Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

LINC01176 Hinders Thyroid Cancer Progression by Sponging miR-146b-5p to Enhance SGIP1

Author(s): Zhaodan Yan and Chong Yan*

Volume 23, Issue 13, 2023

Published on: 09 June, 2023

Page: [1637 - 1648] Pages: 12

DOI: 10.2174/1871530323666230417083447

Price: $65

Abstract

Background: Long non-coding RNA (lncRNAs) plays a crucial role in tumor pathogenesis. However, the function of most of these genes remains unclear.

Aims: In the present study, we aimed to unveil LINC01176’s role in thyroid cancer.

Methods: Western blotting and qRT-PCR were applied for the analysis of the expressions of LINC01176, miR-146b-5p, and SH3GL interacting endocytic adaptor 1 (SGIP1). Proliferative and migratory capabilities were assessed using the CCK-8 assay and wound-healing experiments, respectively. Apoptosis of the cells was studied by quantifying the apoptosis-related markers Bcl-2 and Bax by western blotting. Animal models were established using nude mice to determine the role of LINC01176 in tumorigenesis. MiR-146b-5p’s putative binding to LINC01176 and SGIP1 was validated using dual-luciferase reporter and RIP analyses.

Results: LINC01176 expression was downregulated in the thyroid cancer cell lines and tissues. LINC01176 overexpression represses cancer cell proliferation and migration but induces apoptosis. Elevated LINC01176 expression hampers tumorigenesis in animal models. LINC01176 targeted miR-146b-5p and negatively regulated its expression. Enrichment of miR-146b-5p counteracted the functional effects of LINC01176 overexpression. Additionally, miR-146b-5p interacted with SGIP1 and negatively regulated its expression. Thus, miR-146b-5p attenuates the anti-cancer effects of SGIP1.

Conclusion: LINC01176 negatively regulates the expression miR-146b-5p and upregulates SGIP1 expression. Hence, LINC01176 blocks the malignant progression of thyroid cancer.

Graphical Abstract

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol 2020; 11: 102.
[http://dx.doi.org/10.3389/fendo.2020.00102] [PMID: 32231639]
[3]
Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet 2016; 388(10061): 2783-95.
[http://dx.doi.org/10.1016/S0140-6736(16)30172-6] [PMID: 27240885]
[4]
Milano AF. Thyroid Cancer: 20-year comparative mortality and survival analysis of six thyroid cancer histologic subtypes by age, sex, race, stage, cohort entry time-period and disease duration (SEER*Stat 8.3.2) A systematic review of 145,457 cases for diagnosis years 1993–2013. J Insur Med 2018; 47(3): 143-58.
[http://dx.doi.org/10.17849/insm-47-03-143-158.1] [PMID: 30192723]
[5]
Yu GP, Li JCL, Branovan D, McCormick S, Schantz SP. Thyroid cancer incidence and survival in the national cancer institute sur-veillance, epidemiology, and end results race/ethnicity groups. Thyroid 2010; 20(5): 465-73.
[http://dx.doi.org/10.1089/thy.2008.0281] [PMID: 20384488]
[6]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[7]
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220(2)e202009045
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[8]
Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 2014; 14(6): 752-61.
[http://dx.doi.org/10.1016/j.stem.2014.05.014] [PMID: 24905165]
[9]
Kim C, Kang D, Lee EK, Lee JS. Long noncoding RNAs and RNA-Binding proteins in oxidative stress, cellular senescence, and age-related diseases. Oxid Med Cell Longev 2017; 2017: 1-21.
[http://dx.doi.org/10.1155/2017/2062384] [PMID: 28811863]
[10]
Lin YH. Crosstalk of lncRNA and cellular metabolism and their regulatory mechanism in cancer. Int J Mol Sci 2020; 21(8): 2947.
[http://dx.doi.org/10.3390/ijms21082947] [PMID: 32331347]
[11]
Huang Q, Guo H, Wang S, et al. A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis 2020; 11(12): 1031.
[http://dx.doi.org/10.1038/s41419-020-03237-8] [PMID: 33268793]
[12]
Sedaghati M, Kebebew E. Long noncoding RNAs in thyroid cancer. Curr Opin Endocrinol Diabetes Obes 2019; 26(5): 275-81.
[http://dx.doi.org/10.1097/MED.0000000000000497] [PMID: 31385810]
[13]
Ghafouri-Fard S, Mohammad-Rahimi H, Taheri M. The role of long non-coding RNAs in the pathogenesis of thyroid cancer. Exp Mol Pathol 2020; 112104332
[http://dx.doi.org/10.1016/j.yexmp.2019.104332] [PMID: 31706987]
[14]
Zhao X, Hu X. Retracted: Downregulated long noncoding RNA LINC00313 inhibits the epithelial–mesenchymal transition, invasion, and migration of thyroid cancer cells through inhibiting the methylation of ALX4. J Cell Physiol 2019; 234(11): 20992-1004.
[http://dx.doi.org/10.1002/jcp.28703] [PMID: 31093972]
[15]
Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol 2018; 1087: 67-79.
[http://dx.doi.org/10.1007/978-981-13-1426-1_6] [PMID: 30259358]
[16]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction net-works from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[17]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4e05005
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[18]
Xu Y, Chen J, Yang Z, Xu L. Identification of rna expression profiles in thyroid cancer to construct a competing endogenous RNA (ceRNA) network of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs). Med Sci Monit 2019; 25: 1140-54.
[http://dx.doi.org/10.12659/MSM.912450] [PMID: 30745559]
[19]
Li C, Wang H, Meng S, et al. lncRNA GAS8 AS1 regulates cancer cell proliferation and predicts poor survival of patients with gastric cancer. Oncol Lett 2021; 23(2): 48.
[http://dx.doi.org/10.3892/ol.2021.13166] [PMID: 34992681]
[20]
Lu W, Xu Y, Xu J, Wang Z, Ye G. Identification of differential expressed lncRNAs in human thyroid cancer by a genome-wide anal-yses. Cancer Med 2018; 7(8): 3935-44.
[http://dx.doi.org/10.1002/cam4.1627] [PMID: 29923329]
[21]
Liyanarachchi S, Li W, Yan P, et al. Genome-wide expression screening discloses long Noncoding RNAs involved in thyroid carcinogenesis. J Clin Endocrinol Metab 2016; 101(11): 4005-13.
[http://dx.doi.org/10.1210/jc.2016-1991] [PMID: 27459529]
[22]
Gou Q, Gao L, Nie X, et al. Long noncoding RNA AB074169 inhibits cell proliferation via modulation of KHSRP-Mediated CDKN1a expression in papillary thyroid carcinoma. Cancer Res 2018; 78(15): 4163-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3766] [PMID: 29735546]
[23]
Thomson DW, Dinger ME. Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet 2016; 17(5): 272-83.
[http://dx.doi.org/10.1038/nrg.2016.20] [PMID: 27040487]
[24]
Geraldo MV, Yamashita AS, Kimura ET. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 2012; 31(15): 1910-22.
[http://dx.doi.org/10.1038/onc.2011.381] [PMID: 21874046]
[25]
Deng X, Wu B, Xiao K, et al. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem 2015; 35(1): 71-82.
[http://dx.doi.org/10.1159/000369676] [PMID: 25547151]
[26]
Jia M, Shi Y, Li Z, Lu X, Wang J. MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6. Cancer Lett 2019; 443: 145-56.
[http://dx.doi.org/10.1016/j.canlet.2018.11.026] [PMID: 30503553]
[27]
Jiang K, Li G, Chen W, et al. Plasma exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas. OncoTargets Ther 2020; 13: 1311-9.
[http://dx.doi.org/10.2147/OTT.S231361] [PMID: 32103998]
[28]
Xie GF, Xu YX, Xu F, et al. Plasma SGIP1 methylation in diagnosis and prognosis prediction in hepatocellular carcinoma. Neoplasma 2021; 68(1): 62-70.
[http://dx.doi.org/10.4149/neo_2020_200623N657] [PMID: 33118832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy