Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Role of Nanomedicines in Controlling Malaria: A Review

Author(s): Sakshi Sharma, Kamla Rawat* and Himadri B. Bohidar*

Volume 23, Issue 16, 2023

Published on: 28 April, 2023

Page: [1477 - 1488] Pages: 12

DOI: 10.2174/1568026623666230417083401

Price: $65

Abstract

Malaria has created havoc since time immemorial. It has actually become a major health concern due to its high prevalence in developing countries where poor sanitary conditions facilitate the seasonal breeding of the vector, the female Anopheles mosquito. Even after tremendous advancements in pest control and pharmacology science, managing this disease has not been successful, and the cure for this deadly infection has not proven effective lately. The various conventional drugs used are chloroquine, primaquine, mefloquine, atovaquone, quinine, artemisinin etc. All of these have one or other major disadvantages like multi-drug resistance, high dose requirements, aggravated toxicity, non-specificity of conventional drugs, and the emergence of drug-resistant parasites. Therefore, it is necessary to surpass these limitations and look for an alternative to curb the spread of this disease using an emerging technology platform. Nanomedicine is showing promise as an effective alternative tool for the management of malaria. The idea of this tool resonates well with David J. Triggle’s outstanding suggestion “The chemist is as the astronaut, searching for biologically useful space in the chemical universe. This review presents a detailed discussion on various nanocarriers, their mode of action and future perspective in treating malaria. Nanotechnology-based drug delivery methods are highly specific, require a lower dose, offer more bioavailability with prolonged drug release and stay in the body longer. Recent nano drug encapsulation and delivery vehicles comprise nanocarriers like liposomes, and organic and inorganic nanoparticles, emerging as promising alternatives for malaria management.

Next »
Graphical Abstract

[1]
Gujjari, L.; Kalani, H.; Pindiprolu, S.K.; Arakareddy, B.P.; Yadagiri, G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control, 2022, 17, e00244.
[http://dx.doi.org/10.1016/j.parepi.2022.e00244] [PMID: 35243049]
[2]
Guasch-Girbau, A.; Fernàndez-Busquets, X. Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies. Pharmaceutics, 2021, 13(12), 2189.
[http://dx.doi.org/10.3390/pharmaceutics13122189] [PMID: 34959470]
[3]
Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today, 2020, 25(11), 2012-2022.
[http://dx.doi.org/10.1016/j.drudis.2020.09.010] [PMID: 32947043]
[4]
Pradhan, S.; Mishra, A.; Sahoo, S.; Pradhan, S.; Babu, P.J.; Singh, Y.D.; Chanu, N.B. Artemisinin based nanomedicine for therapeutic applications: Recent advances and challenges. Pharmacological Research - Modern Chinese Medicine, 2022, 2, 100064.
[http://dx.doi.org/10.1016/j.prmcm.2022.100064]
[5]
Pam, D.D.; Omalu, I.C.J.; Innalegwu, D.A.; Opemipo, B.O.; Hassan, F.S.; Kasim, J.H.; Saba, M.H.; Abuchi, N.A.; Adeniyi, K.A. An overview of application of nanotechnology in malaria control. Online J. Health Allied Sci., 2017, 16(2), 106-116.
[6]
Gnanadesigan, M.; Nandagopalan, V.; Kapildev, G.; Gundappa, M. Nano drugs for curing malaria: The plausibility 16. Nano Drugs for Curing Malaria, 2019, 451-466.
[7]
Wu, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm., 2005, 295(1-2), 235-245.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.042] [PMID: 15848008]
[8]
Marques, J.; Moles, E.; Urbán, P.; Prohens, R.; Busquets, M.A.; Sevrin, C.; Grandfils, C.; Fernàndez-Busquets, X. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomedicine, 2014, 10(8), 1719-1728.
[http://dx.doi.org/10.1016/j.nano.2014.06.002] [PMID: 24941466]
[9]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[10]
Valle-Delgado, J.J.; Urbán, P.; Fernàndez-Busquets, X. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy. Nanoscale, 2013, 5(9), 3673-3680.
[http://dx.doi.org/10.1039/c2nr32821f] [PMID: 23306548]
[11]
Mignani, S.; Kazzouli, S.E.; Bousmina, M.; Majoral, J.P. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Prog. Polym. Sci., 2013, 38(7), 993-1008.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.03.003]
[12]
Chong, W.C.; Basir, R.; Fei, Y.M. Eradication of malaria through genetic engineering: The current situation. Asian Pac. J. Trop. Med., 2013, 6(2), 85-94.
[http://dx.doi.org/10.1016/S1995-7645(13)60001-2] [PMID: 23339908]
[13]
Guerin, P.J.; Olliaro, P.; Nosten, F.; Druilhe, P.; Laxminarayan, R.; Binka, F.; Kilama, W.L.; Ford, N.; White, N.J. Malaria: Current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect. Dis., 2002, 2(9), 564-573.
[http://dx.doi.org/10.1016/S1473-3099(02)00372-9] [PMID: 12206972]
[14]
Rani, S.; Sharma, A.K.; Khan, I.; Gothwal, A.; Chaudhary, S.; Gupta, U. Polymeric nanoparticles in targeting and delivery of drugs.Nanotechnology-based approaches for targeting and delivery of drugs and genes; Academic Press, 2017, pp. 223-255.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00008-7]
[15]
Weynom Ephraim, J.; Muda, B.M.; Aaron, Y.; Blessing, G.; Maureen, O.; Itodo, G.O.; Abdulazee, A.K. Nanotechnology for improved anti-malaria efficacy review update. Int. J. Cell Sci. Mol. Biol., 2019, 6(3), 87-93.
[16]
Santos-Magalhães, N.S.; Mosqueira, V.C.F. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev., 2010, 62(4-5), 560-575.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[17]
Mohammadi, L.; Pal, K.; Bilal, M.; Rahdar, A.; Fytianos, G.; Kyzas, G.Z. Green nanoparticles to treat patients with Malaria disease: An overview. J. Mol. Struct., 2021, 1229, 129857.
[http://dx.doi.org/10.1016/j.molstruc.2020.129857]
[18]
Neves Borgheti-Cardoso, L.; San Anselmo, M.; Lantero, E.; Lancelot, A.; Serrano, J.L.; Hernández-Ainsa, S.; Fernàndez-Busquets, X.; Sierra, T. Promising nanomaterials in the fight against malaria. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(41), 9428-9448.
[http://dx.doi.org/10.1039/D0TB01398F] [PMID: 32955067]
[19]
Dennis, E.; Peoples, V.A.; Johnson, F.; Bibbs, R.K.; Topps, D.; Bopda-Waffo, A.; Coats, M.T. Utilizing nanotechnology to combat malaria. J. Infect. Dis. Ther., 2015, 3, 4.
[20]
Tiyaboonchai, W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan University Journal: Science and Technology, 2013, 11(3), 51-66.
[21]
Baird, J.K.; Rieckmann, K.H. Can primaquine therapy for vivax malaria be improved? Trends Parasitol., 2003, 19(3), 115-120.
[http://dx.doi.org/10.1016/S1471-4922(03)00005-9] [PMID: 12643993]
[22]
Bugnicourt, L.; Ladavière, C. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog. Polym. Sci., 2016, 60, 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.06.002]
[23]
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Sharifi-Rad, J.; Mendoza-Muñoz, N.; González-Torres, M.; Urbán-Morlán, Z.; Florán, B.; Cortes, H.; Leyva-Gómez, G. Chitosan-decorated nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol., 2020, 59, 101896.
[http://dx.doi.org/10.1016/j.jddst.2020.101896]
[24]
Marques, J.; Valle-Delgado, J.J.; Urbán, P.; Baró, E.; Prohens, R.; Mayor, A.; Cisteró, P.; Delves, M.; Sinden, R.E.; Grandfils, C.; de Paz, J.L.; García-Salcedo, J.A.; Fernàndez-Busquets, X. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine, 2017, 13(2), 515-525.
[http://dx.doi.org/10.1016/j.nano.2016.09.010] [PMID: 27720930]
[25]
Yokoyama, M. Drug targeting with nano-sized carrier systems. J. Artif. Organs, 2005, 8(2), 77-84.
[http://dx.doi.org/10.1007/s10047-005-0285-0] [PMID: 16094510]
[26]
Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.X. Nanoemulsions for drug delivery. Particuology, 2022, 64, 85-97.
[http://dx.doi.org/10.1016/j.partic.2021.05.009]
[27]
Fardous, J.; Omoso, Y.; Joshi, A.; Yoshida, K.; Patwary, M.K.A.; Ono, F.; Ijima, H. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. Mater. Sci. Eng. C, 2021, 124, 112076.
[http://dx.doi.org/10.1016/j.msec.2021.112076] [PMID: 33947568]
[28]
Mu, H.; Holm, R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin. Drug Deliv., 2018, 15(8), 771-785.
[http://dx.doi.org/10.1080/17425247.2018.1504018] [PMID: 30064267]
[29]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[30]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[31]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[32]
Puttappa, N.; Kumar, R.S.; Kuppusamy, G.; Radhakrishnan, A. Nano-facilitated drug delivery strategies in the treatment of plasmodium infection. Acta Trop., 2019, 195, 103-114.
[http://dx.doi.org/10.1016/j.actatropica.2019.04.020] [PMID: 31039335]
[33]
Fernández-García, R.; Lalatsa, A.; Statts, L.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm., 2020, 573, 118817.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118817] [PMID: 31678520]
[34]
Elkin, I.; Banquy, X.; Barrett, C.J.; Hildgen, P. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development. J. Control. Release, 2017, 264, 288-305.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.002] [PMID: 28887136]
[35]
Haas, S.E.; Bettoni, C.C.; de Oliveira, L.K.; Guterres, S.S.; Dalla Costa, T. Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo. Int. J. Antimicrob. Agents, 2009, 34(2), 156-161.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.02.024] [PMID: 19369041]
[36]
Jeong, Y.J.; Kim, D.S.; Kim, J.Y.; Oyunbaatar, N.E.; Shanmugasundaram, A.; Kim, E.S.; Lee, D.W. On-stage bioreactor platform integrated with nano-patterned and gold-coated PDMS diaphragm for live cell stimulation and imaging. Mater. Sci. Eng. C, 2021, 118, 111355.
[http://dx.doi.org/10.1016/j.msec.2020.111355] [PMID: 33254975]
[37]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[38]
Jain, K.; Ahmad, J. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases; Academic Press, 2022.
[39]
Bigaj-Józefowska, M.J. Grześkowiak, B.F. Polymeric nanoparticles wrapped in biological membranes for targeted anticancer treatment. Eur. Polym. J., 2022, 176, 111427.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111427]
[40]
Tayeb, H.H.; Felimban, R.; Almaghrabi, S.; Hasaballah, N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloid Interface Sci. Commun., 2021, 45, 100533.
[http://dx.doi.org/10.1016/j.colcom.2021.100533] [PMID: 34692429]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy