Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Perspective

Immune Checkpoint Inhibitor-Mediated Cardiovascular Disease: The Dark Side of the Monoclonal Anti-Body Therapy against Cancer

Author(s): Carlo Caiati* and Emilio Jirillo*

Volume 23, Issue 11, 2023

Published on: 05 June, 2023

Page: [1365 - 1367] Pages: 3

DOI: 10.2174/1871530323666230416153426

Price: $65

conference banner
[1]
Meric-Bernstam, F.; Larkin, J.; Tabernero, J.; Bonini, C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet, 2021, 397(10278), 1010-1022.
[http://dx.doi.org/10.1016/S0140-6736(20)32598-8] [PMID: 33285141]
[2]
Mayes, P.A.; Hance, K.W.; Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov., 2018, 17(7), 509-527.
[http://dx.doi.org/10.1038/nrd.2018.75] [PMID: 29904196]
[3]
Magrone, T.; Jirillo, E. Update on mechanisms of adaptive resistance to immune check point blockers in malignancies: a short commentary. Curr. Pharm. Des., 2019, 24(45), 5349-5351.
[http://dx.doi.org/10.2174/138161282445190416154917] [PMID: 31012396]
[4]
Boussiotis, V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med., 2016, 375(18), 1767-1778.
[http://dx.doi.org/10.1056/NEJMra1514296] [PMID: 27806234]
[5]
Rotte, A.; Jin, J.Y.; Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol., 2018, 29(1), 71-83.
[http://dx.doi.org/10.1093/annonc/mdx686] [PMID: 29069302]
[6]
Geraud, A.; Gougis, P.; Vozy, A.; Anquetil, C.; Allenbach, Y.; Romano, E.; Funck-Brentano, E.; Moslehi, J.J.; Johnson, D.B.; Salem, J.E. Clinical Pharmacology and interplay of immune checkpoint agents: a Yin-Yang balance. Annu. Rev. Pharmacol. Toxicol., 2021, 61(1), 85-112.
[http://dx.doi.org/10.1146/annurev-pharmtox-022820-093805] [PMID: 32871087]
[7]
Quagliariello, V.; Passariello, M.; Di Mauro, A.; Cipullo, C.; Paccone, A.; Barbieri, A.; Palma, G.; Luciano, A.; Buccolo, S.; Bisceglia, I.; Canale, M.L.; Gallucci, G.; Inno, A.; De Lorenzo, C.; Maurea, N. Immune checkpoint inhibitor therapy increases systemic SDF-1, cardiac DAMPs Fibronectin-EDA, S100/Calgranulin, galectine-3, and NLRP3-MyD88-chemokine pathways. Front. Cardiovasc. Med., 2022, 9, 930797.
[http://dx.doi.org/10.3389/fcvm.2022.930797] [PMID: 36158826]
[8]
Malaty, M.M.; Amarasekera, A.T.; Li, C.; Scherrer-Crosbie, M.; Tan, T.C. Incidence of immune checkpoint inhibitor mediated cardiovascular toxicity: A systematic review and meta‐analysis. Eur. J. Clin. Invest., 2022, 52(12), e13831.
[http://dx.doi.org/10.1111/eci.13831] [PMID: 35788986]
[9]
Waliany, S.; Lee, D.; Witteles, R.M.; Neal, J.W.; Nguyen, P.; Davis, M.M.; Salem, J.E.; Wu, S.M.; Moslehi, J.J.; Zhu, H. Immune checkpoint inhibitor cardiotoxicity: understanding basic mechanisms and clinical characteristics and finding a cure. Annu. Rev. Pharmacol. Toxicol., 2021, 61(1), 113-134.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023451] [PMID: 32776859]
[10]
Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; Becker, J.R.; Slosky, D.A.; Phillips, E.J.; Pilkinton, M.A.; Craig-Owens, L.; Kola, N.; Plautz, G.; Reshef, D.S.; Deutsch, J.S.; Deering, R.P.; Olenchock, B.A.; Lichtman, A.H.; Roden, D.M.; Seidman, C.E.; Koralnik, I.J.; Seidman, J.G.; Hoffman, R.D.; Taube, J.M.; Diaz, L.A., Jr; Anders, R.A.; Sosman, J.A.; Moslehi, J.J. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med., 2016, 375(18), 1749-1755.
[http://dx.doi.org/10.1056/NEJMoa1609214] [PMID: 27806233]
[11]
Christia, P.; Frangogiannis, N.G. Targeting inflammatory pathways in myocardial infarction. Eur. J. Clin. Invest., 2013, 43(9), 986-995.
[http://dx.doi.org/10.1111/eci.12118] [PMID: 23772948]
[12]
Kusters, P.J.H.; Lutgens, E.; Seijkens, T.T.P. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc. Res., 2018, 114(3), 368-377.
[http://dx.doi.org/10.1093/cvr/cvx248] [PMID: 29309533]
[13]
Calabretta, R.; Hoeller, C.; Pichler, V.; Mitterhauser, M.; Karanikas, G.; Haug, A.; Li, X.; Hacker, M. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation, 2020, 142(24), 2396-2398.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.048708] [PMID: 32894978]
[14]
Lutgens, E.; Seijkens, T.T.P. Cancer patients receiving immune checkpoint inhibitor therapy are at an increased risk for atherosclerotic cardiovascular disease. J. Immunother. Cancer, 2020, 8(1), e000300.
[http://dx.doi.org/10.1136/jitc-2019-000300] [PMID: 32034065]
[15]
Solinas, C.; Saba, L.; Sganzerla, P.; Petrelli, F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review. Thromb. Res., 2020, 196, 444-453.
[http://dx.doi.org/10.1016/j.thromres.2020.09.038] [PMID: 33065409]
[16]
Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; Hartmann, S.E.; Gilman, H.K.; Gong, J.; Zubiri, L.; Sullivan, R.J.; Reynolds, K.L.; Mayrhofer, T.; Zhang, L.; Hoffmann, U.; Neilan, T.G. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation, 2020, 142(24), 2299-2311.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.049981] [PMID: 33003973]
[17]
Poels, K.; van Leent, M.M.T.; Reiche, M.E.; Kusters, P.J.H.; Huveneers, S.; de Winther, M.P.J.; Mulder, W.J.M.; Lutgens, E.; Seijkens, T.T.P. Antibody-mediated inhibition of CTLA4 aggravates atherosclerotic plaque inflammation and progression in hyperlipidemic mice. Cells, 2020, 9(9), 1987.
[http://dx.doi.org/10.3390/cells9091987] [PMID: 32872393]
[18]
Wang, C.Y.; Zoungas, S.; Voskoboynik, M.; Mar, V. Cardiovascular disease and malignant melanoma. Melanoma Res., 2022, 32(3), 135-141.
[http://dx.doi.org/10.1097/CMR.0000000000000817] [PMID: 35377865]
[19]
Genovese, M.C.; Becker, J.C.; Schiff, M.; Luggen, M.; Sherrer, Y.; Kremer, J.; Birbara, C.; Box, J.; Natarajan, K.; Nuamah, I.; Li, T.; Aranda, R.; Hagerty, D.T.; Dougados, M. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med., 2005, 353(11), 1114-1123.
[http://dx.doi.org/10.1056/NEJMoa050524] [PMID: 16162882]
[20]
Ozen, G.; Pedro, S.; Michaud, K. The risk of cardiovascular events associated with disease-modifying antirheumatic drugs in rheumatoid arthritis. J. Rheumatol., 2021, 48(5), 648-655.
[http://dx.doi.org/10.3899/jrheum.200265] [PMID: 32801134]
[21]
Hsieh, M.J.; Lee, C.H.; Tsai, M.L.; Kao, C.F.; Lan, W.C.; Huang, Y.T.; Tseng, W.Y.; Wen, M.S.; Chang, S.H. Biologic agents reduce cardiovascular events in rheumatoid arthritis not responsive to tumour necrosis factor inhibitors: a national cohort study. Can. J. Cardiol., 2020, 36(11), 1739-1746.
[http://dx.doi.org/10.1016/j.cjca.2020.01.003] [PMID: 32603700]
[22]
Kang, E.H.; Jin, Y.; Brill, G.; Lewey, J.; Patorno, E.; Desai, R.J.; Kim, S.C. Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a multidatabase cohort study. J. Am. Heart Assoc., 2018, 7(3), e007393.
[http://dx.doi.org/10.1161/JAHA.117.007393] [PMID: 29367417]
[23]
Ursini, F.; Russo, E.; Letizia Hribal, M.; Mauro, D.; Savarino, F.; Bruno, C.; Tripolino, C.; Rubino, M.; Naty, S.; Grembiale, R.D. Abatacept improves whole-body insulin sensitivity in rheumatoid arthritis: An observational study. Medicine, 2015, 94(21), e888.
[http://dx.doi.org/10.1097/MD.0000000000000888] [PMID: 26020396]
[24]
Caiati, C. Contrast-enhanced ultrasound reveals that lipoprotein apheresis improves myocardial but not skeletal muscle perfusion. JACC Cardiovasc. Imaging, 2019, 12(8), 1441-1443.
[http://dx.doi.org/10.1016/j.jcmg.2018.06.029] [PMID: 30553683]
[25]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy