Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Review of Thyroid Dysfunction Due to COVID-19

Author(s): Alireza Arefzadeh*

Volume 24, Issue 3, 2024

Published on: 05 May, 2023

Page: [265 - 271] Pages: 7

DOI: 10.2174/1389557523666230413090332

Price: $65

Abstract

Coronavirus disease 2019 (COVID-19) affects thyroid function. These changes are due to the direct impact of the virus on thyroid cells via angiotensin-converting–enzyme 2 (ACE2) receptors, inflammatory reaction, apoptosis in thyroid follicular cells, suppression of hypothalamus-pituitarythyroid axis, an increase in activity of adrenocortical axis, and excess cortisol release due to cytokine storm of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Euthyroid sick syndrome (ESS), thyroiditis, clinical and subclinical hypothyroidism, central hypothyroidism, exacerbation of underlying autoimmune thyroid disease, and clinical and subclinical hyperthyroidism can be associated with coronavirus. Adjuvants in coronavirus vaccines induce autoimmune/inflammatory syndrome known as vaccine adjuvants (ASIA) syndrome. Thyroiditis and Graves’ disease have been reported to be associated with ASIA syndrome after some coronavirus vaccinations. Some coronavirus medications, such as hydroxychloroquine, monoclonal antibodies, lopinavir/ritonavir, remdesivir, naproxen, anticoagulants, and glucocorticoids can also affect thyroid tests, and correct diagnosis of thyroid disorders will be more difficult. Changes in thyroid tests may be one of the most important manifestations of COVID-19. These changes can be confusing for clinicians and can lead to inappropriate diagnoses and decisions. Prospective studies should be conducted in the future to increase epidemiological and clinical data and optimize the management of thyroid dysfunctions in patients with COVID-19.

Graphical Abstract

[1]
Giovanella, L.; Ruggeri, R.M.; Ovčariček, P.P.; Campenni, A.; Treglia, G.; Deandreis, D. Prevalence of thyroid dysfunction in patients with COVID-19: A systematic review. Clin. Transl. Imaging, 2021, 9(3), 233-240.
[http://dx.doi.org/10.1007/s40336-021-00419-y] [PMID: 33728279]
[2]
Ganesan, K.; Wadud, K. Euthyroid Sick Syndrome; StatPearls: Treasure Island, FL, 2021.
[3]
Larry J, J.; Dennis, L.K.; Dan Louis, L.; Anthony, S.F.; Stephen, L.H.; Joseph, L. Thyroid disease. Harrison's Principles of Internal Medicine; 20th ed, 2018.
[4]
Shlomo, M.; Ronald, K.; Clifford, R.; Richard, A.; Allison, G. Thyroid disease. Williams Textbook of Endocrinology; 14th ed;, 2019.
[5]
Zhang, Y.; Lin, F.; Tu, W.; Zhang, J.; Choudhry, A.A.; Ahmed, O.; Cheng, J.; Cui, Y.; Liu, B.; Dai, M.; Chen, L.; Han, D.; Fan, Y.; Zeng, Y.; Li, W.; Li, S.; Chen, X.; Shen, M.; Pan, P. Thyroid dysfunction may be associated with poor outcomes in patients with COVID-19. Mol. Cell. Endocrinol., 2021, 521, 111097.
[http://dx.doi.org/10.1016/j.mce.2020.111097] [PMID: 33278491]
[6]
Caron, P. Thyroiditis and SARS-CoV-2 pandemic: A review. Endocrine, 2021, 72(2), 326-331.
[http://dx.doi.org/10.1007/s12020-021-02689-y] [PMID: 33774779]
[7]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[8]
Muller, I.; Cannavaro, D.; Dazzi, D.; Covelli, D.; Mantovani, G.; Muscatello, A.; Ferrante, E.; Orsi, E.; Resi, V.; Longari, V.; Cuzzocrea, M.; Bandera, A.; Lazzaroni, E.; Dolci, A.; Ceriotti, F.; Re, T.E.; Gori, A.; Arosio, M.; Salvi, M. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol., 2020, 8(9), 739-741.
[http://dx.doi.org/10.1016/S2213-8587(20)30266-7] [PMID: 32738929]
[9]
Bakhshandeh, B.; Jahanafrooz, Z.; Abbasi, A.; Goli, M.B.; Sadeghi, M.; Mottaqi, M.S.; Zamani, M. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb. Pathog., 2021, 154, 104831.
[http://dx.doi.org/10.1016/j.micpath.2021.104831] [PMID: 33727169]
[10]
Li, M.Y.; Li, L.; Zhang, Y.; Wang, X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty, 2020, 9(1), 45.
[http://dx.doi.org/10.1186/s40249-020-00662-x] [PMID: 32345362]
[11]
Debaveye, Y.; Ellger, B.; Mebis, L.; Van Herck, E.; Coopmans, W.; Darras, V.; Van den Berghe, G. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology, 2005, 146(12), 5604-5611.
[http://dx.doi.org/10.1210/en.2005-0963] [PMID: 16150898]
[12]
Bianco, A.C.; Salvatore, D.; Gereben, B.; Berry, M.J.; Larsen, P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev., 2002, 23(1), 38-89.
[http://dx.doi.org/10.1210/edrv.23.1.0455] [PMID: 11844744]
[13]
Wiersinga, W.M. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease. Endocrinol. Metab., 2016, 31(2), 213-222.
[http://dx.doi.org/10.3803/EnM.2016.31.2.213] [PMID: 27184015]
[14]
Kim, J.S.; Lee, J.Y.; Yang, J.W.; Lee, K.H.; Effenberger, M.; Szpirt, W.; Kronbichler, A.; Shin, J.I. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11(1), 316-329.
[http://dx.doi.org/10.7150/thno.49713] [PMID: 33391477]
[15]
Lania, A.; Sandri, M.T.; Cellini, M.; Mirani, M.; Lavezzi, E.; Mazziotti, G. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur. J. Endocrinol., 2020, 183(4), 381-387.
[http://dx.doi.org/10.1530/EJE-20-0335] [PMID: 32698147]
[16]
Burekovic, A.; Halilovic, D.; Sahbaz, A. Hypothyroidism and subclinical hypothyroidism as a consequence of COVID-19 infection. Med. Arh., 2022, 76(1), 12-16.
[http://dx.doi.org/10.5455/medarh.2022.76.12-16] [PMID: 35422565]
[17]
Caron, P. Thyroid disorders and SARS-CoV-2 infection: From pathophysiological mechanism to patient management. Ann. Endocrinol., 2020, 81(5), 507-510.
[http://dx.doi.org/10.1016/j.ando.2020.09.001] [PMID: 32950466]
[18]
Güven, M.; Gültekin, H. The prognostic impact of thyroid disorders on the clinical severity of COVID‐19: Results of single‐centre pandemic hospital. Int. J. Clin. Pract., 2021, 75(6), e14129.
[http://dx.doi.org/10.1111/ijcp.14129] [PMID: 33655591]
[19]
McCANN, S.M.; Kimura, M.; Karanth, S.; Yu, W.H.; Mastronardi, C.A.; Rettori, V. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann. N. Y. Acad. Sci., 2000, 917(1), 4-18.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05368.x] [PMID: 11268367]
[20]
Adriaanse, R.; Brabant, G.; Endert, E.; Wiersinga, W.M. Pulsatile thyrotropin secretion in patients with Cushing’s syndrome. Metabolism, 1994, 43(6), 782-786.
[http://dx.doi.org/10.1016/0026-0495(94)90131-7] [PMID: 8201971]
[21]
Ankireddypalli, A.R.; Chow, L.S.; Radulescu, A.; Kawakami, Y.; Araki, T. A Case of Hypophysitis Associated With SARS-CoV-2 Vaccination. AACE Clin. Case Rep., 2022, 8(5), 204-209.
[http://dx.doi.org/10.1016/j.aace.2022.06.001] [PMID: 35754921]
[22]
Brancatella, A.; Ricci, D.; Cappellani, D.; Viola, N.; Sgrò, D.; Santini, F.; Latrofa, F. Is Subacute thyroiditis an underestimated manifestation of SARS-CoV-2 infection? Insights From a Case Series. J. Clin. Endocrinol. Metab., 2020, 105(10), e3742-e3746.
[http://dx.doi.org/10.1210/clinem/dgaa537] [PMID: 32780854]
[23]
Merad, M.; Martin, J.C. Author Correction: Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(7), 448.
[http://dx.doi.org/10.1038/s41577-020-0353-y] [PMID: 32488203]
[24]
Guo, J.; Teng, D.; Shi, X.; Li, Y.; Ba, J.; Chen, B. Exposure to the chinese great famine in early life and thyroid function and disorders in adulthood: A Cross-Sectional Study. Thyroid, 2021, 31(4), 563-571.
[http://dx.doi.org/10.1089/thy.2020.0325]
[25]
Czarnywojtek, A.; Ochmanska, A.; Zgorzalewicz-Stachowiak, M.; Sawicka-Gutaj, N.; Matyjaszek-Matuszek, B. Wozniak, M Influence of SARS-CoV-2 infection on thyroid gland function: The current knowledge. Adv. Clin. Experimen. Med., 2021, 30(7), 747-755.
[26]
Dhakal, B.P.; Sweitzer, N.K.; Indik, J.H.; Acharya, D.; William, P. SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. Heart Lung Circ., 2020, 29(7), 973-987.
[http://dx.doi.org/10.1016/j.hlc.2020.05.101] [PMID: 32601020]
[27]
Bernstein, H.M.; Paciotti, B.; Srivatsa, U.N. Incidence and implications of atrial fibrillation in patients hospitalized for COVID compared to non-COVID pneumonia: A multicenter cohort study. Heart Rhythm, 2022, 4(1), 3-8 02.
[PMID: 36439283]
[28]
Desailloud, R.; Hober, D. Viruses and thyroiditis: An update. Virol. J., 2009, 6(1), 5.
[http://dx.doi.org/10.1186/1743-422X-6-5] [PMID: 19138419]
[29]
Tufano, A.; Rendina, D.; Abate, V.; Casoria, A.; Marra, A.; Buonanno, P.; Galletti, F.; Di Minno, G.; Servillo, G.; Vargas, M. Venous Thromboembolism in COVID-19 Compared to Non-COVID-19 Cohorts: A Systematic Review with Meta-Analysis. J. Clin. Med., 2021, 10(21), 4925.
[http://dx.doi.org/10.3390/jcm10214925] [PMID: 34768445]
[30]
Mateu-Salat, M.; Urgell, E.; Chico, A. SARS-COV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Invest., 2020, 43(10), 1527-1528.
[http://dx.doi.org/10.1007/s40618-020-01366-7] [PMID: 32686042]
[31]
Salvi, M.; Girasole, G.; Pedrazzoni, M.; Passeri, M.; Giuliani, N.; Minelli, R.; Braverman, L.E.; Roti, E. Increased serum concentrations of interleukin-6 (IL-6) and soluble IL-6 receptor in patients with Graves’ disease. J. Clin. Endocrinol. Metab., 1996, 81(8), 2976-2979.
[PMID: 8768861]
[32]
Li, Q.; Wang, B.; Mu, K.; Zhang, J.A. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1−Th2 paradigm. J. Cell. Physiol., 2019, 234(3), 2204-2216.
[http://dx.doi.org/10.1002/jcp.27180] [PMID: 30246383]
[33]
Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 2020, 54, 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[34]
Lee, K.A.; Kim, Y.J.; Jin, H.Y. Thyrotoxicosis after COVID-19 vaccination: Seven case reports and a literature review. Endocrine, 2021, 74(3), 470-472.
[http://dx.doi.org/10.1007/s12020-021-02898-5] [PMID: 34637073]
[35]
Shoenfeld, Y.; Agmon-Levin, N. ‘ASIA’ – Autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun., 2011, 36(1), 4-8.
[http://dx.doi.org/10.1016/j.jaut.2010.07.003] [PMID: 20708902]
[36]
Khan, F. Brassill, MJ Subacute thyroiditis post-Pfizer-BioNTech mRNA vaccination for COVID-19. Endocrinology, diabetes & metabolism case reports. Endocrinol. Diabetes Metab. Case Rep., 2021, 2021, 21-0142.
[37]
Pujol, A.; Gómez, L.A.; Gallegos, C.; Nicolau, J.; Sanchís, P.; González-Freire, M.; López-González, Á.A.; Dotres, K.; Masmiquel, L. Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis. J. Endocrinol. Invest., 2022, 45(4), 875-882.
[http://dx.doi.org/10.1007/s40618-021-01707-0] [PMID: 34792795]
[38]
Chen, W.; Tian, Y.; Li, Z.; Zhu, J.; Wei, T.; Lei, J. Potential Interaction Between SARS-CoV-2 and Thyroid: A Review. Endocrinology, 2021, 162(3), bqab004.
[http://dx.doi.org/10.1210/endocr/bqab004] [PMID: 33543236]
[39]
Drozdzal, S; Rosik, J; Lechowicz, K; Machaj, F; Szostak, B; Przybycinski, J An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat., 2021, 59, 100794.
[http://dx.doi.org/10.1016/j.drup.2021.100794]
[40]
Vigneri, R.; Pezzino, V.; Filetti, S.; Squatrito, S.; Galbiati, A.; Polosa, P. Effect of dexamethasone on thyroid hormone response to TSH. Metabolism, 1975, 24(11), 1209-1213.
[http://dx.doi.org/10.1016/0026-0495(75)90059-1] [PMID: 1186494]
[41]
Laji, K.; Rhidha, B.; John, R.; Lazarus, J.; Davies, J.S. Abnormal serum free thyroid hormone levels due to heparin administration. QJM: Int. J. Medi., 2001, 94(9), 471-473.
[http://dx.doi.org/10.1093/qjmed/94.9.471]
[42]
Zampino, R.; Mele, F.; Florio, L.L.; Bertolino, L.; Andini, R.; Galdo, M.; De Rosa, R.; Corcione, A.; Durante-Mangoni, E. Liver injury in remdesivir-treated COVID-19 patients. Hepatol. Int., 2020, 14(5), 881-883.
[http://dx.doi.org/10.1007/s12072-020-10077-3] [PMID: 32725454]
[43]
Woeber, K.A. Methimazole-induced hepatotoxicity. Endocr. Pract., 2002, 8(3), 222-224.
[http://dx.doi.org/10.4158/EP.8.3.222]
[44]
Asadi, M.; Sayar, S.; Radmanesh, E.; Naghshi, S.; Mousaviasl, S.; Jelvay, S.; Ebrahimzadeh, M.; Mohammadi, A.; Abbasi, S.; Mobarak, S.; Bitaraf, S.; Zardehmehri, F.; Cheldavi, A. Efficacy of naproxen in the management of patients hospitalized with COVID-19 infection: A randomized, double-blind, placebo-controlled, clinical trial. Diabetes Metab. Syndr., 2021, 15(6), 102319.
[http://dx.doi.org/10.1016/j.dsx.2021.102319] [PMID: 34700294]
[45]
Bishnoi, A.; Carlson, H.E.; Gruber, B.L.; Kaufman, L.D.; Bock, J.L.; Lidonnici, K. Effects of commonly prescribed nonsteroidal anti-inflammatory drugs on thyroid hormone measurements. Am. J. Med., 1994, 96(3), 235-238.
[http://dx.doi.org/10.1016/0002-9343(94)90148-1] [PMID: 8154511]
[46]
Lim, C.F.; Bai, Y.; Topliss, D.J.; Barlow, J.W.; Stockigt, J.R. Drug and fatty acid effects on serum thyroid hormone binding. J. Clin. Endocrinol. Metab., 1988, 67(4), 682-688.
[http://dx.doi.org/10.1210/jcem-67-4-682] [PMID: 3417847]
[47]
Sahajpal, R; Ahmed, RA; Hughes, CA; Foisy, MM Probable interaction between levothyroxine and ritonavir: Case report and literature review. American J. health-system pharm., 2017, 74(8), 587-592.
[48]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[49]
Al-Bari, M.A.A.; Islam, M.A. Clinically significant drug interaction profiles of chloroquine analogues with adverse consequences and risk management. J. Sci. Research, 2015, 7(3), 177-195.
[http://dx.doi.org/10.3329/jsr.v7i3.22845]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy