org/10.1038/s41386-018-0211-9] [PMID: 30258112]
[41]
Ning, T.; Gong, X.; Xie, L.; Ma, B. Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference. Front. Microbiol., 2017, 8, 1620.
[http://dx.doi.org/10.3389/fmicb.2017.01620] [PMID: 28890714]
[42]
Rodríguez-González, A.; Vitali, F.; Moya, M.; De Filippo, C.; Passani, M.B.; Orio, L. Effects of alcohol binge drinking and oleoylethanolamide pretreatment in the gut microbiota. Front. Cell. Infect. Microbiol., 2021, 11731910
[http://dx.doi.org/10.3389/fcimb.2021.731910] [PMID: 34888256]
[43]
Scorza, C.; Piccini, C.; Martínez Busi, M.; Abin Carriquiry, J.A.; Zunino, P. Alterations in the gut microbiota of rats chronically exposed to volatilized cocaine and its active adulterants caffeine and phenacetin. Neurotox. Res., 2019, 35(1), 111-121.
[http://dx.doi.org/10.1007/s12640-018-9936-9] [PMID: 30066173]
[44]
Segovia-Rodríguez, L.; Echeverry-Alzate, V.; Rincón-Pérez, I.; Calleja-Conde, J.; Bühler, K.M.; Giné, E.; Albert, J.; Hinojosa, J.A.; Huertas, E.; Gómez-Gallego, F.; Bressa, C.; Rodríguez de Fonseca, F.; López-Moreno, J.A. Gut microbiota and voluntary alcohol consumption. Transl. Psychiatry, 2022, 12(1), 146.
[http://dx.doi.org/10.1038/s41398-022-01920-2] [PMID: 35393390]
[45]
Wang, G.; Liu, Q.; Guo, L.; Zeng, H.; Ding, C.; Zhang, W.; Xu, D.; Wang, X.; Qiu, J.; Dong, Q.; Fan, Z.; Zhang, Q.; Pan, J. Gut microbiota and relevant metabolites analysis in alcohol dependent mice. Front. Microbiol., 2018, 9, 1874.
[http://dx.doi.org/10.3389/fmicb.2018.01874]
[46]
Wang, L.B.; Xu, L.L.; Chen, L.J.; Zhang, K.K.; Zhang, Q.Y.; Chen, Y.K.; Li, J.H.; Liu, J.L.; Wang, Q.; Xie, X.L. Methamphetamine induces intestinal injury by altering gut microbiota and promoting inflammation in mice. Toxicol. Appl. Pharmacol., 2022, 443116011
[http://dx.doi.org/10.1016/j.taap.2022.116011] [PMID: 35390362]
[47]
Xiao, H.; Ge, C.; Feng, G.; Li, Y.; Luo, D.; Dong, J.; Li, H.; Wang, H.; Cui, M.; Fan, S. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol. Lett., 2018, 287, 23-30.
[http://dx.doi.org/10.1016/j.toxlet.2018.01.021] [PMID: 29391279]
[48]
Xu, Z.; Wang, C.; Dong, X.; Hu, T.; Wang, L.; Zhao, W.; Zhu, S.; Li, G.; Hu, Y.; Gao, Q.; Wan, J.; Liu, Z.; Sun, J. Chronic alcohol exposure induced gut microbiota dysbiosis and its correlations with neuropsychic behaviors and brain BDNF/Gabra1 changes in mice. Biofactors, 2019, 45(2), 187-199.
[http://dx.doi.org/10.1002/biof.1469] [PMID: 30417952]
[49]
Xue, M.; Liu, Y.; Lyu, R.; Ge, N.; Liu, M.; Ma, Y.; Liang, H. Protective effect of aplysin on liver tissue and the gut microbiota in alcohol-fed rats. PLoS One, 2017, 12(6)e0178684
[http://dx.doi.org/10.1371/journal.pone.0178684] [PMID: 28622357]
[50]
Yang, F.; Wei, J.; Shen, M.; Ding, Y.; Lu, Y.; Ishaq, H.M.; Li, D.; Yan, D.; Wang, Q.; Zhang, R. Integrated analyses of the gut microbiota, intestinal permeability, and serum metabolome phenotype in rats with alcohol withdrawal syndrome. Appl. Environ. Microbiol., 2021, 87(18), e00834-e21.
[http://dx.doi.org/10.1128/AEM.00834-21] [PMID: 34190609]
[51]
Yang, J.; Xiong, P.; Bai, L.; Zhang, Z.; Zhou, Y.; Chen, C.; Xie, Z.; Xu, Y.; Chen, M.; Wang, H.; Zhu, M.; Yu, J.; Wang, K. The association of altered gut microbiota and intestinal mucosal barrier integrity in mice with heroin dependence. Front. Nutr., 2021, 8765414
[http://dx.doi.org/10.3389/fnut.2021.765414] [PMID: 34805249]
[52]
Li, Z.; Zhou, J.; Liang, H.; Ye, L.; Lan, L.; Lu, F.; Wang, Q.; Lei, T.; Yang, X.; Cui, P.; Huang, J. Differences in alpha diversity of gut microbiota in neurological diseases. Front. Neurosci., 2022, 16879318
[http://dx.doi.org/10.3389/fnins.2022.879318]
[53]
Tamana, S.K.; Tun, H.M.; Konya, T.; Chari, R.S.; Field, C.J.; Guttman, D.S.; Becker, A.B.; Moraes, T.J.; Turvey, S.E.; Subbarao, P.; Sears, M.R.; Pei, J.; Scott, J.A.; Mandhane, P.J.; Kozyrskyj, A.L. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes, 2021, 13(1)1930875
[http://dx.doi.org/10.1080/19490976.2021.1930875] [PMID: 34132157]
[54]
Zhang, W.; Sun, Z.; Zhang, Q.; Sun, Z.; Su, Y.; Song, J.; Wang, B.; Gao, R. Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children. BMC Pediatr., 2021, 21(1), 86.
[http://dx.doi.org/10.1186/s12887-021-02539-w] [PMID: 33596845]
[55]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[56]
Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest., 2015, 125(3), 926-938.
[http://dx.doi.org/10.1172/JCI76304] [PMID: 25689247]
[57]
Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol., 2014, 817, 39-71.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_3] [PMID: 24997029]
[58]
Ibañez, C.; Vicencio, S.; Quintanilla, M.E.; Maldonado, P. Interoception and alcohol addiction: Vagotomy induces long-lasting suppression of relapse-type behavior. Addict. Biol., 2021, 26(1)e12836
[http://dx.doi.org/10.1111/adb.12836] [PMID: 31846188]
[59]
Everett, N.A.; Turner, A.J.; Costa, P.A.; Baracz, S.J.; Cornish, J.L. The vagus nerve mediates the suppressing effects of peripherally administered oxytocin on methamphetamine self-administration and seeking in rats. Neuropsychopharmacology, 2021, 46(2), 297-304.
[http://dx.doi.org/10.1038/s41386-020-0719-7] [PMID: 32450570]
[60]
Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol., 2017, 17(4), 219-232.
[http://dx.doi.org/10.1038/nri.2017.7] [PMID: 28260787]
[61]
Bechter, K.; Reiber, H.; Herzog, S.; Fuchs, D.; Tumani, H.; Maxeiner, H.G. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: Identification of subgroups with immune responses and blood-CSF barrier dysfunction. J. Psychiatr. Res., 2010, 44(5), 321-330.
[http://dx.doi.org/10.1016/j.jpsychires.2009.08.008] [PMID: 19796773]
[62]
Nennig, S.E.; Schank, J.R. The role of NFkB in drug addiction: beyond inflammation. Alcohol Alcohol., 2017, 52(2), 172-179.
[http://dx.doi.org/10.1093/alcalc/agw098] [PMID: 28043969]
[63]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[64]
Brookes, S.J.H.; Spencer, N.J.; Costa, M.; Zagorodnyuk, V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(5), 286-296.
[http://dx.doi.org/10.1038/nrgastro.2013.29] [PMID: 23438947]
[65]
Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci., 2016, 39(11), 763-781.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[66]
Forsythe, P.; Kunze, W.; Bienenstock, J. Moody microbes or fecal phrenology: What do we know about the microbiota-gut-brain axis? BMC Med., 2016, 14(1), 58.
[http://dx.doi.org/10.1186/s12916-016-0604-8] [PMID: 27090095]
[67]
Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132.
[http://dx.doi.org/10.1016/j.neuint.2016.06.011] [PMID: 27346602]
[68]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. A thermodynamic study of molecular association by gas-liquid chromatography: trilaurylamine alcohol systems. Indian Chem Soc, 1997, 74(7), 548-551.
[69]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. Determination of heat of formation of associated systems by calorimetry. Indian. Chem Soc, 1997, 74(2), 103-107.
[70]
Lin, Y.P.; Fang, Q.L.; Xue, Y.M.; Fu, S.N.; Hu, C.Y.; Huang, F.; Wang, M.M.; Qiao, X.; Yin, X.Q.; Zeng, Y.C.; Du, C.H.; Zhao, X.J.; Li, X.P.; Hua, Y. Effects of Tylophora yunnanensis Schltr on regulating the gut microbiota and its metabolites in non-alcoholic steatohepatitis rats by inhibiting the activation of NOD-like receptor protein 3. J. Ethnopharmacol., 2023, 305116145
[http://dx.doi.org/10.1016/j.jep.2023.116145]
[71]
Wu, J.; Guo, W.; Cui, S.; Tang, X.; Zhang, Q.; Lu, W.; Jin, Y.; Zhao, J.; Mao, B.; Chen, W. Broccoli seed extract rich in polysaccharides and glucoraphanin ameliorates DSS -induced colitis via intestinal barrier protection and gut microbiota modulation in mice. J. Sci. Food Agric., 2023, 103(4), 1749-1760.
[http://dx.doi.org/10.1002/jsfa.12382] [PMID: 36495024]
[72]
Riedl, R.A.; Burnett, C.M.L.; Pearson, N.A.; Reho, J.J.; Mokadem, M.; Edwards, R.A.; Kindel, T.L.; Kirby, J.R.; Grobe, J.L. Gut microbiota represent a major thermogenic biomass. Function., 2021, 2(3), zqab019.
[http://dx.doi.org/10.1093/function/zqab019] [PMID: 33939772]
[73]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66]
[74]
Roman, P.; Rueda-Ruzafa, L.; Cardona, D.; Cortes-Rodríguez, A. Gut-brain axis in the executive function of austism spectrum disorder. Behav. Pharmacol., 2018, 29(7), 654-663.
[http://dx.doi.org/10.1097/FBP.0000000000000428] [PMID: 30179883]
[75]
Marszalek-Grabska, M.; Gawel, K.; Matosiuk, D.; Gibula-Tarlowska, E.; Listos, J.; Kotlinska, J.H. Effects of the positive allosteric modulator of metabotropic glutamate receptor 5, VU-29, on maintenance association between environmental cues and rewarding properties of ethanol in rats. Biomolecules, 2020, 10(5), 793.
[http://dx.doi.org/10.3390/biom10050793]
[76]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[77]
Chidambaram, S.B.; Tuladhar, S.; Bhat, A.; Mahalakshmi, A.M.; Ray, B.; Essa, M.M.; Bishir, M.; Bolla, S.R.; Nanjaiah, N.D.; Guillemin, G.J.; Qoronfleh, M.W. Autism and gut-brain axis: role of probiotics. Adv. Neurobiol., 2020, 24, 587-600.
[http://dx.doi.org/10.1007/978-3-030-30402-7_21]
[78]
Hong, M.; Han, D.H.; Hong, J.; Kim, D.J.; Suk, K.T. Are Probiotics Effective in Targeting Alcoholic Liver Diseases? Probiotics Antimicrob. Proteins, 2019, 11(2), 335-347.
[http://dx.doi.org/10.1007/s12602-018-9419-6]
[79]
Bajaj, J.S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(4), 235-246.
[http://dx.doi.org/10.1038/s41575-018-0099-1]
[80]
Wang, S.C.; Chen, Y.C.; Chen, S.J.; Lee, C.H.; Cheng, C.M. Alcohol addiction, gut microbiota, and alcoholism treatment: A review. Int. J. Mol. Sci., 2020, 21(17), 6413.
[http://dx.doi.org/10.3390/ijms21176413]
[81]
LeMarquand, D.; Pihl, R.O.; Benkelfat, C. Serotonin and alcohol intake, abuse, and dependence: Findings of animal studies. Biol. Psychiatry, 1994, 36(6), 395-421.
[http://dx.doi.org/10.1016/0006-3223(94)91215-7] [PMID: 7803601]
[82]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75]
[83]
Savignac, H.M.; Couch, Y.; Stratford, M.; Bannerman, D.M.; Tzortzis, G.; Anthony, D.C.; Burnet, P.W.J. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun., 2016, 52, 120-131.
[http://dx.doi.org/10.1016/j.bbi.2015.10.007]
[84]
Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol. Psychiatry, 2017, 82(7), 472-487.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.031] [PMID: 28242013]
[85]
Szklany, K.; Wopereis, H.; de Waard, C.; van Wageningen, T.; An, R.; van Limpt, K.; Knol, J.; Garssen, J.; Knippels, L.M.J.; Belzer, C.; Kraneveld, A.D. Supplementation of dietary non-digestible oligosaccharides from birth onwards improve social and reduce anxiety-like behaviour in male BALB/c mice. Nutr. Neurosci., 2020, 23(11), 896-910.
[http://dx.doi.org/10.1080/1028415X.2019.1576362] [PMID: 30871432]
[86]
Khoruts, A.; Sadowsky, M.J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(9), 508-516.
[http://dx.doi.org/10.1038/nrgastro.2016.98]
[87]
Xu, Z.; Liu, Z.; Dong, X.; Hu, T.; Wang, L.; Li, J.; Liu, X.; Sun, J. Fecal microbiota transplantation from healthy donors reduced alcohol-induced anxiety and depression in an animal model of chronic alcohol exposure. Chin. J. Physiol., 2018, 61(6), 360-371.
[http://dx.doi.org/10.4077/CJP.2018.BAH633] [PMID: 30580506]
[88]
Thomaz, A.C.; Iyer, V.; Woodward, T.J.; Hohmann, A.G. Fecal microbiota transplantation and antibiotic treatment attenuate naloxone-precipitated opioid withdrawal in morphine-dependent mice. Exp. Neurol., 2021, 343113787
[http://dx.doi.org/10.1016/j.expneurol.2021.113787]
[89]
Leclercq, S.; Le Roy, T.; Furgiuele, S.; Coste, V.; Bindels, L.B.; Leyrolle, Q.; Neyrinck, A.M.; Quoilin, C.; Amadieu, C.; Petit, G.; Dricot, L.; Tagliatti, V.; Cani, P.D.; Verbeke, K.; Colet, J.M.; Stärkel, P.; de Timary, P.; Delzenne, N.M. Gut Microbiota-Induced Changes in β-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Alcohol Use Disorder. Cell Rep., 2020, 33(2)108238
[http://dx.doi.org/10.1016/j.celrep.2020.108238] [PMID: 33053357]
[90]
Banerjee, S.; Sindberg, G.; Wang, F.; Meng, J.; Sharma, U.; Zhang, L.; Dauer, P.; Chen, C.; Dalluge, J.; Johnson, T.; Roy, S. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol., 2016, 9(6), 1418-1428.
[http://dx.doi.org/10.1038/mi.2016.9] [PMID: 26906406]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy