[1]
Caiati, C.; Desario, P.; Tricarico, G.; Iacovelli, F.; Pollice, P.; Favale, S.; Lepera, M.E. Wellens’ syndrome from COVID-19 infection assessed by enhanced transthoracic coronary echo doppler: A case report. Diagnostics, 2022, 12(4), 804.
[http://dx.doi.org/10.3390/diagnostics12040804] [PMID: 35453852]
[http://dx.doi.org/10.3390/diagnostics12040804] [PMID: 35453852]
[2]
Caiati, C.; Iacovelli, F.; Mancini, G.; Lepera, M.E. Hidden coronary atherosclerosis assessment but not coronary flow reserve helps to explain the slow coronary flow phenomenon in patients with angiographically normal coronary arteries. Diagnostics, 2022, 12(9), 2173.
[http://dx.doi.org/10.3390/diagnostics12092173] [PMID: 36140575]
[http://dx.doi.org/10.3390/diagnostics12092173] [PMID: 36140575]
[3]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S.; B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew, M., M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno V., I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha, S., S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh, K., F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi, M., S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi, A., R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[4]
Henzel, J.; Kępka, C.; Kruk, M.; Makarewicz-Wujec, M.; Wardziak, Ł.; Trochimiuk, P.; Dzielińska, Z.; Demkow, M. High-Risk coronary plaque regression after intensive lifestyle intervention in nonobstructive coronary disease. JACC Cardiovasc. Imaging, 2021, 14(6), 1192-1202.
[http://dx.doi.org/10.1016/j.jcmg.2020.10.019] [PMID: 33341413]
[http://dx.doi.org/10.1016/j.jcmg.2020.10.019] [PMID: 33341413]
[5]
Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers, 2019, 5(1), 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[6]
Kobiyama, K.; Ley, K. Atherosclerosis. Circ. Res., 2018, 123(10), 1118-1120.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313816] [PMID: 30359201]
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313816] [PMID: 30359201]
[7]
Giugliano, R.P.; Pedersen, T.R.; Park, J.G.; De Ferrari, G.M.; Gaciong, Z.A.; Ceska, R.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; Mach, F.; Ott, B.R.; Kanevsky, E.; Pineda, A.L.; Somaratne, R.; Wasserman, S.M.; Keech, A.C.; Sever, P.S.; Sabatine, M.S. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: A prespecified secondary analysis of the fourier trial. Lancet, 2017, 390(10106), 1962-1971.
[http://dx.doi.org/10.1016/S0140-6736(17)32290-0] [PMID: 28859947]
[http://dx.doi.org/10.1016/S0140-6736(17)32290-0] [PMID: 28859947]
[8]
Caiati, C. Contrast-enhanced ultrasound reveals that lipoprotein apheresis improves myocardial but not skeletal muscle perfusion. JACC Cardiovasc. Imaging, 2019, 12(8), 1441-1443.
[http://dx.doi.org/10.1016/j.jcmg.2018.06.029] [PMID: 30553683]
[http://dx.doi.org/10.1016/j.jcmg.2018.06.029] [PMID: 30553683]
[9]
Mackman, N.; Spronk, H.M.H.; Stouffer, G.A.; ten Cate, H. Dual anticoagulant and antiplatelet therapy for coronary artery disease and peripheral artery disease patients. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), 726-732.
[http://dx.doi.org/10.1161/ATVBAHA.117.310048] [PMID: 29449336]
[http://dx.doi.org/10.1161/ATVBAHA.117.310048] [PMID: 29449336]
[10]
Nissen, S.E.; Yeomans, N.D.; Solomon, D.H.; Lüscher, T.F.; Libby, P.; Husni, M.E.; Graham, D.Y.; Borer, J.S.; Wisniewski, L.M.; Wolski, K.E.; Wang, Q.; Menon, V.; Ruschitzka, F.; Gaffney, M.; Beckerman, B.; Berger, M.F.; Bao, W.; Lincoff, A.M. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med., 2016, 375(26), 2519-2529.
[http://dx.doi.org/10.1056/NEJMoa1611593] [PMID: 27959716]
[http://dx.doi.org/10.1056/NEJMoa1611593] [PMID: 27959716]
[11]
Zhang, X.; Ren, Z.; Jiang, Z. EndMT-derived mesenchymal stem cells: A new therapeutic target to atherosclerosis treatment. Mol. Cell. Biochem., 2022, 478, 755-765.
[http://dx.doi.org/10.1007/s11010-022-04544-8] [PMID: 36083511]
[http://dx.doi.org/10.1007/s11010-022-04544-8] [PMID: 36083511]
[12]
Qiu, G.; Zheng, G.; Ge, M.; Wang, J.; Huang, R.; Shu, Q.; Xu, J. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res. Ther., 2018, 9(1), 320.
[http://dx.doi.org/10.1186/s13287-018-1069-9] [PMID: 30463593]
[http://dx.doi.org/10.1186/s13287-018-1069-9] [PMID: 30463593]
[13]
Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.K.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; Pasterkamp, G.; de Kleijn, D.P.V.; Lim, S.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res., 2010, 4(3), 214-222.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[14]
Shi, Y.; Wang, Y.; Li, Q.; Liu, K.; Hou, J.; Shao, C.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol., 2018, 14(8), 493-507.
[http://dx.doi.org/10.1038/s41581-018-0023-5] [PMID: 29895977]
[http://dx.doi.org/10.1038/s41581-018-0023-5] [PMID: 29895977]
[15]
Shafei, A.E.S.; Ali, M.A.; Ghanem, H.G.; Shehata, A.I.; Abdelgawad, A.A.; Handal, H.R.; Talaat, K.A.; Ashaal, A.E.; El-Shal, A.S. Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J. Gene Med., 2017, 19(12), e2995.
[http://dx.doi.org/10.1002/jgm.2995] [PMID: 29044850]
[http://dx.doi.org/10.1002/jgm.2995] [PMID: 29044850]
[16]
Peet, C.; Ivetic, A.; Bromage, D.I.; Shah, A.M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res., 2020, 116(6), 1101-1112.
[http://dx.doi.org/10.1093/cvr/cvz336] [PMID: 31841135]
[http://dx.doi.org/10.1093/cvr/cvz336] [PMID: 31841135]
[17]
Ma, Y.; Mouton, A.J.; Lindsey, M.L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl. Res., 2018, 191, 15-28.
[http://dx.doi.org/10.1016/j.trsl.2017.10.001] [PMID: 29106912]
[http://dx.doi.org/10.1016/j.trsl.2017.10.001] [PMID: 29106912]
[18]
Zhao, Y.; Zhu, X.Y.; Song, T.; Zhang, L.; Eirin, A.; Conley, S.; Tang, H.; Saadiq, I.; Jordan, K.; Lerman, A.; Lerman, L.O. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching. Am. J. Physiol. Renal Physiol., 2021, 320(3), F454-F463.
[http://dx.doi.org/10.1152/ajprenal.00426.2020] [PMID: 33554782]
[http://dx.doi.org/10.1152/ajprenal.00426.2020] [PMID: 33554782]
[19]
Cho, D.I.; Kim, M.R.; Jeong, H.; Jeong, H.C.; Jeong, M.H.; Yoon, S.H.; Kim, Y.S.; Ahn, Y. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med., 2014, 46(1), e70.
[http://dx.doi.org/10.1038/emm.2013.135] [PMID: 24406319]
[http://dx.doi.org/10.1038/emm.2013.135] [PMID: 24406319]
[20]
Zhang, B.; Zhao, N.; Zhang, J.; Liu, Y.; Zhu, D.; Kong, Y. Mesenchymal stem cells rejuvenate cardiac muscle through regulating macrophage polarization. Aging, 2019, 11(12), 3900-3908.
[http://dx.doi.org/10.18632/aging.102009] [PMID: 31212255]
[http://dx.doi.org/10.18632/aging.102009] [PMID: 31212255]
[21]
Chen, Y.; Zuo, J.; Chen, W.; Yang, Z.; Zhang, Y.; Hua, F.; Shao, L.; Li, J.; Chen, Y.; Yu, Y.; Shen, Z. The enhanced effect and underlying mechanisms of mesenchymal stem cells with IL-33 overexpression on myocardial infarction. Stem Cell Res. Ther., 2019, 10(1), 295.
[http://dx.doi.org/10.1186/s13287-019-1392-9] [PMID: 31547872]
[http://dx.doi.org/10.1186/s13287-019-1392-9] [PMID: 31547872]
[22]
Zhao, J.; Li, X.; Hu, J.; Chen, F.; Qiao, S.; Sun, X.; Gao, L.; Xie, J.; Xu, B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc. Res., 2019, 115(7), 1205-1216.
[http://dx.doi.org/10.1093/cvr/cvz040] [PMID: 30753344]
[http://dx.doi.org/10.1093/cvr/cvz040] [PMID: 30753344]
[23]
Moonen, J.R.A.J.; Harmsen, M.C.; Krenning, G. Cellular plasticity: The good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy. Can. J. Physiol. Pharmacol., 2012, 90(3), 275-285.
[http://dx.doi.org/10.1139/y11-107] [PMID: 22356658]
[http://dx.doi.org/10.1139/y11-107] [PMID: 22356658]
[24]
Wang, L.; Zhao, Y.; Shi, S. Interplay between mesenchymal stem cells and lymphocytes: Implications for immunotherapy and tissue regeneration. J. Dent. Res., 2012, 91(11), 1003-1010.
[http://dx.doi.org/10.1177/0022034512460404] [PMID: 22988011]
[http://dx.doi.org/10.1177/0022034512460404] [PMID: 22988011]
[25]
Vellasamy, S.; Sandrasaigaran, P.; Vidyadaran, S.; Abdullah, M.; George, E.; Ramasamy, R. Mesenchymal stem cells of human placenta and umbilical cord suppress T-cell proliferation at G0 phase of cell cycle. Cell Biol. Int., 2013, 37(3), 250-256.
[http://dx.doi.org/10.1002/cbin.10033] [PMID: 23364902]
[http://dx.doi.org/10.1002/cbin.10033] [PMID: 23364902]
[26]
Li, Y.; Wang, F.; Guo, R.; Zhang, Y.; Chen, D.; Li, X.; Tian, W.; Xie, X.; Jiang, Z. Exosomal sphingosine 1‐phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life, 2019, 71(9), 1284-1292.
[http://dx.doi.org/10.1002/iub.2035] [PMID: 30889317]
[http://dx.doi.org/10.1002/iub.2035] [PMID: 30889317]
[27]
Beyth, S.; Borovsky, Z.; Mevorach, D.; Liebergall, M.; Gazit, Z.; Aslan, H.; Galun, E.; Rachmilewitz, J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 2005, 105(5), 2214-2219.
[http://dx.doi.org/10.1182/blood-2004-07-2921] [PMID: 15514012]
[http://dx.doi.org/10.1182/blood-2004-07-2921] [PMID: 15514012]
[28]
Gao, W.X.; Sun, Y.Q.; Shi, J.; Li, C.L.; Fang, S.B.; Wang, D.; Deng, X.Q.; Wen, W.; Fu, Q.L. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res. Ther., 2017, 8(1), 48.
[http://dx.doi.org/10.1186/s13287-017-0499-0] [PMID: 28253916]
[http://dx.doi.org/10.1186/s13287-017-0499-0] [PMID: 28253916]
[29]
Quevedo, H.C.; Hatzistergos, K.E.; Oskouei, B.N.; Feigenbaum, G.S.; Rodriguez, J.E.; Valdes, D.; Pattany, P.M.; Zambrano, J.P.; Hu, Q.; McNiece, I.; Heldman, A.W.; Hare, J.M. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci., 2009, 106(33), 14022-14027.
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[30]
Ockaili, R.; Natarajan, R.; Salloum, F.; Fisher, B.J.; Jones, D.; Fowler, A.A., III; Kukreja, R.C. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(2), H542-H548.
[http://dx.doi.org/10.1152/ajpheart.00089.2005] [PMID: 15805230]
[http://dx.doi.org/10.1152/ajpheart.00089.2005] [PMID: 15805230]
[31]
Matta, A.; Nader, V.; Lebrin, M.; Gross, F.; Prats, A.C.; Cussac, D.; Galinier, M.; Roncalli, J. Pre-conditioning methods and novel approaches with mesenchymal stem cells therapy in cardiovascular disease. Cells, 2022, 11(10), 1620.
[http://dx.doi.org/10.3390/cells11101620] [PMID: 35626657]
[http://dx.doi.org/10.3390/cells11101620] [PMID: 35626657]
[32]
Farzaneh, M.; Rahimi, F.; Alishahi, M.; Khoshnam, S.E. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr. Stem Cell Res. Ther., 2019, 14(1), 9-13.
[http://dx.doi.org/10.2174/1574888X13666180821160421] [PMID: 30152289]
[http://dx.doi.org/10.2174/1574888X13666180821160421] [PMID: 30152289]
[33]
Hahn, J.Y.; Cho, H.J.; Kang, H.J.; Kim, T.S.; Kim, M.H.; Chung, J.H.; Bae, J.W.; Oh, B.H.; Park, Y.B.; Kim, H.S. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol., 2008, 51(9), 933-943.
[http://dx.doi.org/10.1016/j.jacc.2007.11.040] [PMID: 18308163]
[http://dx.doi.org/10.1016/j.jacc.2007.11.040] [PMID: 18308163]
[34]
Becker, A.D.; Riet, I.V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J. Stem Cells, 2016, 8(3), 73-87.
[http://dx.doi.org/10.4252/wjsc.v8.i3.73] [PMID: 27022438]
[http://dx.doi.org/10.4252/wjsc.v8.i3.73] [PMID: 27022438]
[35]
Zhang, J.H.; Adikaram, P.; Pandey, M.; Genis, A.; Simonds, W.F. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 2016, 7(3), 166-174.
[http://dx.doi.org/10.1080/21655979.2016.1189039] [PMID: 27340770]
[http://dx.doi.org/10.1080/21655979.2016.1189039] [PMID: 27340770]
[36]
Bolli, R.; Mitrani, R.D.; Hare, J.M.; Pepine, C.J.; Perin, E.C.; Willerson, J.T.; Traverse, J.H.; Henry, T.D.; Yang, P.C.; Murphy, M.P.; March, K.L.; Schulman, I.H.; Ikram, S.; Lee, D.P.; O’Brien, C.; Lima, J.A.; Ostovaneh, M.R.; Ambale-Venkatesh, B.; Lewis, G.; Khan, A.; Bacallao, K.; Valasaki, K.; Longsomboon, B.; Gee, A.P.; Richman, S.; Taylor, D.A.; Lai, D.; Sayre, S.L.; Bettencourt, J.; Vojvodic, R.W.; Cohen, M.L.; Simpson, L.; Aguilar, D.; Loghin, C.; Moyé, L.; Ebert, R.F.; Davis, B.R.; Simari, R.D. A Phase II study of autologous mesenchymal stromal cells and c‐kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT‐HF trial. Eur. J. Heart Fail., 2021, 23(4), 661-674.
[http://dx.doi.org/10.1002/ejhf.2178] [PMID: 33811444]
[http://dx.doi.org/10.1002/ejhf.2178] [PMID: 33811444]
[37]
Morrissey, J.; Mesquita, F.C.P.; Hochman-Mendez, C.; Taylor, D.A. Whole heart engineering: Advances and challenges. Cells Tissues Organs, 2022, 211(4), 395-405.
[PMID: 33640893]
[PMID: 33640893]
[38]
Sánchez-Sánchez, R.; Gómez-Ferrer, M.; Reinal, I.; Buigues, M.; Villanueva-Bádenas, E.; Ontoria-Oviedo, I.; Hernándiz, A.; González-King, H.; Peiró-Molina, E.; Dorronsoro, A.; Sepúlveda, P. miR-4732-3p in extracellular vesicles from mesenchymal stromal cells is cardioprotective during myocardial ischemia. Front. Cell Dev. Biol., 2021, 9, 734143.
[http://dx.doi.org/10.3389/fcell.2021.734143] [PMID: 34532322]
[http://dx.doi.org/10.3389/fcell.2021.734143] [PMID: 34532322]
[39]
Gao, L.R.; Chen, Y.; Zhang, N.K.; Yang, X.L.; Liu, H.L.; Wang, Z.G.; Yan, X.Y.; Wang, Y.; Zhu, Z.M.; Li, T.C.; Wang, L.H.; Chen, H.Y.; Chen, Y.D.; Huang, C.L.; Qu, P.; Yao, C.; Wang, B.; Chen, G.H.; Wang, Z.M.; Xu, Z.Y.; Bai, J.; Lu, D.; Shen, Y.H.; Guo, F.; Liu, M.Y.; Yang, Y.; Ding, Y.C.; Yang, Y.; Tian, H.T.; Ding, Q.A.; Li, L.N.; Yang, X.C.; Hu, X. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: Double-blind, randomized controlled trial. BMC Med., 2015, 13(1), 162.
[http://dx.doi.org/10.1186/s12916-015-0399-z] [PMID: 26162993]
[http://dx.doi.org/10.1186/s12916-015-0399-z] [PMID: 26162993]
[40]
Attar, A.; Bahmanzadegan, J., F.; Kavousi, S.; Monabati, A.; Kazemi, A. Mesenchymal stem cell transplantation after acute myocardial infarction: a meta-analysis of clinical trials. Stem Cell Res. Ther., 2021, 12(1), 600.
[http://dx.doi.org/10.1186/s13287-021-02667-1] [PMID: 34876213]
[http://dx.doi.org/10.1186/s13287-021-02667-1] [PMID: 34876213]
[41]
Heldman, A.W.; DiFede, D.L.; Fishman, J.E.; Zambrano, J.P.; Trachtenberg, B.H.; Karantalis, V.; Mushtaq, M.; Williams, A.R.; Suncion, V.Y.; McNiece, I.K.; Ghersin, E.; Soto, V.; Lopera, G.; Miki, R.; Willens, H.; Hendel, R.; Mitrani, R.; Pattany, P.; Feigenbaum, G.; Oskouei, B.; Byrnes, J.; Lowery, M.H.; Sierra, J.; Pujol, M.V.; Delgado, C.; Gonzalez, P.J.; Rodriguez, J.E.; Bagno, L.L.; Rouy, D.; Altman, P.; Foo, C.W.P.; da Silva, J.; Anderson, E.; Schwarz, R.; Mendizabal, A.; Hare, J.M. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA, 2014, 311(1), 62-73.
[http://dx.doi.org/10.1001/jama.2013.282909] [PMID: 24247587]
[http://dx.doi.org/10.1001/jama.2013.282909] [PMID: 24247587]
[42]
Hosseinpour, A.; Kheshti, F.; Kazemi, A.; Attar, A. Comparing the effect of bone marrow mono-nuclear cells with mesenchymal stem cells after acute myocardial infarction on improvement of left ventricular function: A meta-analysis of clinical trials. Stem Cell Res. Ther., 2022, 13(1), 203.
[http://dx.doi.org/10.1186/s13287-022-02883-3] [PMID: 35578329]
[http://dx.doi.org/10.1186/s13287-022-02883-3] [PMID: 35578329]
[43]
Attar, A.; Nouri, F.; Yazdanshenas, A.; Hessami, K.; Vosough, M.; Abdi-Ardekani, A.; Izadpanah, P.; Ramzi, M.; Kojouri, J.; Pouladfar, G.; Monabati, A. Single vs. double intracoronary injection of mesenchymal stromal cell after acute myocardial infarction: The study protocol from a randomized clinical trial: BOOSTER-TAHA7 trial. Trials, 2022, 23(1), 293.
[http://dx.doi.org/10.1186/s13063-022-06276-y] [PMID: 35413932]
[http://dx.doi.org/10.1186/s13063-022-06276-y] [PMID: 35413932]
[44]
Chen, H.; Zhou, L. Treatment of ischemic stroke with modified mesenchymal stem cells. Int. J. Med. Sci., 2022, 19(7), 1155-1162.
[http://dx.doi.org/10.7150/ijms.74161] [PMID: 35919816]
[http://dx.doi.org/10.7150/ijms.74161] [PMID: 35919816]
[45]
Díez-Tejedor, E.; Gutiérrez-Fernández, M.; Martínez-Sánchez, P.; Rodríguez-Frutos, B.; Ruiz-Ares, G.; Lara, M.L.; Gimeno, B.F. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2694-2700.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011] [PMID: 25304723]
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011] [PMID: 25304723]
[46]
Levy, M.L.; Crawford, J.R.; Dib, N.; Verkh, L.; Tankovich, N.; Cramer, S.C. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke, 2019, 50(10), 2835-2841.
[http://dx.doi.org/10.1161/STROKEAHA.119.026318] [PMID: 31495331]
[http://dx.doi.org/10.1161/STROKEAHA.119.026318] [PMID: 31495331]
[47]
Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; Yankee, E.W.; Schwartz, N.E. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow–derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg., 2019, 131(5), 1462-1472.
[http://dx.doi.org/10.3171/2018.5.JNS173147]
[http://dx.doi.org/10.3171/2018.5.JNS173147]
[48]
Jaluvka, F.; Ihnat, P.; Madaric, J.; Vrtkova, A.; Janosek, J.; Prochazka, V. Current status of cell-based therapy in patients with critical limb ischemia. Int. J. Mol. Sci., 2020, 21(23), 8999.
[http://dx.doi.org/10.3390/ijms21238999] [PMID: 33256237]
[http://dx.doi.org/10.3390/ijms21238999] [PMID: 33256237]
[49]
Qadura, M.; Terenzi, D.C.; Verma, S.; Al-Omran, M.; Hess, D.A. Concise review: Cell therapy for critical limb ischemia: An integrated review of preclinical and clinical studies. Stem Cells, 2018, 36(2), 161-171.
[http://dx.doi.org/10.1002/stem.2751] [PMID: 29226477]
[http://dx.doi.org/10.1002/stem.2751] [PMID: 29226477]
[50]
Leroux, L.; Descamps, B.; Tojais, N.F.; Séguy, B.; Oses, P.; Moreau, C.; Daret, D.; Ivanovic, Z.; Boiron, J.M.; Lamazière, J.M.D.; Dufourcq, P.; Couffinhal, T.; Duplàa, C. Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol. Ther., 2010, 18(8), 1545-1552.
[http://dx.doi.org/10.1038/mt.2010.108] [PMID: 20551912]
[http://dx.doi.org/10.1038/mt.2010.108] [PMID: 20551912]
[51]
Dufourcq, P.; Descamps, B.; Tojais, N.F.; Leroux, L.; Oses, P.; Daret, D.; Moreau, C.; Lamazière, J.M.D.; Couffinhal, T.; Duplàa, C. Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells, 2008, 26(11), 2991-3001.
[http://dx.doi.org/10.1634/stemcells.2008-0372] [PMID: 18757297]
[http://dx.doi.org/10.1634/stemcells.2008-0372] [PMID: 18757297]
[52]
Shirbaghaee, Z.; Hassani, M.; Heidari, K., S.; Soleimani, M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res. Ther., 2022, 13(1), 462.
[http://dx.doi.org/10.1186/s13287-022-03148-9] [PMID: 36068595]
[http://dx.doi.org/10.1186/s13287-022-03148-9] [PMID: 36068595]
[53]
Wang, S.K.; Green, L.A.; Drucker, N.A.; Motaganahalli, R.L.; Fajardo, A.; Murphy, M.P. Rationale and design of the clinical and histologic analysis of mesenchymal stromal cells in AmPutations (CHAMP) trial investigating the therapeutic mechanism of mesenchymal stromal cells in the treatment of critical limb ischemia. J. Vasc. Surg., 2018, 68(1), 176-181.e1.
[http://dx.doi.org/10.1016/j.jvs.2017.09.057] [PMID: 29395424]
[http://dx.doi.org/10.1016/j.jvs.2017.09.057] [PMID: 29395424]
[54]
Powell, R.J.; Marston, W.A.; Berceli, S.A.; Guzman, R.; Henry, T.D.; Longcore, A.T.; Stern, T.P.; Watling, S.; Bartel, R.L. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: The randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol. Ther., 2012, 20(6), 1280-1286.
[http://dx.doi.org/10.1038/mt.2012.52] [PMID: 22453769]
[http://dx.doi.org/10.1038/mt.2012.52] [PMID: 22453769]
[55]
Lasala, G.P.; Silva, J.A.; Minguell, J.J. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J. Thorac. Cardiovasc. Surg., 2012, 144(2), 377-382.
[http://dx.doi.org/10.1016/j.jtcvs.2011.08.053] [PMID: 22079876]
[http://dx.doi.org/10.1016/j.jtcvs.2011.08.053] [PMID: 22079876]
[56]
Wijnand, J.G.J.; Teraa, M.; Gremmels, H.; van Rhijn-Brouwer, F.C.C.; de Borst, G.J.; Verhaar, M.C. Rationale and design of the SAIL trial for intramuscular injection of allogeneic mesenchymal stromal cells in no-option critical limb ischemia. J. Vasc. Surg., 2018, 67(2), 656-661.
[http://dx.doi.org/10.1016/j.jvs.2017.09.026] [PMID: 29242062]
[http://dx.doi.org/10.1016/j.jvs.2017.09.026] [PMID: 29242062]
[57]
Zhang, C.; Huang, L.; Wang, X.; Zhou, X.; Zhang, X.; Li, L.; Wu, J.; Kou, M.; Cai, C.; Lian, Q.; Zhou, X. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: A phase I pilot study with a 3-year follow-up. Stem Cell Res. Ther., 2022, 13(1), 451.
[http://dx.doi.org/10.1186/s13287-022-03143-0] [PMID: 36064461]
[http://dx.doi.org/10.1186/s13287-022-03143-0] [PMID: 36064461]
[58]
Prockop, D.J.; Brenner, M.; Fibbe, W.E.; Horwitz, E.; Le Blanc, K.; Phinney, D.G.; Simmons, P.J.; Sensebe, L.; Keating, A. Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 2010, 12(5), 576-578.
[http://dx.doi.org/10.3109/14653249.2010.507330] [PMID: 20735162]
[http://dx.doi.org/10.3109/14653249.2010.507330] [PMID: 20735162]
[59]
Casiraghi, F.; Remuzzi, G.; Abbate, M.; Perico, N. Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Rev. Rep., 2013, 9(1), 65-79.
[http://dx.doi.org/10.1007/s12015-011-9345-4] [PMID: 22237468]
[http://dx.doi.org/10.1007/s12015-011-9345-4] [PMID: 22237468]
[60]
Arjmand, B.; Abedi, M.; Arabi, M.; Alavi-Moghadam, S.; Rezaei-Tavirani, M.; Hadavandkhani, M.; Tayanloo-Beik, A.; Kordi, R.; Roudsari, P.P.; Larijani, B. Regenerative medicine for the treatment of ischemic heart disease; status and future perspectives. Front. Cell Dev. Biol., 2021, 9, 704903.
[http://dx.doi.org/10.3389/fcell.2021.704903] [PMID: 34568321]
[http://dx.doi.org/10.3389/fcell.2021.704903] [PMID: 34568321]
[61]
Chang, D.; Fan, T.; Gao, S.; Jin, Y.; Zhang, M.; Ono, M. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res. Ther., 2021, 12(1), 384.
[http://dx.doi.org/10.1186/s13287-021-02451-1] [PMID: 34233729]
[http://dx.doi.org/10.1186/s13287-021-02451-1] [PMID: 34233729]
[62]
Zhang, J.; Zhu, W.; Radisic, M.; Vunjak-Novakovic, G. Can we engineer a human cardiac patch for therapy? Circ. Res., 2018, 123(2), 244-265.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311213] [PMID: 29976691]
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311213] [PMID: 29976691]