Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Significance of Vitamin Supplementation in Reducing the Severity of COVID-19

Author(s): Myia Aiges and Kota V. Ramana*

Volume 24, Issue 3, 2024

Published on: 18 April, 2023

Page: [254 - 264] Pages: 11

DOI: 10.2174/1389557523666230324081713

Price: $65

Abstract

Coronavirus disease-19 (COVID-19), a serious pandemic due to the SARS-CoV-2 virus infection, caused significant lockdowns, healthcare shortages, and deaths worldwide. The infection leads to an uncontrolled systemic inflammatory response causing severe respiratory distress and multiple-organ failure. Quick development of several vaccines efficiently controlled the spread of COVID-19. However, the rise of various new subvariants of COVID-19 demonstrated some concerns over the efficacy of existing vaccines. Currently, better vaccines to control these variants are still under development as several new subvariants of COVID-19, such as omicron BA-4, BA-5, and BF-7 are still impacting the world. Few antiviral treatments have been shown to control COVID-19 symptoms. Further, control of COVID-19 symptoms has been explored with many natural and synthetic adjuvant compounds in hopes of treating the deadly and contagious disease. Vitamins have been shown to modulate the immune system, function as antioxidants, and reduce the inflammatory response. Recent studies have investigated the potential role of vitamins, specifically vitamins A, B, C, D, and E, in reducing the immune and inflammatory responses and severity of the complication. In this brief article, we discussed our current understanding of the role of vitamins in controlling COVID-19 symptoms and their potential use as adjuvant therapy.

Graphical Abstract

[1]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z]
[2]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[3]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[4]
Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med., 2020, 35(5), 1545-1549.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[5]
Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID‐19. J. Med. Virol., 2021, 93(1), 250-256.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[6]
Tang, X.D.; Ji, T.T.; Dong, J.R.; Feng, H.; Chen, F.Q.; Chen, X. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int. J. Mol. Sci., 2021, 22(23), 13009.
[http://dx.doi.org/10.3390/ijms222313009]
[7]
Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol., 2017, 39(5), 517-528.
[http://dx.doi.org/10.1007/s00281-017-0639-8] [PMID: 28555385]
[8]
Caricchio, R. Systemic Lupus Erythematosus and Cytokine Storm. In: Cytokine Storm Syndrome; Cron, R.; Behrens, E., Eds.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-22094-5_22]
[9]
Link, H. The cytokine storm in multiple sclerosis. Mult. Scler., 1998, 4(1), 12-15.
[http://dx.doi.org/10.1177/135245859800400104] [PMID: 9532586]
[10]
Cantini, F.; Goletti, D.; Petrone, L.; Najafi Fard, S.; Niccoli, L.; Foti, R. Immune therapy, or antiviral therapy, or both for COVID-19: A systematic review. Drugs, 2020, 80(18), 1929-1946.
[http://dx.doi.org/10.1007/s40265-020-01421-w] [PMID: 33068263]
[11]
Lu, X.; Chen, T.; Wang, Y.; Wang, J.; Yan, F. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Crit. Care, 2020, 24(1), 241.
[http://dx.doi.org/10.1186/s13054-020-02964-w] [PMID: 32430057]
[12]
Chen, K.H.; Wang, S.F.; Wang, S.Y.; Yang, Y.P.; Wang, M.L.; Chiou, S.H.; Chang, Y.L. Pharmacological development of the potential adjuvant therapeutic agents against coronavirus disease 2019. J. Chin. Med. Assoc., 2020, 83(9), 817-821.
[http://dx.doi.org/10.1097/JCMA.0000000000000375] [PMID: 32568969]
[13]
Silveira, D.; Prieto-Garcia, J.M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y.M.; Jamal, C.M.; Magalhães, P.O.; Pereira, E.O.; Tomczyk, M.; Heinrich, M. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front. Pharmacol., 2020, 11, 581840.
[http://dx.doi.org/10.3389/fphar.2020.581840] [PMID: 33071794]
[14]
Fath, M.K.; Naderi, M.; Hamzavi, H.; Ganji, M.; Shabani, S. ghahroodi, F.N.; Khalesi, B.; Pourzardosht, N.; Hashemi, Z.S.; Khalili, S. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J. Trace Elem. Med. Biol., 2022, 73, 127044.
[http://dx.doi.org/10.1016/j.jtemb.2022.127044] [PMID: 35901669]
[15]
Supplements | COVID-19 Treatment Guidelines. Available from: www.covid19treatmentguidelines.nih.gov
[16]
Soares, M.M.; Silva, M.A.; Garcia, P.P.C.; Silva, L.S.; Costa, G.D.; Araújo, R.M.A.; Cotta, R.M.M. Efect of vitamin A suplementation: A systematic review. Cien. Saude Colet., 2019, 24(3), 827-838.
[http://dx.doi.org/10.1590/1413-81232018243.07112017] [PMID: 30892504]
[17]
McLaren, D.S. Vitamin A deficiency disorders. J. Indian Med. Assoc., 1999, 97(8), 320-323.
[PMID: 10643184]
[18]
Fawzi, W.W.; Mbise, R.L.; Fataki, M.R.; Herrera, M.G.; Kawau, F.; Hertzmark, E.; Spiegelman, D.; Ndossi, G. Vitamin A supplementation and severity of pneumonia in children admitted to the hospital in Dar es Salaam, Tanzania. Am. J. Clin. Nutr., 1998, 68(1), 187-192.
[http://dx.doi.org/10.1093/ajcn/68.1.187] [PMID: 9665113]
[19]
Midha, I.K.; Kumar, N.; Kumar, A.; Madan, T. Mega doses of retinol: A possible immunomodulation in Covid‐19 illness in resource‐limited settings. Rev. Med. Virol., 2021, 31(5), 1-14.
[http://dx.doi.org/10.1002/rmv.2204] [PMID: 33382930]
[20]
Al-Sumiadai, M.M.; Ghazzay, H.; Al-Dulaimy, W.Z.S. Therapeutic effect of vitamin A on severe COVID-19 patients. EurAsian J. Biosci., 2020, 14(2), 7347-7350.
[21]
Li, R.; Wu, K.; Li, Y.; Liang, X.; Tse, W.K.F.; Yang, L.; Lai, K.P. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging, 2020, 12(15), 15784-15796.
[http://dx.doi.org/10.18632/aging.103888] [PMID: 32805728]
[22]
Vollenberg, R.; Tepasse, P.R.; Fobker, M.; Hüsing-Kabar, A. Significantly reduced Retinol Binding Protein 4 (RBP4) levels in critically ill COVID-19 patients. Nutrients, 2022, 14(10), 2007.
[http://dx.doi.org/10.3390/nu14102007] [PMID: 35631143]
[23]
Tepasse, P.R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J.A.; Nowacki, T.; Hüsing-Kabar, A. Vitamin A plasma levels in COVID-19 patients: A prospective multicenter study and hypothesis. Nutrients, 2021, 13(7), 2173.
[http://dx.doi.org/10.3390/nu13072173] [PMID: 34202697]
[24]
AL-sumiadai, M.M.; Ghazzay, H.; Al-Ani, R.K. Therapeutic effect of vitamin A on Covid-19 patients and its prophylactic effect on contacts. Sys. Rev. Pharm., 2021, 12(1), 207-210.
[25]
Yi, J.S.; Cox, M.A.; Zajac, A.J. T-cell exhaustion: Characteristics, causes and conversion. Immunology, 2010, 129(4), 474-481.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03255.x] [PMID: 20201977]
[26]
Jarjour, N.N.; Masopust, D.; Jameson, S.C. T Cell Memory: Understanding COVID-19. Immunity, 2021, 54(1), 14-18.
[http://dx.doi.org/10.1016/j.immuni.2020.12.009] [PMID: 33406391]
[27]
Iswari, R.S.; Susanti, R.; Dafip, M. Vitamin A modulation toward IL-12, IFN-γ production and macrophage activity in malaria disease. AIP Conf. Proceed., 2016, 1744(1), 020049.
[28]
Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B vitamins and their role in immune regulation and cancer. Nutrients, 2020, 12(11), 3380.
[http://dx.doi.org/10.3390/nu12113380] [PMID: 33158037]
[29]
Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas, 2021, 144, 108-111.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007] [PMID: 32829981]
[30]
Eshak, E.S.; Arafa, A.E. Thiamine deficiency and cardiovascular disorders. Nutr. Metab. Cardiovasc. Dis., 2018, 28(10), 965-972.
[http://dx.doi.org/10.1016/j.numecd.2018.06.013] [PMID: 30143411]
[31]
Shoji, S.; Furuishi, K.; Ogata, A.; Yamataka, K.; Tachibana, K.; Mukai, R.; Uda, A.; Harano, K.; Matsushita, S.; Misumi, S. An allosteric drug, o,o′-bismyristoyl thiamine disulfide, suppresses HIV-1 replication through prevention of nuclear translocation of both HIV-1 Tat and NF-kappa B. Biochem. Biophys. Res. Commun., 1998, 249(3), 745-753.
[http://dx.doi.org/10.1006/bbrc.1998.9221] [PMID: 9731208]
[32]
Hammes, H.P.; Du, X.; Edelstein, D.; Taguchi, T.; Matsumura, T.; Ju, Q.; Lin, J.; Bierhaus, A.; Nawroth, P.; Hannak, D.; Neumaier, M.; Bergfeld, R.; Giardino, I.; Brownlee, M. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med., 2003, 9(3), 294-299.
[http://dx.doi.org/10.1038/nm834] [PMID: 12592403]
[33]
Smith, T.J.; Johnson, C.R.; Koshy, R.; Hess, S.Y.; Qureshi, U.A.; Mynak, M.L.; Fischer, P.R. Thiamine deficiency disorders: A clinical perspective. Ann. N. Y. Acad. Sci., 2021, 1498(1), 9-28.
[http://dx.doi.org/10.1111/nyas.14536] [PMID: 33305487]
[34]
Allowitz, K.V.; Yoo, J.J.; Taylor, J.R.; Baloch, O.A.; Harames, K.; Ramana, K.V. Therapeutic potential of vitamin B 1 derivative benfotiamine from diabetes to COVID-19. Future Med. Chem., 2022, 14(11), 809-826.
[http://dx.doi.org/10.4155/fmc-2022-0040] [PMID: 35535731]
[35]
Berg, K.M.; Gautam, S.; Salciccioli, J.D.; Giberson, T.; Saindon, B.; Donnino, M.W. Intravenous thiamine is associated with increased oxygen consumption in critically ill patients with preserved cardiac index. Ann. Am. Thorac. Soc., 2014, 11(10), 1597-1601.
[http://dx.doi.org/10.1513/AnnalsATS.201406-259BC] [PMID: 25390455]
[36]
Al Sulaiman, K.; Aljuhani, O.; Al Dossari, M.; Alshahrani, A.; Alharbi, A.; Algarni, R.; Al Jeraisy, M.; Al Harbi, S.; Al Katheri, A.; Al Eidan, F.; Al Bekairy, A.M.; Al Qahtani, N.; Al Muqrin, M.; Vishwakarma, R.; Al Ghamdi, G. Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: A two-center propensity score matched study. Crit. Care, 2021, 25(1), 223.
[http://dx.doi.org/10.1186/s13054-021-03648-9] [PMID: 34193235]
[37]
de Oliveira, M.V.B.; Irikura, S.; de Barros Lourenço, F.H. Shinsato, M Encephalopathy responsive to thiamine in severe COVID-19 patients. Brain. Behav. Immun. Health, 2021, 14, 100252.
[http://dx.doi.org/10.1016/j.bbih.2021.100252]
[38]
Branco de Oliveira, M.V.; Bernabé, D.G.; Irikura, S.; Irikura, R.B.; Fontanelli, A.M.; Gonçalves, M.V.M. Wernicke encephalopathy in COVID-19 Patients: Report of three cases. Front. Neurol., 2021, 12, 629273.
[http://dx.doi.org/10.3389/fneur.2021.629273] [PMID: 33716929]
[39]
Thakur, K.; Tomar, S.K.; Singh, A.K.; Mandal, S.; Arora, S. Riboflavin and health: A review of recent human research. Crit. Rev. Food Sci. Nutr., 2017, 57(17), 3650-3660.
[http://dx.doi.org/10.1080/10408398.2016.1145104] [PMID: 27029320]
[40]
Besaratinia, A.; Kim, S.; Bates, S.E.; Pfeifer, G.P. Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5953-5958.
[http://dx.doi.org/10.1073/pnas.0610534104] [PMID: 17389394]
[41]
Akasov, R.A.; Khaydukov, E.V.; Andreyuk, D.S.; Sholina, N.V.; Sheremeta, A.N.; Romanov, D.V.; Kostyuk, G.P.; Panchenko, V.Y.; Kovalchuk, M.V. Riboflavin for COVID-19 adjuvant treatment in patients with mental health disorders: Observational study. Front. Pharmacol., 2022, 13, 755745.
[http://dx.doi.org/10.3389/fphar.2022.755745] [PMID: 35359854]
[42]
Keil, S.D.; Ragan, I.; Yonemura, S.; Hartson, L.; Dart, N.K.; Bowen, R. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light‐based photochemical treatment. Vox Sang., 2020, 115(6), 495-501.
[http://dx.doi.org/10.1111/vox.12937] [PMID: 32311760]
[43]
Ragan, I.; Hartson, L.; Pidcoke, H.; Bowen, R.; Goodrich, R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One, 2020, 15(5), e0233947.
[http://dx.doi.org/10.1371/journal.pone.0233947] [PMID: 32470046]
[44]
Makarov, M.V.; Trammell, S.A.J.; Migaud, M.E. The chemistry of the vitamin B3 metabolome. Biochem. Soc. Trans., 2019, 47(1), 131-147.
[http://dx.doi.org/10.1042/BST20180420] [PMID: 30559273]
[45]
Ungerstedt, J.S.; Blombäck, M.; Söderström, T. Nicotinamide is a potent inhibitor of proinflammatory cytokines. Clin. Exp. Immunol., 2003, 131(1), 48-52.
[http://dx.doi.org/10.1046/j.1365-2249.2003.02031.x] [PMID: 12519385]
[46]
Vatansever, H.S.; Becer, E. Relationship between IL-6 and COVID-19: To be considered during treatment. Future Virol., 2020, 15(12), 817-822.
[http://dx.doi.org/10.2217/fvl-2020-0168]
[47]
Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des. Devel. Ther., 2018, 13, 57-70.
[http://dx.doi.org/10.2147/DDDT.S150580] [PMID: 30587928]
[48]
Ghosn, L.; Chaimani, A.; Evrenoglou, T.; Davidson, M.; Graña, C.; Schmucker, C.; Bollig, C.; Henschke, N.; Sguassero, Y.; Nejstgaard, C.H.; Menon, S.; Nguyen, T.V.; Ferrand, G.; Kapp, P.; Riveros, C.; Ávila, C.; Devane, D.; Meerpohl, J.J.; Rada, G.; Hróbjartsson, A.; Grasselli, G.; Tovey, D.; Ravaud, P.; Boutron, I. Interleukin-6 blocking agents for treating COVID-19: A living systematic review. Cochrane Libr., 2021, 2021(3), CD013881.
[http://dx.doi.org/10.1002/14651858.CD013881] [PMID: 33734435]
[49]
Boppana, T.K.; Mittal, S.; Madan, K.; Mohan, A.; Hadda, V.; Guleria, R. Tocilizumab for COVID-19: A systematic review and meta-analysis of randomized controlled trials. Monaldi Arch. Chest Dis., 2022, 92(4)
[http://dx.doi.org/10.4081/monaldi.2022.2136] [PMID: 35130679]
[50]
Huang, L.; Xie, Y.; William Lown, J. Section review oncologic, endocrine & metabolic: Bleomycin antibiotics and their role in cancer chemotherapy. Expert Opin. Ther. Pat., 1996, 6(9), 893-899.
[http://dx.doi.org/10.1517/13543776.6.9.893]
[51]
Raines, N.H.; Ganatra, S.; Nissaisorakarn, P.; Pandit, A.; Morales, A.; Asnani, A.; Sadrolashrafi, M.; Maheshwari, R.; Patel, R.; Bang, V.; Shreyder, K.; Brar, S.; Singh, A.; Dani, S.S.; Knapp, S.; Poyan Mehr, A.; Brown, R.S.; Zeidel, M.L.; Bhargava, R.; Schlondorff, J.; Steinman, T.I.; Mukamal, K.J.; Parikh, S.M. Niacinamide may be associated with improved outcomes in COVID-19 related acute kidney injury: An observational Study. Kidney360, 2021, 2(1), 33-41.
[http://dx.doi.org/10.34067/KID.0006452020] [PMID: 35368823]
[52]
Novak Kujundžić, R. COVID-19: Are we facing secondary pellagra which cannot simply be cured by vitamin B3? Int. J. Mol. Sci., 2022, 23(8), 4309.
[http://dx.doi.org/10.3390/ijms23084309] [PMID: 35457123]
[53]
Jung, S.; Kim, M.K.; Choi, B.Y. The long-term relationship between dietary pantothenic acid (vitamin B5) intake and C-reactive protein concentration in adults aged 40 years and older. Nutr. Metab. Cardiovasc. Dis., 2017, 27(9), 806-816.
[http://dx.doi.org/10.1016/j.numecd.2017.05.008] [PMID: 28739188]
[54]
He, W.; Hu, S.; Du, X.; Wen, Q.; Zhong, X.P.; Zhou, X.; Zhou, C.; Xiong, W.; Gao, Y.; Zhang, S.; Wang, R.; Yang, J.; Ma, L. Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with Mycobacterium tuberculosis. Front. Immunol., 2018, 9, 365.
[http://dx.doi.org/10.3389/fimmu.2018.00365] [PMID: 29535733]
[55]
Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and its role in cell metabolism and physiology. Cells, 2018, 7(7), 84.
[http://dx.doi.org/10.3390/cells7070084] [PMID: 30037155]
[56]
Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol., 2020, 146(1), 128-136.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.05.008] [PMID: 32425269]
[57]
Zhou, Y.Z.; Teng, X.B.; Han, M.F.; Shi, J.F.; Li, C.X.; Zhang, X.H.; Hou, D.Y.; Yang, L.L. The value of PCT, IL-6, and CRP in the early diagnosis and evaluation of COVID-19. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(2), 1097-1100.
[http://dx.doi.org/10.26355/eurrev_202101_24680] [PMID: 33577066]
[58]
Rail, L.C.; Meydani, S.N. Vitamin B6 and immune competence. Nutr. Rev., 1993, 51(8), 217-225.
[http://dx.doi.org/10.1111/j.1753-4887.1993.tb03109.x] [PMID: 8302491]
[59]
van Wyk, V.; Luus, H.G.; Heyns, A.D. The in vivo effect in humans of pyridoxal-5′-phosphate on platelet function and blood coagulation. Thromb. Res., 1992, 66(6), 657-668.
[http://dx.doi.org/10.1016/0049-3848(92)90042-9] [PMID: 1519226]
[60]
Kumrungsee, T.; Zhang, P.; Chartkul, M.; Yanaka, N.; Kato, N. Potential role of vitamin B6 in ameliorating the severity of COVID-19 and its complications. Front. Nutr., 2020, 7, 562051.
[http://dx.doi.org/10.3389/fnut.2020.562051] [PMID: 33195363]
[61]
Sijilmassi, O. Folic acid deficiency and vision: A review. Graefes Arch. Clin. Exp. Ophthalmol., 2019, 257(8), 1573-1580.
[http://dx.doi.org/10.1007/s00417-019-04304-3] [PMID: 30919078]
[62]
Chen, Y.; Wei, J.; Qin, R.; Hou, J.; Zang, G.; Zhang, G.; Chen, T. Folic acid: A potential inhibitor against SARS-CoV-2 nucleocapsid protein. Pharm. Biol., 2022, 60(1), 862-878.
[http://dx.doi.org/10.1080/13880209.2022.2063341] [PMID: 35594385]
[63]
Sheybani, Z.; Heydari Dokoohaki, M.; Negahdaripour, M.; Dehdashti, M.; Zolghadr, H.; Moghadami, M.; Masoompour, S.M.; Zolghadr, A.R. The interactions of folate with the enzyme furin: A computational study. RSC Adv., 2021, 11(38), 23815-23824.
[http://dx.doi.org/10.1039/D1RA03299B] [PMID: 35479793]
[64]
Sheybani, Z.; Dokoohaki, M.H.; Negahdaripour, M. The role of folic acid in the management of respiratory disease caused by COVID-19. 2020.
[http://dx.doi.org/10.26434/chemrxiv.12034980.v1]
[65]
Meisel, E.; Efros, O.; Bleier, J.; Beit Halevi, T.; Segal, G.; Rahav, G.; Leibowitz, A.; Grossman, E. Folate levels in patients hospitalized with coronavirus disease 2019. Nutrients, 2021, 13(3), 812.
[http://dx.doi.org/10.3390/nu13030812] [PMID: 33801194]
[66]
Topless, R.; Green, R.; Morgan, S.L.; Robinson, P.; Merriman, T.; Gaffo, A.L. Folic acid and methotrexate use and their association with COVID-19 diagnosis and mortality: A case–control analysis from the UK Biobank. BMJ Open, 2022, 12(8), e062945.
[http://dx.doi.org/10.1136/bmjopen-2022-062945] [PMID: 36002213]
[67]
Ryan-Harshman, M.; Aldoori, W. Vitamin B12 and health. Can. Fam. Physician, 2008, 54(4), 536-541.
[PMID: 18411381]
[68]
Batista, K.S.; Cintra, V.M.; Lucena, P.A.F.; Manhães-de-Castro, R.; Toscano, A.E.; Costa, L.P.; Queiroz, M.E.B.S.; de Andrade, S.M.; Guzman-Quevedo, O.; Aquino, J.S. The role of vitamin B12 in viral infections: A comprehensive review of its relationship with the muscle–gut–brain axis and implications for SARS-CoV-2 infection. Nutr. Rev., 2022, 80(3), 561-578.
[http://dx.doi.org/10.1093/nutrit/nuab092] [PMID: 34791425]
[69]
Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; Nagarajan, C.; Sultana, R.; Low, J.G.H.; Ng, H.J. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition, 2020, 79-80, 111017.
[http://dx.doi.org/10.1016/j.nut.2020.111017] [PMID: 33039952]
[70]
Pandya, M.; Shah, S. M, D.; Juneja, T.; Patel, A.; Gadnayak, A.; Dave, S.; Das, K.; Das, J. Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach. Inform. Med. Unlocked, 2022, 30, 100951.
[http://dx.doi.org/10.1016/j.imu.2022.100951] [PMID: 35475214]
[71]
Alshammari, E. Vitamin B12 deficiency in COVID-19 recovered patients: Case report. Int. J. Pharm. Res., 2021, 13(1), 482-485.
[72]
Dalbeni, A.; Bevilacqua, M.; Teani, I.; Normelli, I.; Mazzaferri, F.; Chiarioni, G. Excessive vitamin B12 and poor outcome in COVID-19 pneumonia. Nutr. Metab. Cardiovasc. Dis., 2021, 31(3), 774-775.
[http://dx.doi.org/10.1016/j.numecd.2020.12.005] [PMID: 33549452]
[73]
Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 2021, 13(2), 615.
[http://dx.doi.org/10.3390/nu13020615] [PMID: 33668681]
[74]
Dresen, E.; Lee, Z.Y.; Hill, A.; Notz, Q.; Patel, J.J.; Stoppe, C. History of scurvy and use of vitamin C in critical illness: A narrative review. Nutr. Clin. Pract., 2022.
[http://dx.doi.org/10.1002/ncp.10914] [PMID: 36156315]
[75]
Gorton, H.C.; Jarvis, K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J. Manipulative Physiol. Ther., 1999, 22(8), 530-533.
[http://dx.doi.org/10.1016/S0161-4754(99)70005-9] [PMID: 10543583]
[76]
Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C-An adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients, 2020, 12(12), 3760.
[http://dx.doi.org/10.3390/nu12123760] [PMID: 33297491]
[77]
Ellulu, M.S.; Rahmat, A.; Ismail, P.; Khaza’ai, H.; Abed, Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: A randomized controlled trial. Drug Des. Devel. Ther., 2015, 9, 3405-3412.
[http://dx.doi.org/10.2147/DDDT.S83144] [PMID: 26170625]
[78]
Carr, A.; Maggini, S. Vitamin C and immune Function. Nutrients, 2017, 9(11), 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[79]
Tomasa-Irriguible, T.M.; Bielsa-Berrocal, L. COVID-19: Up to 82% critically ill patients had low Vitamin C values. Nutr. J., 2021, 20(1), 66.
[http://dx.doi.org/10.1186/s12937-021-00727-z] [PMID: 34243781]
[80]
Rawat, D.; Roy, A.; Maitra, S.; Gulati, A.; Khanna, P.; Baidya, D.K. Vitamin C and COVID-19 treatment: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab. Syndr., 2021, 15(6), 102324.
[http://dx.doi.org/10.1016/j.dsx.2021.102324] [PMID: 34739908]
[81]
Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; De Backer, D.; Xiang, H.; Peng, Z. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann. Intensive Care, 2021, 11(1), 5.
[http://dx.doi.org/10.1186/s13613-020-00792-3] [PMID: 33420963]
[82]
Gao, D.; Xu, M.; Wang, G.; Lv, J.; Ma, X.; Guo, Y.; Zhang, D.; Yang, H.; Jiang, W.; Deng, F.; Xia, G.; Lu, Z.; Lv, L.; Gong, S. The efficiency and safety of high-dose vitamin C in patients with COVID-19: a retrospective cohort study. Aging (Albany NY), 2021, 13(5), 7020-7034.
[http://dx.doi.org/10.18632/aging.202557] [PMID: 33638944]
[83]
Abobaker, A.; Alzwi, A.; Alraied, A.H.A. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol. Rep., 2020, 72(6), 1517-1528.
[http://dx.doi.org/10.1007/s43440-020-00176-1] [PMID: 33113146]
[84]
Sassi, F.; Tamone, C.; D’Amelio, P.; Vitamin, D.; Vitamin, D. Nutrient, Hormone, and Immunomodulator. Nutrients, 2018, 10(11), 1656.
[http://dx.doi.org/10.3390/nu10111656] [PMID: 30400332]
[85]
Sudfeld, C.R.; Mugusi, F.; Muhihi, A.; Aboud, S.; Nagu, T.J.; Ulenga, N.; Hong, B.; Wang, M.; Fawzi, W.W. Efficacy of vitamin D3 supplementation for the prevention of pulmonary tuberculosis and mortality in HIV: A randomised, double-blind, placebo-controlled trial. Lancet HIV, 2020, 7(7), e463-e471.
[http://dx.doi.org/10.1016/S2352-3018(20)30108-9] [PMID: 32621874]
[86]
Silberstein, M. COVID-19 and IL-6: Why vitamin D (probably) helps but tocilizumab might not. Eur. J. Pharmacol., 2021, 899, 174031.
[http://dx.doi.org/10.1016/j.ejphar.2021.174031] [PMID: 33722593]
[87]
Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and therapeutic role of Vitamin D in COVID-19: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab., 2022, 107(5), 1484-1502.
[http://dx.doi.org/10.1210/clinem/dgab892] [PMID: 34894254]
[88]
Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; Napoli, N.; Accili, D.; Binkley, N.; Landry, D.W.; Giustina, A. Mechanisms in endocrinology: Vitamin D and COVID-19. Eur. J. Endocrinol., 2020, 183(5), R133-R147.
[http://dx.doi.org/10.1530/EJE-20-0665] [PMID: 32755992]
[89]
Bassatne, A.; Basbous, M.; Chakhtoura, M.; El Zein, O.; Rahme, M.; El-Hajj Fuleihan, G. The link between COVID-19 and Vitamin D (VIVID): A systematic review and meta-analysis. Metabolism, 2021, 119, 154753.
[http://dx.doi.org/10.1016/j.metabol.2021.154753] [PMID: 33774074]
[90]
Vaughan, M.; Trott, M.; Sapkota, R.; Premi, G.; Roberts, J.; Ubhi, J.; Smith, L.; Pardhan, S. Changes in 25‐hydroxyvitamin D levels post‐vitamin D supplementation in people of Black and Asian ethnicities and its implications during COVID‐19 pandemic: A systematic review. J. Hum. Nutr. Diet., 2022, 35(5), 995-1005.
[http://dx.doi.org/10.1111/jhn.12949] [PMID: 34617343]
[91]
Rawat, D.; Roy, A.; Maitra, S.; Shankar, V.; Khanna, P.; Baidya, D.K. "Vitamin D supplementation and COVID-19 treatment: A systematic review and meta-analysis". Diabetes Metab. Syndr., 2021, 15(4), 102189.
[http://dx.doi.org/10.1016/j.dsx.2021.102189] [PMID: 34217144]
[92]
Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; Baggio, J.; Balbi, G.G.M.; Reis, B.Z.; Antonangelo, L.; Caparbo, V.F.; Gualano, B.; Pereira, R.M.R. Effect of a single high dose of Vitamin D 3 on hospital length of stay in patients with moderate to severe COVID-19. JAMA, 2021, 325(11), 1053-1060.
[http://dx.doi.org/10.1001/jama.2020.26848] [PMID: 33595634]
[93]
Gibbons, J.B.; Norton, E.C.; McCullough, J.S.; Meltzer, D.O.; Lavigne, J.; Fiedler, V.C.; Gibbons, R.D. Association between vitamin D supplementation and COVID-19 infection and mortality. Sci. Rep., 2022, 12(1), 19397.
[http://dx.doi.org/10.1038/s41598-022-24053-4] [PMID: 36371591]
[94]
Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. (Lond.), 2014, 11(1), 52.
[http://dx.doi.org/10.1186/1743-7075-11-52] [PMID: 25435896]
[95]
Bertrand, Y.; Pincemail, J.; Hanique, G.; Denis, B.; Leenaerts, L.; Vankeerberghen, L.; Deby, C. Differences in tocopherol-lipid ratios in ARDS and non-ARDS patients. Intensive Care Med., 1989, 15(2), 87-93.
[http://dx.doi.org/10.1007/BF00295983] [PMID: 2715512]
[96]
Hakamifard, A.; Soltani, R.; Maghsoudi, A.; Rismanbaf, A.; Aalinezhad, M.; Tarrahi, M. The effect of vitamin E and vitamin C in patients with COVID-19 pneumonia; A randomized controlled clinical trial. Immunopathol. Persa., 2021, 8(1), e8.
[http://dx.doi.org/10.34172/ipp.2022.08]
[97]
Lee, G.; Han, S. The Role of Vitamin E in Immunity. Nutrients, 2018, 10(11), 1614.
[http://dx.doi.org/10.3390/nu10111614] [PMID: 30388871]
[98]
Erol, S.A.; Tanacan, A.; Anuk, A.T.; Tokalioglu, E.O.; Biriken, D.; Keskin, H.L.; Moraloglu, O.T.; Yazihan, N.; Sahin, D. Evaluation of maternal serum afamin and vitamin E levels in pregnant women with COVID‐19 and its association with composite adverse perinatal outcomes. J. Med. Virol., 2021, 93(4), 2350-2358.
[http://dx.doi.org/10.1002/jmv.26725] [PMID: 33314206]
[99]
Tavakol, S.; Seifalian, A.M. Vitamin E at a high dose as an anti‐ferroptosis drug and not just a supplement for COVID‐19 treatment. Biotechnol. Appl. Biochem., 2022, 69(3), 1058-1060.
[http://dx.doi.org/10.1002/bab.2176] [PMID: 33938041]
[100]
Hulisz, D. Efficacy of zinc against common cold viruses: an overview. J. Am. Pharm. Assoc., 2004, 44(5), 594-603.
[http://dx.doi.org/10.1331/1544-3191.44.5.594.Hulisz] [PMID: 15496046]
[101]
Paulikat, M.; Vitone, D.; Schackert, F.K.; Schuth, N.; Barbanente, A.; Piccini, G. Molecular dynamics and structural studies of zinc chloroquine complexes. J. Chem. Inf. Model., 2022.
[http://dx.doi.org/10.1021/acs.jcim.2c01164] [PMID: 36468829]
[102]
Skalny, A.; Rink, L.; Ajsuvakova, O.; Aschner, M.; Gritsenko, V.; Alekseenko, S.; Svistunov, A.; Petrakis, D.; Spandidos, D.; Aaseth, J.; Tsatsakis, A.; Tinkov, A. Zinc and respiratory tract infections: Perspectives for COVID 19 (Review). Int. J. Mol. Med., 2020, 46(1), 17-26.
[http://dx.doi.org/10.3892/ijmm.2020.4575] [PMID: 32319538]
[103]
Shittu, M.O.; Afolami, O.I. Improving the efficacy of Chloroquine and Hydroxychloroquine against SARS-CoV-2 may require Zinc additives - A better synergy for future COVID-19 clinical trials. Infez. Med., 2020, 28(2), 192-197.
[PMID: 32335560]
[104]
Bishop, C.D. Antiviral activity of the essential oil of Melaleuca alternifolia (maiden amp; Betche) Cheel (tea tree) against tobacco mosaic virus. J. Essent. Oil Res., 1995, 7(6), 641-644.
[http://dx.doi.org/10.1080/10412905.1995.9700519]
[105]
Schnitzler, P.; Schön, K.; Reichling, J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie, 2001, 56(4), 343-347.
[PMID: 11338678]
[106]
Hathaway, D., III; Pandav, K.; Patel, M.; Riva-Moscoso, A.; Singh, B.M.; Patel, A.; Min, Z.C.; Singh-Makkar, S.; Sana, M.K.; Sanchez-Dopazo, R.; Desir, R.; Fahem, M.M.M.; Manella, S.; Rodriguez, I.; Alvarez, A.; Abreu, R. Omega 3 fatty acids and COVID-19: A comprehensive review. Infect. Chemother., 2020, 52(4), 478-495.
[http://dx.doi.org/10.3947/ic.2020.52.4.478] [PMID: 33377319]
[107]
Asher, A.; Tintle, N.L.; Myers, M.; Lockshon, L.; Bacareza, H.; Harris, W.S. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot. Essent. Fatty Acids, 2021, 166, 102250.
[http://dx.doi.org/10.1016/j.plefa.2021.102250] [PMID: 33516093]
[108]
Doaei, S.; Gholami, S.; Rastgoo, S.; Gholamalizadeh, M.; Bourbour, F.; Bagheri, S.E.; Samipoor, F.; Akbari, M.E.; Shadnoush, M.; Ghorat, F.; Mosavi Jarrahi, S.A.; Ashouri Mirsadeghi, N.; Hajipour, A.; Joola, P.; Moslem, A.; Goodarzi, M.O. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial. J. Transl. Med., 2021, 19(1), 128.
[http://dx.doi.org/10.1186/s12967-021-02795-5] [PMID: 33781275]
[109]
Dyer, O. COVID-19: Unvaccinated face 11 times risk of death from delta variant, CDC data show. BMJ, 2021, 374(2282), n2282.
[http://dx.doi.org/10.1136/bmj.n2282] [PMID: 34531181]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy