Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Bioassay-guided Isolation and Identification of Antidiabetic Compounds from Naregamia alata

Author(s): Wilson Joel Rodrigues, Bhagya Nekrakaleya, Chandrashekar Konambi Ramaiah* and Boja Poojary

Volume 19, Issue 9, 2023

Published on: 15 May, 2023

Article ID: e130423215719 Pages: 12

DOI: 10.2174/1573407219666230413081819

Price: $65

conference banner
Abstract

Background: Naregamia alata is an endemic herb of Western Ghats with traditional medicinal uses and pharmacological activities, viz. anti-inflammatory, antioxidant, antipyretic, hepatoprotective and antidiabetic effects. However, no information is available on the phytoconstituents of N. alata responsible for antidiabetic activities.

Objective: Isolation and identification of compound/s from the dichloromethane fraction of methanol extract of N. alata and to confirm the antidiabetic activity using streptozotocin-induced diabetic rat models.

Methods: The DCM fraction obtained from the methanol extract of N. alata was fractionated using column chromatography. The fractions with in vivo antidiabetic activity were characterised chemically using GCMS, FTIR, and 1H NMR to identify the phytochemicals responsible for the antidiabetic activities.

Results: The study showed the antidiabetic effect of DCM fraction with the regulation of serum biochemical parameters. The chemical characterisation of the fractions responsible for the in vivo antidiabetic effect revealed the presence of hexadecanoic acid methyl ester and 13-docosenamide as two major compounds in one of the fractions (Fraction 1) and citronellol in another fraction (Fraction 2.2.1).

Conclusion: The study highlights the role of hexadecanoic acid methyl ester, 13-docosenamide and citronellol in a reversal of serum biochemical parameters along with body weight in streptozotocin- induced diabetic rats to near normal suggesting the potential antidiabetic properties of these compounds.

Graphical Abstract

[1]
Maniyar, Y.A.; Roopa, C.R.; Devi, C.H. Evaluation of antihyperglycemic and hypolipidemic activity of ethanolic extract of Clerodendrum infortunatum Linn. in experimental animals. Int. J. Basic Clin. Pharmacol., 2015, 4(3), 469-473.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20150019]
[2]
Daisy, P.; Jasmine, R.; Ignacimuthu, S.; Murugan, E. A novel Steroid from Elephantopus scaber L. an Ethnomedicinal plant with antidiabetic activity. Phytomedicine, 2009, 16(2-3), 252-257.
[http://dx.doi.org/10.1016/j.phymed.2008.06.001] [PMID: 18693100]
[3]
Phukhatmuen, P.; Raksat, A.; Laphookhieo, S.; Charoensup, R.; Duangyod, T.; Maneerat, W. Bioassay-guided isolation and identification of antidiabetic compounds from Garcinia cowa leaf] extract. Heliyon, 2020, 6(4)e03625
[http://dx.doi.org/10.1016/j.heliyon.2020.e03625] [PMID: 32368636]
[4]
Chatterjee, S.; Riewpaiboon, A.; Piyauthakit, P.; Riewpaiboon, W.; Boupaijit, K.; Panpuwong, N.; Archavanuntagul, V. Cost of diabetes and its complications in Thailand: A complete picture of economic burden. Health Soc. Care Community, 2011, 19(3), 289-298.
[http://dx.doi.org/10.1111/j.1365-2524.2010.00981.x] [PMID: 21276105]
[5]
Chaudhury , A. ; Duvour, C.; Reddy Dendi, VS; Kraleti, S.; Chada, A.; Ravilla, R.; Framework, A.; Shekhawat, NS; Montales, MT; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham , CK ; Lohani, GP; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. , 2017 , 8 , 6
[ http://dx.doi.org/10.3389/fendo.2017.00006 ] [PMID: 28167928 ]
[6]
Bhagya, N.; Chandrashekar, K.R. Identification and quantification of cytotoxic phenolic acids and flavonoids in Ixora brachiata by UHPLC-DAD and UHPLC-ESI-MS/MS. Int. J. Mass Spectrom., 2020, 450116290
[http://dx.doi.org/10.1016/j.ijms.2020.116290]
[7]
Verma, S.; Gupta, M.; Popli, H.; Aggarwal, G. Diabetes mellitus treatment using herbal drugs. Int. J. Phytomed., 2018, 10(1), 01.
[http://dx.doi.org/10.5138/09750185.2181]
[8]
World Health Organization. WHO Expert Committee on Diabetes Mellitus [meeting held in Geneva from 25 September to 1 October 1979]: second report; World Health Organization, 1980.
[9]
Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal., 2018, 8(2), 109-118.
[http://dx.doi.org/10.1016/j.jpha.2017.10.005] [PMID: 29736297]
[10]
Zahoor, M.; Shafiq, S.; Ullah, H.; Sadiq, A.; Ullah, F. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem., 2018, 19(1), 5.
[http://dx.doi.org/10.1186/s12858-018-0095-7] [PMID: 29940844]
[11]
Gaikwad, B.S.; Krishna, M.G.; Sandhya, R.M. Phytochemicals for diabetes management. Pharm. Crop., 2014, 5(1), 11-28.
[http://dx.doi.org/10.2174/2210290601405010011]
[12]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[13]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. HerbMed. Pharmacol., 2018, 7(1), 1-7.
[http://dx.doi.org/10.15171/jhp.2018.01]
[14]
Banu, K.S.; Cathrine, L. General techniques involved in phytochemical analysis. Int. J. Adv. Res. Chem. Sci., 2015, 2(4), 5-32.
[15]
Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13(1), 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x] [PMID: 29692864]
[16]
Pisarev, V.B.; Snigur, G.L.; Spasov, A.A.; Samokhina, M.P.; Bulanov, A.E. Mechanisms of toxic effect of streptozotocin on β-cells in the islets of langerhans. Bull. Exp. Biol. Med., 2009, 148(6), 937-939.
[http://dx.doi.org/10.1007/s10517-010-0856-9] [PMID: 21116511]
[17]
Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, S.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.A.; Rad, B.L. Induction of diabetes by Streptozotocin in rats. Indian J. Clin. Biochem., 2007, 22(2), 60-64.
[http://dx.doi.org/10.1007/BF02913315] [PMID: 23105684]
[18]
Zafar, M. Naeem-ul-Hassan, N.S. Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: A comparative study. Int. J. Morphol., 2010, 28(1), 135-142.
[http://dx.doi.org/10.4067/S0717-95022010000100019]
[19]
Damasceno, D.C.; Netto, A.O.; Iessi, I.L.; Gallego, F.Q.; Corvino, S.B.; Dallaqua, B.; Sinzato, Y.K.; Bueno, A.; Calderon, I.M.P.; Rudge, M.V.C. Streptozotocin-induced diabetes models: Pathophysiological mechanisms and fetal outcomes. BioMed Res. Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/819065] [PMID: 24977161]
[20]
Tripathi, P.; Tripathi, A.; Bisht, V.; Purwar, S. Naregamia alata: An endanger medicinal plant. Pharma Innov., 2020, 9(8), 293-297.
[21]
Rodrigues, W.J. N, B.; R, C.K. Antidiabetic activity of Naregamia alata in streptozotocin induced diabetic rats and associated mechanism of action. Synergy, 2020, 11100064
[http://dx.doi.org/10.1016/j.synres.2020.100064]
[22]
Kupchan, S.M.; Tsou, G.; Sigel, C.W. Datiscacin, a novel cytotoxic cucurbitacin 20-acetate from Datisca glomerata. J. Org. Chem., 1973, 38(7), 1420-1421.
[http://dx.doi.org/10.1021/jo00947a041] [PMID: 4694234]
[23]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[24]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[25]
Rahmatullah, M.; Boyde, T.R.C. Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin. Chim. Acta, 1980, 107(1-2), 3-9.
[http://dx.doi.org/10.1016/0009-8981(80)90407-6] [PMID: 7428175]
[26]
Toora, B.D.; Rajagopal, G. Measurement of creatinine by Jaffe’s reaction--determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian J. Exp. Biol., 2002, 40(3), 352-354.
[PMID: 12635710]
[27]
Chemical Book. Available from: https://www.chemicalbook.com/SpectrumEN_112-84-5_1hnmr.htm (Accessed on: February 05, 2023).
[28]
Chemical Book. Available from: https://www.chemicalbook.com/SpectrumEN_112-39-0_1HNMR.htm (Accessed on: February 05, 2023).
[29]
Jeon, J.H.; Kim, H.W.; Kim, M.G.; Lee, H.S. Mite-control activities of active constituents isolated from Pelargonium graveolens against house dust mites. J. Microbiol. Biotechnol., 2008, 18(10), 1666-1671.
[PMID: 18955817]
[30]
Akpan, E.J.; Okokon, J.E.; Offong, E. Antidiabetic and hypolipidemic activities of ethanolic leaf extract and fractions of Melanthera scandens. Asian Pac. J. Trop. Biomed., 2012, 2(7), 523-527.
[http://dx.doi.org/10.1016/S2221-1691(12)60089-6] [PMID: 23569963]
[31]
Al-Attar, A.M.; Alsalmi, F.A. Influence of olive leaves extract on hepatorenal injury in streptozotocin diabetic rats. Saudi J. Biol. Sci., 2019, 26(7), 1865-1874.
[http://dx.doi.org/10.1016/j.sjbs.2017.02.005] [PMID: 31762669]
[32]
Dhanabal, S.P.; Vadivelan, R.; Maithili, V.; Mahendran, S. Antidiabetic activity of ethanolic extract of tubers of Dioscorea alata in alloxan induced diabetic rats. Indian J. Pharmacol., 2011, 43(4), 455-459.
[http://dx.doi.org/10.4103/0253-7613.83121] [PMID: 21845005]
[33]
Rajasekar, R.; Manokaran, K.; Rajasekaran, N.; Duraisamy, G.; Kanakasabapathi, D. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. J. Diabetes Metab. Disord., 2014, 13(1), 33.
[http://dx.doi.org/10.1186/2251-6581-13-33] [PMID: 24502532]
[34]
Sugimoto, K.; Ikegami, H.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Tabara, Y.; Osawa, H.; Hiromine, Y.; Rakugi, H. Glycemic control and insulin improve muscle mass and gait speed in type 2 diabetes: the MUSCLES-DM study. J. Am. Med. Dir. Assoc., 2021, 22(4), 834-838.e1.
[http://dx.doi.org/10.1016/j.jamda.2020.11.003] [PMID: 33278348]
[35]
Schofield, J.D.; Liu, Y.; Rao-Balakrishna, P.; Malik, R.A.; Soran, H. Diabetes dyslipidemia. Diabetes Ther., 2016, 7(2), 203-219.
[http://dx.doi.org/10.1007/s13300-016-0167-x] [PMID: 27056202]
[36]
Bitzur, R.; Cohen, H.; Kamari, Y.; Shaish, A.; Harats, D. Triglycerides and HDL cholesterol. Diabetes Care, 2009, 32(S2), S373-S377.
[http://dx.doi.org/10.2337/dc09-S343] [PMID: 19875584]
[37]
Krishnakumar, K.; Augusti, K.T.; Vijayammal, P.L. Communications - Hypolipidaemic effect of Salacia oblonga Wall root bark in streptozotocin diabetic rats. Med. Sci. Res., 2000, 28(1), 65-68.
[38]
Sadur, C.N.; Eckel, R.H. Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J. Clin. Invest., 1982, 69(5), 1119-1125.
[http://dx.doi.org/10.1172/JCI110547] [PMID: 7040473]
[39]
Pierre, W.; Gildas, A.J.H.; Ulrich, M.C.; Modeste, W.N.; Benoît, N.; Albert, K. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complement. Altern. Med., 2012, 12(1), 264.
[http://dx.doi.org/10.1186/1472-6882-12-264] [PMID: 23267560]
[40]
Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes, 2015, 6(13), 1246-1258.
[http://dx.doi.org/10.4239/wjd.v6.i13.1246] [PMID: 26468341]
[41]
Li, W.; Wang, G.; Lu, X.; Jiang, Y.; Xu, L.; Zhao, X. Lycopene ameliorates renal function in rats with streptozotocin-induced diabetes. Int. J. Clin. Exp. Pathol., 2014, 7(8), 5008-5015.
[PMID: 25197372]
[42]
Anjaneyulu, M.; Chopra, K. Diltiazem attenuates oxidative stress in diabetic rats. Ren. Fail., 2005, 27(3), 335-344.
[http://dx.doi.org/10.1081/JDI-56630] [PMID: 15957552]
[43]
Dabla, P.K. Renal function in diabetic nephropathy. World J. Diabetes, 2010, 1(2), 48-56.
[http://dx.doi.org/10.4239/wjd.v1.i2.48] [PMID: 21537427]
[44]
Sirigiri, C.K.; Kandru, A. GC-MS analysis of biologically active compounds in Canthium parviflorum lam. leaf and callus extracts. Int. J. Chemtech Res., 2017, 10(6), 1039-1058.
[45]
Wen, W.; Lin, Y.; Ti, Z. Antidiabetic, antihyperlipidemic, antioxidant, anti-inflammatory activities of ethanolic seed extract of Annona reticulata L. in streptozotocin induced diabetic rats. Front. Endocrinol., 2019, 10, 716.
[http://dx.doi.org/10.3389/fendo.2019.00716] [PMID: 31708869]
[46]
Saeed, N.M.; El-Demerdash, E.; Abdel-Rahman, H.M.; Algandaby, M.M.; Al-Abbasi, F.A.; Abdel-Naim, A.B. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol. Appl. Pharmacol., 2012, 264(1), 84-93.
[http://dx.doi.org/10.1016/j.taap.2012.07.020] [PMID: 22842335]
[47]
Nasution, R.; Nur Fitrah, C.; Helwati, H.; Murniana, M.; Arifin, B.; Cutchamzurni, C.; Rizal, Y.; Marianne, M. Antidiabetes activities extract hexane from the peels of Artocarpus camansi blanco fruit. Asian J. Pharm. Clin. Res., 2018, 11(13), 12-17.
[http://dx.doi.org/10.22159/ajpcr.2018.v11s1.26554]
[48]
Mohamed, S.A.; Sokkar, N.M.; El-Gindi, O.; Zeinab, Y.; Alfishawy, I.M. Phytoconstituents investigation, anti-diabetic and anti-dyslipidemic activities of Cotoneaster horizontalis Decne cultivated in Egypt. Life Sci. J., 2012, 9(2), 394-403.
[49]
Orhan, N.; Damlaci, T.; Baykal, T.; Ozek, T.; Aslan, M. Hypoglycaemic effect of seed and fruit extracts of laurel cherry in different experimental models and chemical characterization of the seed extract. Rec. Nat. Prod., 2015, 9(3), 379.
[50]
Kume, S.; Uzu, T.; Isshiki, K.; Koya, D. Peroxisome proliferator-activated receptors in diabetic nephropathy. PPAR Res., 2008, 2008, 1-11.
[http://dx.doi.org/10.1155/2008/879523] [PMID: 19277201]
[51]
Schmidt, A.; Vogel, R.L.; Witherup, K.M.; Rutledge, S.J.; Pitzenberger, S.M.; Adam, M.; Rodan, G.A. Identification of fatty acid methyl ester as naturally occurring transcriptional regulators of the members of the peroxisome proliferator-activated receptor family. Lipids, 1996, 31(11), 1115-1124.
[http://dx.doi.org/10.1007/BF02524285] [PMID: 8934443]
[52]
Rudbäck, J.; Hagvall, L.; Börje, A.; Nilsson, U.; Karlberg, A.T. Characterization of skin sensitizers from autoxidized citronellol - impact of the terpene structure on the autoxidation process. Contact Dermat., 2014, 70(6), 329-339.
[http://dx.doi.org/10.1111/cod.12234] [PMID: 24673435]
[53]
Tozoni, D.; Zacaria, J.; Vanderlinde, R.; Delamare, A.P.L.; Echeverrigaray, S. Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105. Electron. J. Biotechnol., 2010, 13(2), 2-3.
[http://dx.doi.org/10.2225/vol13-issue2-fulltext-8]
[54]
Hsouna, A.B.; Hamdi, N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from pelargonium graveolens growing in Tunisia. Lipids Health Dis., 2012, 11(1), 167.
[http://dx.doi.org/10.1186/1476-511X-11-167] [PMID: 23216669]
[55]
Wany, A.; Kumar, A.; Nallapeta, S.; Jha, S.; Nigam, V.K.; Pandey, D.M. Extraction and characterization of essential oil components based on geraniol and citronellol from Java citronella (Cymbopogon winterianus Jowitt). Plant Growth Regul., 2014, 73(2), 133-145.
[http://dx.doi.org/10.1007/s10725-013-9875-7]
[56]
Santos, P.L.; Matos, J.P.S.C.F.; Picot, L.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Citronellol, a monoterpene alcohol with promising pharmacological activities - A systematic review. Food Chem. Toxicol., 2019, 123, 459-469.
[http://dx.doi.org/10.1016/j.fct.2018.11.030] [PMID: 30453001]
[57]
Srinivasan, S.; Muruganathan, U. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2016, 250, 38-46.
[http://dx.doi.org/10.1016/j.cbi.2016.02.020] [PMID: 26944432]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy